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Maternal separation alters the activity of the opioid system, which modulates e thanol- 
induced stimulation and behavioral sensitization. This study examined the effects of 
an opioid antagonist, naltrexone (NTX), on the expression of behavioral sensitization to 
ethanol in adult male and female mice submitted to maternal separation from postnatal 
days (PNDs) 2 to 14. Whole litters of Swiss mice were either not separated [animal 
facility rearing (AFR)] or separated from their mothers for 3 h [long maternal separation 
(LMS)]. Starting on PND 90, male and female AFR and LMS mice received daily i.p. 
injections of saline (SAL) or ethanol (EtOH, 2.2 g/kg) for 21 days. Locomotor activity was 
assessed in cages containing photoelectric beams, once a week, to examine the devel-
opment of behavioral sensitization. Five days after the end of the chronic treatment, 
animals were submitted to four locomotor activity tests spaced by 48 h, to assess the 
expression of behavioral sensitization. In all tests, animals received two i.p. injections 
with a 30-min interval and were then assessed for locomotor response to different 
treatment challenges, which were: SAL/SAL, SAL/EtOH (2.2  g/kg), NTX 2.0  mg/kg 
(NTX2)/EtOH, and NTX 4.0 mg/kg (NTX4)/EtOH. Regardless of maternal separation, 
EtOH-treated male and female mice displayed increased locomotor responses to EtOH 
during the 21-day treatment, indicating the development of behavioral sensitization. In 
the SAL/EtOH challenge, EtOH-treated LMS and AFR male and female mice exhibited 
higher locomotor activity than their SAL-treated counterparts, indicating the expression 
of sensitization. The coadministration of either dose of NTX blocked the expression 
of locomotor sensitization in both AFR and LMS male mice with a history of EtOH 
sensitization. In females, a significant attenuation of EtOH sensitization was promoted 
by both NTX doses, while still maintaining an augmented stimulant response to EtOH. 
Importantly, maternal separation did not interfere in this phenomenon. These results 
indicate that expression of behavioral sensitization was importantly modulated by opioi-
dergic mechanisms both in male and female mice and that maternal separation did not 
play a major role in either development or expression of this EtOH sensitization.
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inTrODUcTiOn

Maternal care is essential for the proper development of altricial 
mammals, whose central nervous system maturation takes 
place postnatally. The ontogenesis of the hypothalamic–pitui-
tary–adrenal (HPA) axis stress response also occurs during the 
first weeks of life in mice and rats and is regulated by maternal 
presence, which tonically inhibits its activation by most stressors. 
Maternal care is responsible for maintaining the pups’ HPA axis 
quiescent; specifically stroking of the anogenital area inhibits the 
ACTH stress response, whereas lactation reduces corticosterone 
secretion (1–5). This inhibition is demonstrated by separating 
the offspring from its mother for periods of 8–24  h, resulting 
in elevated stress-induced ACTH and corticosterone stress 
responses (2, 4, 6–8).

Disruption of the mother–infant relationship produces long-
term alterations in numerous behaviors and brain systems (9), 
including vulnerability to drug abuse (10) and changes in the 
activity of the opioid system (11). A considerable number of 
studies have shown that separation of pups from their mothers 
for long periods of time during the first 2 weeks of life [3–6 h/
day; hereby referred to as long maternal separation (LMS)] 
affects brain opioid levels (12–15). Increases in immunore-
activity for Met-enkephalin peptides are detected in regions 
associated with reward and emotional behaviors, including the 
medial prefrontal cortex (12, 13), while less consistent changes 
are found in dynorphin-B levels, depending on the brain 
region and separation protocol (11). Additionally, LMS animals 
show greater sensitivity to morphine, an opioid agonist (16), 
compared to control animals. Changes in the opioid system are 
particularly relevant within the context of drug abuse, since 
these neuropeptides are involved in motivation and reward, 
regulating the activity of the dopaminergic mesolimbic system 
by means of μ-, δ-, and κ-opioid receptors (17–19). However, 
the effects of LMS on drug addiction-related behaviors appear 
to be sexually dimorphic for it increases self-administration of 
psychostimulants (10), morphine (20), and ethanol in males 
(21–24), but not in females (13, 25). LMS also modifies behavio-
ral sensitization to cocaine (26) and ethanol in females, but not 
in males (27), indicating a strong influence of sex and paradigm 
used to evaluate the neurobiological aspects involved in drug 
addiction.

