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Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase 
fast in the past decades. Melanoma is a heterogeneous tumor, with most patients har-
boring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the 
MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on 
therapies targeting mutated BRAF and the downstream pathway, and on monoclonal 
antibodies against the immune checkpoint blockade. However, treatment resistance and 
side effects are common events of these therapeutic strategies. Increasing evidence 
supports that melanoma is a hormone-related cancer. Melanoma incidence is higher 
in males than in females, and females have a significant survival advantage over men. 
Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect 
cancer growth in an opposite way: ERα is associated with a proliferative action and 
ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expres-
sion decreases in melanoma progression, supporting its role as a tumor suppressor. 
Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 
17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials 
did not provide the expected survival benefits. In vitro studies demonstrate that ERβ 
ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) 
mutation, suggesting that ERβ activation might impair melanoma development through 
the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be 
considered as an effective treatment strategy, in combination with MAPK inhibitors, for 
NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of 
the expression of ER isoforms together with the concurrent oncogenic mutations should 
be considered before selecting the most appropriate therapeutic intervention. Natural 
compounds that specifically bind to ERβ have been identified. These phytoestrogens 
decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to 
the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activat-
ing function, these compounds might impair melanoma development through additional 
mechanisms. A better identification of the role of ERβ in melanoma development will help 
increase the therapeutic options for this aggressive pathology.
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iNTRODUCTiON

Human malignant melanoma is a very aggressive human cancer; 
its incidence has been found to increase faster than any other 
cancer during the past decades; importantly, it is one of the most 
frequent cancers in adolescents and young adults (1). Although 
it is less common than other malignancies of the skin, melanoma 
accounts for nearly 75% of skin cancer-related deaths (2).

The incidence rate of cutaneous melanoma is correlated with 
race; it has been consistently reported that White populations 
have a greater (10-fold) increase than Hispanian, Black, or Asian 
populations (3, 4). Based on this observation, the phenotype is 
considered one of the major risk factors; in particular, fair skin, 
red or blond hair, blue eyes, and freckles are classic presenting 
features of melanoma patients (5, 6). In addition to these host 
factors, the individual risk of developing melanoma also depends 
on factors such as sun exposure, family history, genetic factors, 
and their interaction (7).

Epidemiological studies have pointed out the relationship 
between intense ultraviolet-B (UVB) radiation exposure and 
melanoma development. In recent years, intense exposure to 
natural (suntans, sunburns) or artificial (indoor suntannings) 
UVB have increased in adolescents and young adults, and this 
seems to be correlated with the increased incidence of melanoma 
in these population subgroups (8, 9). Family history increases 
the personal risk of melanoma by three to eight times; this risk 
increases with the number of affected family members (10). 
Several genes have been implicated in the development of mela-
noma: genes involved in the MAPK pathway (RAS and BRAF, the 
most frequent mutations), CDKN2A [a cyclin-dependent kinase 
(CDK) gene] genes that are associated with nevi and pigmenta-
tion traits, such as MTAP, MC1R, and TYR (11–14).

MOLeCULAR ASPeCTS OF MeLANOMA 
DeveLOPMeNT AND PROGReSSiON

Cutaneous melanoma arises from the malignant transformation 
of melanocytes, the melanin producing cells of the skin. Melanin 
(i.e., brown/black eumelanin) is the photoprotective pigment 
that provides attenuation of UV radiations. In response to UV 
radiation, keratinocytes secrete factors that regulate melanocytes 
survival, differentiation, proliferation, and motility. Mutations in 
genes involved in the processes of melanoma development and 
progression are very frequently found in melanoma patients. 
Melanoma is now recognized as a very heterogeneous tumor; 
however, the majority of patients harbor driver oncogenic muta-
tions at the level of genes encoding for proteins involved in the 
growth factor receptors signaling pathways (MAPK/ERK and 
PI3K/Akt) (15–17).

BRAF Mutations
The MAPK/ERK pathway includes the small G protein RAS and 
the kinases RAF, MEK, and ERK. BRAF is mutated in approxi-
mately 50% of melanomas; 80–90% of these activating mutations 
involve a single substitution of valine in position 600 with 
glutamic acid (V600E) (18). Additional, more rare, BRAF muta-
tions include V600K (valine substituted with lysine) and V600D 

(valine substituted with aspartic acid) (19). BRAF mutations 
mimic phosphorylation on the regulatory domain of the protein; 
this leads to an enhanced kinase activity of the protein and activa-
tion of its downstream targets MEK and ERK. Activation of this 
pathway triggers the G1/S transition of the cell cycle through the 
synthesis of cyclin D1 and negative regulation of the cell cycle 
inhibitor p27 (20).