Locomotor sensitization is defined as an augmented behav-
ioral response, e.g., locomotor activity, to the stimulant effects 
of drugs upon repeated administration. This paradigm has been 
used to study neuroadaptive changes induced by chronic EtOH 
administration, which may contribute to EtOH addiction. 
Interestingly, opioids seem to play a key role in the motivational 
aspects of drug and alcohol abuse in several animal models, 
including behavioral sensitization [for reviews, see Ref. (28, 29)]. 
Non-selective opioid receptors antagonists, such as naltrexone 
(NTX) or naloxone, decrease EtOH-induced stimulant effect 
(30, 31) and inhibit the development of behavioral sensitiza-
tion to ethanol (32, 33). However, the expression of behavioral 
sensitization to EtOH is not affected by these opioid receptor 
antagonists (32, 34). In the present study, we evaluated the effect 
of NTX, a non-selective opioid antagonist of important clinical 

value in the treatment of alcohol dependence [for reviews, see 
Ref. (18, 35)], on the expression of behavioral sensitization 
to ethanol in maternally separated adult mice. For this, we 
employed higher NTX doses than previous studies (32), and 
also tested both male and female mice to investigate possible 
sex differences [as opposed to only testing males, as in Ref. 
(32–34)]. Additionally, we tested the effect of an early life stress 
manipulation, which could further modulate the expression 
of ethanol sensitization (26, 27) and the sensitivity to NTX 
effects (11–16).

MaTerials anD MeThODs

animals
Swiss mice were mated in the animal facility of the Department 
of Psychobiology and daily inspected for the presence of pups. 
The day of the birth was designated postnatal day (PND) 0. 
On PND 1, litters were culled to 5 males and 5 females. Animals 
were maintained in a controlled 12-h light–dark cycle (lights on 
at 7:00 a.m. and off at 7:00 p.m.) and temperature (23 ±  2°C). 
Food and water were provided ad libitum throughout the entire 
study. Animal manipulations and protocols were approved by the 
Ethics Committee in Research (CEP# 521/07), and the experi-
ments were carried out in accordance with Brazilian regulations 
on the use and care of animals.

neonatal Manipulations
From PND 2 to 14, pups were subjected to daily maternal 
separation for 180  min (LMS) or not separated until weaning 
on PND 22 [animal facility rearing (AFR)]. In the LMS group, 
whole litters were removed from the nest, at ~12:00 hours, and 
placed in separate cages on a heating pad set at 33°C, whereas the 
mothers remained in the home cage and, at the end of the allotted 
period, litter and mother were reunited in the home cage. Once a 
week during the separation, half of the old bedding material was 
mixed with clean material, in order to prevent excessive ammonia 
accumulation and still keeping olfactory familiarity from the old 
bedding material. AFR litters were handled during cage cleaning 
(three times a week). Weaning took place on PND 22 and two to 
three litters from the same group were housed in plastic cages 
(10–15 animals).

Drugs
Ethanol (Synth) was prepared fresh every day, in a concentration 
of 15% w/v, in 0.9% saline (SAL) and administered at a dose of 
2.2 g/kg (i.p.). The opioid antagonist, NTX (Sigma-Aldrich) was 
also prepared before use, in 0.9% SAL, and the doses were chosen 
based on a previous study (33).

Behavioral sensitization
Habituation (Hab)
At PND 90, AFR and LMS male and female mice (8–9 litters/
manipulation) were individually tested in Opto-Varimex activity 
cages (Columbus Instruments, Columbus, OH, USA), which 
detect locomotion by interruptions of horizontal photoeletric 
beams, for 15 min.
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FigUre 1 | schematic representation of the experimental design. Black horizontal bars represent daily saline (SAL) or ethanol (EtOH) i.p. administration. 
The numbers represent the locomotor activity tests. White arrows represent two i.p. administrations, first with SAL or NTX (2.0 or 4.0 mg/kg) and second with 
SAL or EtOH.

TaBle 1 | locomotor activity (counts), during habituation, of male and 
female mice kept with their mothers for the entire developmental period 
[animal facility rearing (aFr)] or submitted to long maternal separation 
(lMs), from postnatal days 2 to 14.

Males Females

AFR 1209.57 ± 369.82 (23) 1573.75 ± 523.22 (24)
LMS 1183.04 ± 212.20 (25) 1375.68 ± 387.89 (25)

The values are presented as mean ± SD. Number of animals/group is shown in 
parenthesis.
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Development Phase
Fourty-eight hours after the habituation test, the animals were 
allocated into two treatment groups, and received daily injections 
of SAL or 2.2 g/kg EtOH, i.p, for 21 days (n = 10–13 animals/
sex/group), since studies from our lab have shown that this treat-
ment induces consistent levels of behavioral sensitization (36, 37) 
(Figure 1). Locomotor activity was measured once a week (days 
1, 7, 14, and 21 of treatment), immediately after the treatment, 
for 15 min.

Expression Phase
Five days after the last administration of the development/
induction phase, animals were submitted to 4 challenges spaced 
by 48  h. In all challenges, animals received two i.p. injections 
spaced by 30 min (Figure 1). All mice were submitted to drug 
challenges in the following order: SAL/SAL, SAL/EtOH (2.2 g/kg), 
NTX (2.0 mg/kg)/EtOH (2.2 g/kg), and (NTX, 4.0 mg/kg)/EtOH 
(2.2  g/kg). Immediately after the second administration, the 
animals were placed in the activity cages, and locomotor activity 
was measured for 15 min. All procedures were carried out in the 
afternoon (between 12:00 and 17:00 hours).

statistical analysis
Locomotor response to habituation was compared between 
groups (AFR, LMS) by Student’s t-test. The locomotor response 
during the development phase was analyzed by three-way analysis 
of variance (ANOVA) with group (AFR, LMS), treatment (SAL, 
EtOH), and day (repeated measure) as main factors. During 
the expression phase, the locomotor response was analyzed by 
a three-way ANOVA for repeated measures, with group (AFR, 
LMS), pretreatment (SAL, EtOH), and challenge as the repeated 
measure (Sal/Sal, Sal/EtOH, NTX2/EtOH, and NTX4/EtOH). 
Males and females were analyzed separately. When appropriate, 
post hoc analysis was carried out using Newman–Keuls test, with 
the level of significance set as p ≤ 0.05.

resUlTs

habituation
Pairwise comparison showed no differences in locomotion 
between LMS and AFR in either male [t(46) = 0.31; p > 0.05] or 
female mice [t(47) = 1.51; p > 0.05] (Table 1).

Development of Behavioral sensitization
Male Mice
ANOVA revealed main effects of treatment [F(1,44)  =  25.41, 
p <  0.01] and day [F(3,132) =  4.36, p <  0.01] and an interaction 
between treatment and day [F(3,132) =  10.32, p <  0.01], with no 
differences between AFR and LMS manipulations (Figure  2). 
Newman–Keuls tests for the treatment × day interaction showed 
that EtOH-treated mice presented increases in locomotor activ-
ity on test days 7, 14, and 21, relative to SAL-treated animals 
(p < 0.05). EtOH-induced hyperactivity was also higher on days 
14 and 21, when compared to responses to EtOH on days 1 and 
7 (p < 0.01).

Female Mice
ANOVA revealed main effects of treatment [F(1,45)  =  45.80, 
p  <  0.01] and day [F(3,135)  =  28.01, p  <  0.01] and interaction 
between these factors [F(3,135) = 22.85, p < 0.01], with no group 
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FigUre 2 | locomotor activity counts (mean ± seM) throughout the course of saline (sal) or ethanol (etOh) chronic treatment in aFr and lMs 
male (a) and female mice (B). Number of animals/group for each condition (sex, group, treatment) was 10–13. * – Different from saline-treated groups; 
# – different from day 1; & – different from day 7.
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effects (AFR vs. LMS). Analysis of the interaction showed that 
the locomotor activity of EtOH-treated mice was higher on days 
7, 14, and 21 than on day 1 of treatment (p < 0.01) and on days 
14 and 21 compared to day 7 (p  <  0.01). EtOH-treated mice 
presented higher locomotor activity than SAL-treated mice on 
days 7, 14, and 21 of treatment (p < 0.01).

expression of Behavioral sensitization
Males
Three-way ANOVA revealed main effects of pretreatment 
[F(1,44)  =  5.6872, p  <  0.03] and challenge [F(3,132)  =  19.841, 
p  <  0.00001] and an interaction between these factors 
[F(3,132) = 12.395, p < 0.00001], with no group effect (Figure 3). 