RAS Mutations
RAS was the first oncogene to be identified in melanomas (21). 
Mutations causing the constitutive activation of this small G pro-
tein lead to the hyperactivation of its two downstream pathways, 
the MAPK/ERK and PI3K pathways, involved in the control of 
both the proliferative and metastatic behavior of tumor cells. 
NRAS is the most frequently (about 20–30% of tumors) mutated 
isoform of the RAS family members in melanoma; very recently, 
an increase in NRAS mutant allele percentage during melanoma 
progression has been reported (22).

Other Genetic Mutations
KIT is a receptor with tyrosine kinase activity; it is involved in 
the development of melanocytes, controlling their proliferation, 
survival, and migration. It is coupled with the MAPK/ERK, 
PI3K/Akt, and JAK/STAT intracellular signaling pathways. The 
KIT receptor is mutated in approximately 15% of mucosal, acral, 
and chronic sun-damaged melanomas (23). The presence of KIT 
mutations is particularly interesting because they usually are 
mutually exclusive with NRAS and BRAF mutations and because 
of the availability of specific KIT kinase inhibitors in the clinic. 
Some KIT mutations are well characterized, others are still poorly 
described (24).

The PI3K/Akt signaling pathway is negatively regulated by 
PTEN, a tumor suppressor protein. Mutations as well as deletions 
of PTEN are found in approximately 30% of melanoma cell lines 
and are frequently associated with mutations in BRAF (24).

The CDKN2A is the primary familial high-risk melanoma 
susceptibility locus identified in families with different cases of 
melanoma. This gene encodes two suppressor proteins: p16 and 
p14, involved in the control of cell cycle progression. Specifically, 
p16 normally inhibits the CDKs, leading to G1/S cell cycle arrest. 
The second suppressor protein, p14 blocks the degradation of 
p53, leading to increased apoptosis. In the general population, the 
prevalence of CDKN2A mutations in primary melanomas is only 
1.2%; however, germ-line mutations in this locus were reported 
in approximately 20–57% of families with at least three cases of 
melanomas (24, 25).

In addition to specific gene mutations, the status of DNA 
methylation of cutaneous melanoma has been extensively studied 
and shown to possess both prognostic and therapeutic relevance. 
Alterations of DNA methylation, histone modifications, and 
modified expression of microRNAs are well-established epige-
netic mechanisms of cell neoplastic transformation. Melanoma 
cells present aberrant DNA methylation patterns with DNA 
hypermethylation at the level of CpG islands in the promoter of 
tumor suppressor genes (leading to their inactivation) and global 
DNA hypomethylation (contributing to genomic instability). 
Hypomethylation of specific genes was also reported, leading 
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to the overexpression of normally silenced oncogenes (26, 27). 
Global DNA hypomethylation was shown to correlate with mela-
noma progression toward the most aggressive phase and with less 
favorable clinical outcomes (26, 28).

CURReNT THeRAPieS FOR  
ADvANCeD MeLANOMA

Targeting Proliferative Pathways
The majority of melanomas are diagnosed in the early stage 
(in  situ melanomas) and are treatable with surgical removal. 
On the other hand, the prognosis of highly aggressive, late stage 
melanoma is still poor (29). Prior to 2010, the systemic treatment 
of choice for advanced metastatic melanoma was limited to 
cytotoxic chemotherapy and traditional forms of immuno therapy 
(interleukin-2, IL-2; interferon α-2b, IFN α-2b). Alkylating 
agents, such as dacarbazine and its prodrug temozolomide, were 
approved in 1974 by the US FDA; however, the responses to this 
treatment were very short and less than 5% of patients could 
achieve a complete response (30, 31). Moreover, chemotherapy 
treatments were reported to be associated with severe side effects 
(32, 33) and a very rapid tumor relapse (34). In 1998, the US FDA 
approved IL-2 for the treatment of metastatic melanoma, based 
on clinical observations demonstrating sustained remissions in 
approximately 5–10% of patients (35). However, IL-2 therapy is 
associated with substantial toxicity, requiring its administration 
in an intensive care unit setting (36). A combination therapy of 
dacarbazine with IL-2 or IFN α-2b was reported to improve the 
progression-free survival but not the overall survival and to be 
associated with severe side effects (36, 37).

These disappointing results, together with the very quick 
advances in the dissection of the heterogeneity of melanomas 
(38) and the understanding of the molecular aspects of melanoma 
development and progression (24), stimulated the search for 
newer treatment strategies.