Post hoc analysis of the interaction showed that mice with a 
history of EtOH treatment displayed higher locomotor activity 
than SAL-pretreated counterparts in the SAL/EtOH challenge 
(p < 0.0005). Such differences were no longer observed during 
the NTX2/EtOH and NTX4/EtOH challenges, suggesting that 
EtOH-induced expression of sensitization was prevented by 
NTX. Moreover, in mice with a previous history of EtOH treat-
ment, locomotor response to EtOH was the highest during the 
SAL/EtOH challenge, with significant reductions when NTX was 
administered with EtOH (NTX2/EtOH and NTX4/EtOH chal-
lenges, p’s  <  0.005). In SAL-pretreated male mice, no changes 
in locomotor response were observed with any of the drug chal-
lenges, relative to the SAL/SAL challenge.
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FigUre 3 | locomotor activity counts (mean ± seM) of saline (sal)- or ethanol (etOh)-pretreated aFr and lMs males (a) or females (B) in the 
challenges sal/sal, sal/etOh, naltrexone 2.0 mg/kg – nTX2/etOh, and naltrexone 4.0 mg/kg – nTX4/etOh. EtOH dose was 2.2 g/kg (i.p.). Number of 
animals/group for each condition (sex, group, treatment) was 10–13. * – different from SAL-treated groups; ¥ – different from SAL/SAL challenge, $ – different from 
SAL/EtOH challenge.
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Females
A three-way ANOVA showed main effects of group [F(1,45) = 
4.303; p < 0.05], pretreatment [F(1,45) = 12.983; p < 0.001], and 
challenge [F(3,135)  =  22.48; p  <  0.00001] and an interaction 
between these two latter factors [F(3,135) = 23.14; p < 0.00001]. 
Newman–Keuls analysis of the overall group effect showed 
that LMS animals exhibited lower locomotor activity than 
AFR mice (p  <  0.03). Analysis of the pretreatment  ×  chal-
lenge interaction revealed that mice with a history of EtOH 
preexposure displayed higher locomotor activity than SAL-
pretreated ones in the SAL/ETOH (p < 0.0005), NTX2/EtOH 
(p < 0.001), and NTX4/EtOH (p < 0.005) challenges. However, 
the sensitized response to EtOH was significantly attenuated 
by co-treatment with both doses of NTX (NTX2 or NTX4; 
p’s  <  0.005). In mice pretreated with SAL, no changes in 

locomotor behavior were induced by challenges with EtOH 
or NTX/EtOH coadministration.

DiscUssiOn

The results of the present study showed that the non-selective opi-
oid antagonist, NTX, blocked the expression of behavioral sensi-
tization to EtOH in male mice, and attenuated this phenomenon 
in females, regardless of the neonatal manipulation. Moreover, 
maternal separation had no impact on either the development 
or the expression of EtOH sensitization. Both males and females 
showed significant augmentation of locomotor responses to EtOH 
during the 21-day treatment (development of sensitization) and 
maintained a sensitized stimulant response when challenged with 
EtOH during the expression tests.
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In previous studies from our group, repeated EtOH admin-
istration induced behavioral sensitization in mice (36–39). 
Although an initial study reported that LMS could accelerate the 
development of EtOH sensitization in female, but not male mice 
(27), this was not confirmed using a more robust, 21-day treat-
ment protocol (39), as replicated in our current findings. Thus, 
the facilitatory effects of LMS on EtOH sensitization seem to only 
emerge with weaker sensitizing regimens (e.g., 5 EtOH injec-
tions), and in females. However, EtOH-induced corticosterone 
responses were higher in chronically EtOH-treated LMS males 
than in EtOH-treated controls, with no changes observed in 
females (39). Such changes in corticosterone response to chronic 
EtOH were not observed when mice received fewer EtOH treat-
ments (27). Thus, LMS may modulate different behavioral and 
physiological/hormonal responses to EtOH in a sex-dependent 
and exposure-dependent manner.

A role for opioid receptor modulation of acute EtOH 
locomotor stimulation was reported by studies showing that 
opioid antagonists reduced EtOH-induced hyperactivity in mice 
(30–32), despite controversial findings (40). Coadministration 
of non-specific opioid receptor antagonists, such as NTX and 
naloxone, blocked the development of EtOH locomotor sensitiza-
tion (32, 33). However, in mice previously sensitized to EtOH, 
NTX and naloxone failed to prevent the expression of EtOH 
sensitization (32, 34). In contrast, the present study showed 
important effects of NTX preventing and/or attenuating the 
expression of EtOH sensitization in males and females, while 
not inducing locomotor effects in animals with no previous EtOH 
history. This finding contrasts with Abrahao and colleagues, who 
reported no effect of NTX on the expression of EtOH sensitiza-
tion (34). However, the NTX dose was considerably lower in 
that study, 0.1  mg/kg (34). Indeed, in a pilot study using male 
mice with no neonatal manipulation, we observed significant 
reduction of EtOH sensitization using NTX doses of 1  mg/kg 
and higher, but not with a 0.5 mg/kg dose (data not shown). The 
dose range necessary to block the expression of sensitization in 
male mice in our study (2 mg/kg) was similar to that required 
for preventing the development of EtOH sensitization as reported 
by Pastor and Aragon [1  or 2  mg/kg (33)].