Thus, therapies were developed to specifically target (“targeted 
therapies”) melanomas harboring either the BRAF or the NRAS 
mutation (17, 39–42). Vemurafenib, the first targeted drug for 
melanoma, is a selective BRAF V600E inhibitor, approved by the 
FDA in August 2011. This drug inhibits the kinase domain of the 
mutated protein, decreasing cell proliferation through reduced 
activation of the downstream MAPK/ERK signaling pathway. 
Encouraging results were reported in phase I clinical trials, show-
ing that vemurafenib was associated with a very good response 
rate (43); however, later phase trials underlined a short duration 
of response with a quick development of drug resistance, leading 
to only marginal patient benefit (44). Dabrafenib is a reversible 
ATP-competitive inhibitor of V600E- and V600K-mutant BRAF 
that was approved in 2013; however, the median progression-free 
survival in melanoma patients treated with dabrafenib was found 
to be shorter than that reported with vemurafenib (44–46).

It is now well documented that long-term exposure of mela-
nomas to BRAF inhibitors is associated with a rapid development 
of drug resistance, and this is mainly linked to the rewiring of 
the MAPK/ERK signaling pathway (44). In this situation, RAS 
and MEK are elevated while tumor suppressors, such as PTEN, 

are decreased (47, 48), and BRAF/MEK inhibitor (trametinib 
and cobimetinib) combinations are now accepted as the stand-
ard treatment for resistant melanomas (49). The dabrafenib/
trametinib and vemurafenib/cobimetinib combinations were 
approved by FDA in 2014 and 2015, respectively (17).

As mentioned above, NRAS is mutated in 20–30% of 
melanoma patients. Unfortunately, so far, the attempts to target 
mutated NRAS have not led to specific therapeutic strategies; for 
this reason, the current treatment options for these tumors are 
mainly focused on targeting the NRAS effector pathways with 
RAF/MEK and PI3K/Akt inhibitors, either as single agents or 
as combinations (50). The identification of novel compounds 
specifically targeting the NRAS-mutant signaling pathway rep-
resents a current emerging challenge for the treatment of these 
melanomas.

Targeting immunity Pathways
The lack of the achievement of convincing results with targeted 
therapies stimulated the search of novel therapeutic approaches, 
leading to the resurgence of antibody-based immune therapies. 
Several immune targeted therapies implicate the development 
of recombinant, humanized, and monoclonal antibodies against 
specific proteins of the immune cells, such as CTLA-4 and PD-1 
(37, 41). The cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an 
inhibitor checkpoint receptor, expressed on the surface of T cells, 
that blocks T cell activation and helps regulate the balance between 
immune activation and tolerance. T cell activation is regulated 
by signals, provided by CD80 and CD86, located on the surface 
of antigen-presenting cells (APC), which bind to CD28 on the 
membrane of T cells. In this setting, T cells are stimulated to enter 
the cell cycle, differentiate, and produce cytokines (IL-2). In nor-
mal conditions, CTLA-4 replaces CD28 in the binding to CD80 
and CD86, providing an autocrine regulatory mechanism for 
preventing uncontrolled T cell activation (51). The anti-CTLA-4 
monoclonal antibody, ipilimumab, increases T cell activity and 
leads to tumor regression (37, 52). In 2011, the FDA approved 
ipilimumab for the treatment of advanced melanoma, despite 
its associated side effects related to autoimmune events (colitis) 
and a poor response rate in patients (53). Similar to CTLA-4, 
the programed death-1 (PD-1) receptor is a coinhibitory protein 
that is expressed on the surface of antigen-specific CD8+ T cell. 
The PD-1 ligands (PD-L1 and PD-L2) expressed by tumor cells 
interact with this receptor, thus triggering inhibitory signals in 
T cells and resulting in the protection of cancer against immune 
cell-mediated death (54). Nivolumab and pembrolizumab, two 
specific monoclonal antibodies against the PD-1 receptor, release 
the immune checkpoint blockade, thus inducing an anticancer 
effect (55).

In order to overcome both drug resistance development and 
side effects, the challenge for basic researchers and clinicians will 
be the development of novel combination therapies (immune/
immune or immune/target specific therapies) for the achieve-
ment of both long-term and safe responses (56–58).

Moreover, highlighting additional molecular pathways 
involved in melanoma growth and progression is urgently 
foreseen to help increase the development of novel targeted 
therapeutic strategies for this aggressive pathology.
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THe SeX HORMONe MiLieU AND 
MeLANOMA

Although melanoma is classically considered a non-hormone-
related cancer, growing evidence supports a direct correlation 
between sex hormones levels (estrogens, in particular) and 
melanoma growth and progression (59, 60). Epidemiological 
analyses pointed out a significant divergence in melanoma inci-
dence between sexes in the past three decades. The Surveillance 
Epidemiology and End Results (SEER) data indicate that, during 
this period, melanoma incidence was nearly twofold higher in 
males than in females (61). Gender differences are also observed 
regarding the age-dependent onset of melanoma, with slightly 
higher rates in women aged 20–45 that decrease after the age 
of 45 years. On the other hand, in males, melanoma incidence 
progressively increases after 45–50 years of age and dramatically 
increase in men aged 50–85 (61). Moreover, a significant disparity 
has also been noted in the prognosis of this tumor between males 
and females, with women having a significant survival advantage 
over men (62–64). Finally, studies performed in a melanoma fish 
model (Xiphophorus couchianus) showed a twofold lower inci-
dence of melanoma in females than in males after acute exposure 
to UVB irradiation, and this was accompanied by a sex-specific 
molecular genetic response (65).

A meta-analysis by Gandini et  al. (66) summarizes the evi-
dence pointing out the interaction between endogenous and 
exogenous estrogens, taking into account natural reproductive 
factors (menarche, fertility, parity, pregnancy, and menopausal 
status) and the use of oral contraceptives or hormonal replace-
ment therapy.

Clinical studies documented that melanocytic nevi grow and 
darken during pregnancy. Melanoma neoplasms are thicker dur-
ing pregnancy than those diagnosed outside of pregnancy (67), 
and this is in line with the observation that diethylstilbestrol 
enhances melanomagenesis in mouse B16 melanoma cells (68). 
However, it is still unclear whether melanoma patients during 
pregnancy have worsened outcomes with respect to non-pregnant 
patients (67, 69, 70). Similar contrasting results were reported on 
the incidence of melanoma during menopause (71).

A number of studies have focused on the possible link 
between sex steroid assumption and melanoma development. 
Most of these studies pointed out that the use of exogenous 
female hormones (either as oral contraceptives or as hormonal 
replacement) do not contribute to increased risk of cutaneous 
melanoma (66, 72). Finally, Auriemma et al. (73) recently inves-
tigated the possible mole modifications in women undergoing 
controlled ovarian stimulation (COS) for assisted reproduction 
technologies. The conclusion raised by these authors is that the 
results obtained do not support a causal relation between the 
supraphysiological hormone levels stimulation and worsening 
of clinical features of moles.

Another issue that needs to be solved is the expression/activity 
of aromatase in melanoma tissues. It seems that the skin has its 
own capacity to produce steroids (including estrogens) (59). In 
line with this, Santen and coworkers reported that the aromatase 
enzyme is expressed in melanoma tissues (74); however, no cor-
relation was found in this paper between the expression of this 

enzyme and clinical outcomes. It must be underlined that this 
study did not have any follow-up; moreover, the first generation 
aromatase inhibitor aminoglutethimide was found to be inef-
fective in reducing melanoma progression (75). Further studies 
performed with newer aromatase inhibitors will likely help clarify 
this issue.

In conclusion, although contrasting results were so far reported 
on the relationship between estrogen levels and melanoma risk, 
the influence of the endocrine status on the development of 
melanoma is now well accepted. Based on these observations, 
de Giorgi and coworkers suggested that cutaneous melanoma 
should be considered as a hormone-related tumor (76), although 
this conclusion is mainly supported by the results from the stud-
ies analyzing the estrogen receptor (ER), particularly the ERβ, 
status of melanomas.

eSTROGeN ReCePTORS α AND β: 
OPPOSiTe ROLeS iN CANCeR

Estrogens exert their biological effects through two ER, ERα and 
ERβ, members of the nuclear receptor superfamily of transcrip-
tion factors (77). ERα was cloned in 1985, and it was considered 
the only receptor responsible for estrogens action (78). ERβ was 
cloned from a rat prostate cDNA library in 1996, and this opened 
the way to the discovery of the human counterpart (79, 80). Both 
ERs are nuclear receptors, which can form either homo- or het-
erodimers and, upon activation, translocate into the nucleus to 
bind with coregulatory proteins and control the transcription of 
target genes through the binding to specific ERE regions (81–84).