Despite acting as non-selective antagonists at opioid receptors, 
both NTX and naloxone have preferential effects on μ-receptors, 
rather than on δ-receptors (30, 33, 41). Thus, our findings 
support an additional role for μ-receptors in the modulation 
of the expression of EtOH sensitization, besides mediating the 
development of EtOH sensitization (32, 33). Indeed, Pastor 
and Aragon showed that both NTX and a selective antagonist 
at μ-receptors, CTOP, blocked the development of EtOH sensi-
tization, which was not affected by a delta-receptor antagonist, 
naltrindole. Moreover, the facilitation of EtOH sensitization after 
a period of EtOH consumption was absent in a recombinant line 
of mice with reduced expression and function of μ-receptors, 
CXBK mice (42). Altogether, these studies point to μ-receptors 
as the critical target for NTX’s effects on EtOH sensitization. A 
putative mechanism for NTX effects relies on the modulation of 
dopamine neurons projecting from the ventral tegmental area 
(VTA) to the nucleus accumbens (NAcc), a pathway involved 
in drug-stimulation, sensitization, and reward [e.g., Ref. (18, 19, 

43)]. Opioid receptors, including μ-receptors, are located in both 
regions, where they modulate dopamine output directly (in the 
NAcc) or indirectly (via GABA interneurons in VTA) (18, 19). 
Indeed, local administration of NTX into the VTA or the NAcc 
inhibits acute EtOH-induced stimulation in mice (29). Thus, it 
would be expected that μ-receptor blockade in either or both 
brain regions could participate in the prevention/attenuation of 
the expression of EtOH sensitization reported in this study.

Remarkably, while NTX treatment blocked the expression of 
EtOH sensitization in males, in females there was only an attenua-
tion of EtOH-sensitized response. In males, NTX administration, 
at both doses, blocked the expression of behavioral sensitization, 
since there were no longer differences in locomotor behavior 
between SAL- and EtOH-pretreated mice in the challenges. In 
females, both doses of NTX reduced, but failed to completely 
prevent a sensitized response to EtOH, suggesting a sexual 
dimorphism in the behavioral response to this opioid antagonist. 
In agreement with these findings, several studies report on sexual 
differences in response to opioidergic drugs. For example, NTX 
treatment is less effective in women than in men (44, 45), men 
are more vulnerable to opioid addiction than women (46), and 
males are more responsive to analgesic drugs than females, in 
several species (47). In a recent study carried out with rats bred 
for increased preference for ethanol, a low acute dose of NTX was 
effective to block spontaneous ethanol intake in male, but not in 
female, rats (48). NTX is also capable to reduce the intake of a 
highly palatable sucrose solution only in LMS males, but not in 
females (49). Sex steroid hormones appear to regulate the density 
of opioid receptors in the hypothalamus, with increased density 
of μ-opioid receptors during proestrus, and changes in μ receptor 
density in other limbic regions induced by hormone replacement 
in ovariectomized rats (50). Interestingly, full agonists of μ recep-
tors in males act as partial agonists in female rats and primates 
(51), suggesting smaller affinity for these receptors in females. 
Thus, the reduced efficiency of NTX in blocking the expression 
of EtOH sensitization in female mice may be due to a smaller 
affinity/efficacy in μ-opioid receptor signaling in females.

In the present study, the only effect of maternal separation 
was seen in female mice, which displayed lower locomotor 
activity than their AFR counterparts during the expression, 
but not during the development of behavioral sensitization. 
Few studies had compared the induction and/or expression of 
behavioral sensitization between maternally separated male 
and female animals, with contradictory results. LMS has been 
reported to increase induction of behavioral sensitization to 
cocaine in male and female mice, but only males exhibited 
increased expression to a cocaine challenge (26). As mentioned 
in the Introduction, development of EtOH sensitization was 
facilitated in LMS female, but not in male mice, using a weaker 
sensitizing protocol (27), but not with a stronger one, with more 
prolonged EtOH treatment (39). Amphetamine sensitization 
was also not modified by maternal separation in rats (52, 53). 
However, LMS reduces the response rate for intracranial self-
stimulation in female, but not in male rats (54).

In conclusion, NTX blocked the expression of EtOH-induced 
behavioral sensitization in male mice, while significantly attenu-
ating EtOH sensitization in females, with no effects of neonatal 
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manipulation. The only detectable effect of maternal separation 
was an overall reduced locomotor behavior of female mice during 
the expression tests for EtOH sensitization.
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