The two receptors are encoded by two different genes (ESR1 
and ESR2) that are located on chromosomes 6 and 14, respec-
tively. They share the same general structure, characterized by 
three (independent, but interacting) functional domains: the 
N-terminal domain (NTD or A/B) containing a transactiva-
tion domain and a domain responsible for the recruitment of 
coactivators/corepressors; the DNA-binding domain (DBD or C) 
containing zinc fingers, necessary for the binding of the recep-
tors to the estrogen response elements in the promoter region of 
target genes; the ligand-binding domain (LBD or D/E/F) with a 
ligand-dependent transactivating function. This LBD domain is 
also responsible for the binding to co-regulatory and chaperone 
proteins (77). The two ERs share about 97% similarity in the DBD, 
59% in LBD, and only 16% in their NTD (77, 85). The differences 
in the LBD are responsible for the shape of the ligand-binding 
pocket and, based on this observation, specific ligands for each 
receptor subtype have been designed and synthesized (86, 87). At 
the same time, the same ligand may have different binding affinity 
for ERα or ERβ subtypes.

It has been widely reported that the endogenous hormone 
estradiol binds to both receptors with a similar binding affinity 
and the same transactivational activity in different cell types (88, 
89). Thus, the specific effects of endogenous estradiol on ERα and 
ERβ activation largely depend on the different cell contexts and 
specifically on the recruitment of cell type-specific coactivators/
corepressors as well as chromatin remodeling proteins (90). In 
melanoma cells, the binding affinity of estradiol for ERα and 
ERβ has not been specifically evaluated, but it is expected to be 
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the same as in other cell types. However, it must be underlined 
that the majority of the studies so far performed pointed out a 
prevalence of expression of ERβ in these cells (see below).

Synthetic or natural ligands bind to ERα or ERβ with different 
affinities according to their chemical structure (88). Antiestrogens, 
such as tamoxifen, raloxifene, and ICI-164,384 are partial ago-
nists/antagonists of ERα, depending on the target tissue, and are 
referred to as selective estrogen receptor modulators (SERMs). 
Different natural compounds [genistein, apigenin, liquiritigenin 
(LQ), silibinin, and silymarin] were reported to bind with higher 
affinity and, therefore, to specifically activate the ERβ subtype; 
for this reason, they are referred to as estrogen receptor subtype 
agonists (ERSAs) (86, 91, 92). Thus, in a given cell, the different 
binding affinity and transactivational activity of synthetic or 
natural ligands on the two ER subtypes seem to depend on the 
ERα/ERβ ratio as well as on the specific cell context (88, 90, 93). 
The full-length ERβ protein, also named ERβ1, is generated from 
8 exons and includes 530 aminoacids. After ligand binding, ERβ1 
can form either homodimers or ERα/ERβ1 heterodimers, which 
bind to ERE sequences on DNA; such interactions contribute in 
modulating ERβ1/ERα activity, in a specific cell context (94). In 
addition to ERβ1, four alternative splice variants of ERβ (ERβ2, 
ERβ3, ERβ4, and ERβ5) have been identified (95–97). All these 
variants have a truncated C-terminus and, for this reason, no 
ligands have been found for these forms; moreover, they are 
unable to form homodimers (97, 98). However, ERβ2 and ERβ5 
can form heterodimers with ERβ1 isoform or with ERα, thus 
inhibiting their binding to ERE elements on DNA (96, 97). ERβ5 
was reported to have a stable expression during the process of 
carcinogenesis, in contrast to ERβ1 and ERβ2 (99).

It is now clear that ERα and ERβ are associated with different 
activities, according to their specific tissue distribution (77, 94, 
100). Increasing evidence supports a relationship between the 
perturbation of estrogen signaling and cancer initiation, promo-
tion, and progression. Specifically, the variation of the ratio ERα/
ERβ in tumor tissues supports the notion that the two ER subtypes 
have different functions in cancer biology and therapy. Overall, 
it is now well accepted that ERα contributes to tumorigenesis 
by stimulating cell proliferation, while ERβ is endowed with a 
significant antitumor activity. Thus, both synthetic and natural 
ERβ ligands may interfere with the mechanisms of tumor growth 
either by activating ERβ or by interfering with the tumor activity 
of ERα through ERα/ERβ heterodimers formation (77, 94, 101) 
(Figure 1).

eSTROGeN ReCePTOR β AND 
MeLANOMA

ERα is the main ER in human skin; however, this receptor does 
not seem to play any role in the pathophysiology of melanoma 
precursor lesions or melanomas. On the other hand, ERβ has 
been reported to be the predominant ER subtype in melanocytic 
lesions; its distribution and levels of expression are different in 
the different classifications of the lesions. In 2006, Schmidt and 
coworkers investigated the expression of ERα and ERβ in benign 
nevi, dysplastic nevi with mild/moderate/severe cytological 

atypia, lentigo malignas, and melanomas with different depth 
(Clark) and thickness (Breslow) (102). They found that ERβ, but 
not ERα, was the predominant ER in both benign and malignant 
lesions and that ERβ expression levels also correlated with the 
tumor microenvironment. In line with these observations, it 
was reported that melanocytic nevi and malignant melanomas 
are both positive for ERβ, while they are negative for ERα (103). 
de Giorgi and coworkers investigated the expression of ERα and 
ERβ in human melanoma tissues (104). They found that both 
receptors are expressed at the mRNA level, but only the ERβ 
protein was present in these tissues. Analyzing melanoma cases 
into two groups according to Breslow thickness (104), these 
authors observed that the levels of both ERβ mRNA and protein 
were lower in thicker and more invasive tumors. According to 
these authors, these data support a protective role for ERβ in the 
metastatic process of melanoma cells (104, 105). An opposite 
correlation between ERβ levels and Breslow thickness was also 
reported by Schmidt et al. (102). Moreover, ERβ expression was 
found to be lower in tumor tissues compared with the adjacent 
healthy skin. Men showed lower levels of ERβ than women in 
both melanoma and healthy tissues, in agreement with sex dif-
ferences in melanoma survival (106). ERβ has been found to be 
expressed in melanomas of pregnant women more frequently 
than in men and also a trend to a higher expression in women 
than in men has been reported. This indicates that ERβ might 
explain the generally favorable prognosis of melanoma in women 
(107). ERβ expression has been recently shown to be downregu-
lated in aggressive, metastatic melanomas, suggesting its possible 
utility as a marker for metastatic potential and for prognosis in 
malignant melanomas (108). Finally, a polymorphism at the AluI 
restriction site was identified in a high proportion of melanoma, 
suggesting that the polymorphism of this receptor could be related 
to a higher susceptibility to the development of this tumor (109).

In line with these clinical observations, we recently demon-
strated that ERβ, but not ERα, is the ER expressed in human 
melanoma cell lines, harboring different genetic mutations 
(A375, BLM, WM115, and WM1552) (110). Moreover, the 
pattern of expression of the different ERβ isoforms was similar 
in BLM (NRAS-mutant, BRAF-wild type) and WM115 (BRAF 
V600D-mutant) melanoma cells: ERβ1 and ERβ5 were found to 
be expressed at similar levels while ERβ2 showed a higher level of 
expression. On the other hand, in A375 (BRAF V600E-mutant) 
cells, both ERβ2 and ERβ5 were expressed at higher levels than 
ERβ1 (110).

Taken together, these data indicate that ERβ is expressed in 
melanoma cells, and its levels of expression negatively correlate 
with melanoma growth and progression, further supporting the 
notion that this receptor might be endowed with an antitumor 
activity in melanoma. Similar data have been previously reported 
for different types of tumors, both related and unrelated to the 
reproductive system (111–119).

ANTiTUMOR ACTiviTY OF eRβ  
iN MeLANOMA

Despite the extensive clinical observations reporting the expres-
sion of ERβ in melanoma tissues and its negative correlation 
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with tumor progression, the data so far available on the direct 
antitumor effects of ERβ ligands are still scanty.

As mentioned above, both genomic and non-genomic signal-
ing pathways mediate the effects of ERs activation. The genomic 
effects of ERs activation are mediated by receptor dimerization 
and binding to ERE on DNA while interacting with transcriptional 
coactivators, to regulate gene transcription. The non-genomic 
effects of ER ligands are mediated by two main signaling path-
ways: RAS/RAF/MEK/ERK and PI3K/Akt. Specifically, the PI3K/
Akt pathway is well known to mediate the antitumor activity of 
ERβ in several types of cancers (94, 120). As discussed, some of 
the proteins involved in these signaling cascades are mutated in 
the majority of melanoma. Thus, both the ERs and the MAPK and 
PI3K pathways might represent molecular targets to counteract 
melanoma growth and progression.

Although extensive epidemiological studies clearly indicate 
that ERβ is the main ER subtype to be expressed in melanoma, 
the data so far available on the possible effect of estrogens on 

the growth and progression of this tumor are still scanty. Sarti 
and coworkers reported that 17β-estradiol exerts a significant 
inhibitory activity on the proliferation of the human SK-Mel 23 
melanoma cell line, expressing ERβ, but not ERα (referred to as 
“type II estrogen binding site” by these authors) (121). The sex 
hormone 17β-estradiol was also shown to reduce the invasive 
behavior of human melanoma cells lacking the ERα receptor 
(122). In vitro and in vivo antitumor effects on melanoma were 
also reported for 2-methoxyestradiol, an endogenous metabolite 
of estradiol; however, it must be pointed out that the antitumor 
activity of this compound was not found to be mediated by ERs 
(both α and β) activation (123, 124).

The ER antagonist tamoxifen was first shown to induce cell 
death in human malignant melanoma cells, possibly through 
inactivation of the IGF-I receptor (125). This antiestrogen was 
also reported to reduce tumor cell metastatic behavior in the 
mouse melanoma cell line B16BL6 (126). However, later clinical 
studies did not confirm these promising results from in  vitro 
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studies. The effects of chemotherapy with and without tamoxifen 
for the treatment of aggressive melanoma were compared in 
different clinical trials. These studies reported that co-treatment 
with tamoxifen may provide improvements in response rates, 
although it is often accompanied by increased toxicity and no 
survival benefit (60, 127–131). It has been proposed that this is 
due to the fact that tamoxifen may decrease cell proliferation 
when it binds to ERα while it may increase cell proliferation when 
it binds to ERβ (60). Thus, the antitumor vs. prosurvival effects 
of tamoxifen likely depend on the different ERα/ERβ ratios in 
a given tissue (105). In line with this observation, low levels of 
expression of ERβ were shown to correlate with tamoxifen resist-
ance in breast cancer cells (132, 133).

In a recent paper, we showed that ERβ, but not ERα, is 
the ER expressed in human melanoma cell lines, harboring 
different genetic mutations. We demonstrated that, in BLM 
(BRAF-wild type, NRAS-mutant) melanoma cells, ERβ agonists 
[17β-estradiol, diarylpropionitrile (DPN), KB1] significantly 
inhibited cell proliferation, and this effect was abrogated by an 
ER antagonist. ERβ activation triggered the translocation of 
the receptor from the cytoplasmic to the nuclear compartment 
and its transcriptional activity. The activity of ERβ agonists was 
accompanied by an altered expression of the proteins involved in 
the G1/S transition of the cell cycle (decreased levels of cyclin D1 
and cyclin D3, and increased expression of p27, a CDK inhibi-
tor); the apoptosis pathway was not involved in this activity (no 
change in the cleaved, active form of caspase-3). Importantly, 
we reported an aberrant global DNA hypomethylation in BLM 
cells, indicative of genome instability; ERβ activation reverted 
this hypomethylation status (110). Taken together, these data 
demonstrate that, in NRAS-mutant melanoma cells, ERβ is asso-
ciated with an antitumor activity, by causing cell cycle arrest and 
through the regulation of cell cycle-associated proteins; similar 
observations were previously reported in different types of can-
cers expressing this receptor (94, 101, 134–140). Surprisingly, in 
our paper, we could also show that ERβ agonists were ineffective 
in reducing the proliferation of A375 and WM1552 (V600E 
BRAF-mutant) melanoma cells, expressing the ER isoform. We 
speculated that the different effects of ERβ ligands in these cell 
lines might be related to their specific oncogenic mutation status. 
Actually, as mentioned above, NRAS and BRAF mutations are the 
most frequent oncogenic mutations found in melanoma. NRAS 
mutations have been reported to be associated with increased 
activation of the two main downstream pathways: PI3K/Akt 
and MEK/ERK. On the other hand, in melanoma cells harbor-
ing BRAF mutations, only the MEK/ERK signaling cascade was 
shown to be overactivated. In agreement with our data, ERβ 
ligands have been previously shown to exert their antitumor 
effects through inactivation of RAS as well as of the PI3K/Akt 
pathway in some cancer cells (94, 141, 142). Moreover, Wang and 
coworkers (143) have recently reported an inverse correlation 
between the expression of ERβ and the activity of the PI3K/Akt 
pathway in aggressive, triple-negative, breast cancer. Chen et al. 
(141) demonstrated that, in breast cancer cells, the isoflavone 
calycosin activates ERβ, and this is followed by a decreased activ-
ity of the PI3K/Akt pathway; on the other hand, calycosin did 
not affect the activity of the MAPK/ERK cascade. Based on these 

observations, it seems possible to conclude that ERβ activation 
might significantly reduce the growth of cutaneous melanoma 
cells harboring the NRAS mutation, possibly through the inhibi-
tion of the PI3K/Akt signaling pathway (Figure 2). On the other 
hand, ERβ agonists will not be able to reduce the proliferation 
of melanoma cells carrying the BRAF (V600E) mutation, which 
is associated with the overactivation of the MEK/ERK signaling 
cascade.

These data suggest that, in melanoma patients harboring the 
NRAS mutation, ERβ might represent an effective molecular 
target for personalized therapeutic interventions. For instance, 
these interventions might be based on an ERβ agonist given either 
alone or in combination with specific inhibitors of the MEK 
cascade (i.e., trametinib and cobimetinib), with the aim to block 
the activity of both the PI3K/Akt and the MEK/ERK signaling 
pathways. In an era of personalized medicine, it is suggested that 
a pretreatment evaluation of the ER isoforms expression in each 
melanoma patient, together with the concurrent oncogenic muta-
tions, should be considered in order to anticipate the response of 
melanoma patients to novel therapeutic strategies (50).

NATURAL eRβ LiGANDS AND  
MeLANOMA

Phytoestrogens are natural, plant-derived, estrogenic compounds 
that preferentially bind to ERβ than ERα (91, 144). These com-
pounds have been suggested as possible effective agents in the 
prevention of several diseases, such as menopausal symptoms, 
osteoporosis, and cardiac diseases (145). They have also been 
reported to exert antitumor activity on different types of cancers, 
based on their high affinity binding to ERβ and their ability to 
increase the expression of this receptor subtype (115, 119, 138, 
146–148) (Table 1).

Thus, the antitumor activity of phytoestrogens largely depends 
on the subtype of ER expressed in a given tissue, as well as its 
levels of expression and the circulating steroid hormones milieu 
(149, 150). As discussed for estrogens, phytoestrogens can exert 
their effects through both genomic and non-genomic (by affect-
ing different intracellular signaling pathways) activities (151). 
These effects include alterations of tyrosine kinase pathways, 
antioxidant effects, and epigenetic mechanisms, and also through 
recruitment of coregulators endowed with chromatin binding 
activities, thus underlying the relevance of epigenetic mecha-
nisms in estrogen signaling (152).

Flavonoids are a large subclass of polyphenolic compounds 
present in many vegetables and medicinal herbs (153); some of 
these compounds have been demonstrated to play a potential role 
in the management of different types of tumors with little side 
effects since they interfere with cancer progression by regulating 
cell proliferation, apoptosis, invasion, and metastasis (154, 155).

The phytoestrogens genistein and daidzein are isoflavones, 
found in soybean, one of the most important food components 
in Asian diet (156, 157). These compounds received considerable 
attention based on epidemiological studies demonstrating that 
the soybean-containing diets were associated with a lower inci-
dence of particular cancers in Asian population (158). Genistein 
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TABLe 1 | Natural eRβ ligands and melanoma.

Compound Cellular model effects Reference

Genistein Human melanoma 
cells

Suppression of the growth 
and the metastatic potential

(158–162, 
164, 165)

Murine B16 
melanoma xenografts

Decrease of tumor-
associated angiogenesis

Liquiritigenin Murine B16-F10 
melanoma cells and 
xenografts

Enhancement of 
antiproliferative and 
antimetastatic effects of 
chemotherapy

(142, 
166–168)

Apigenin Human A375 
melanoma cells

Proapoptotic and 
antimetastatic effects

(155, 
179–187)

Murine B16-BL6 
melanoma cells

Silymarin Human A375-S2 
melanoma cells

Chemopreventive, antitumor, 
and antimetastatic activity

(200–203)

FiGURe 2 | Proposed model for the targeting of NRAS-mutant melanoma by eRβ ligands. In NRAS-mutant melanoma cells (BLM), ERβ agonists trigger 
genomic effects at the nuclear level by modulating the expression of cell cycle-related proteins and by reversing the global hypomethylation status of these cells. 
Moreover, it is hypothesized that activated ERβ might also exert non-genomic effects, by interfering with the PI3K/Akt signaling pathway, as previously described for 
different cancer cell lines expressing this receptor.

8

Marzagalli et al. ERβ and Melanoma

Frontiers in Endocrinology | www.frontiersin.org October 2016 | Volume 7 | Article 140

interacts with both ERα and ERβ but has higher affinity for ERβ 
(138, 159).

This isoflavone was first shown to suppress the growth and also 
the metastatic potential of human melanoma cells, both in vitro 
and in  vivo, with or without the induction of differentiation, 
dendritic formation, etc. (160–162).

It is well known that phytoestrogens undergo glycosidic 
binding to carbohydrates to form molecules that cannot be easily 
absorbed. For this reason, the glycosidic binding must be broken 

up by enzymes (glycosidases) present in the gut, produced by the 
intestinal microflora, that transform the glycosidic forms in the 
corresponding “aglicones” that are very easily absorbed (163). 
However, it has also been reported that genistin, as other flavo-
noid glycosides, is partly absorbed without previous cleavage and 
does not need to be hydrolized to be biologically active. In line 
with these observations, Russo and coworkers (158) reported that 
genistin exerts an inhibitory effect of human melanoma cells and 
inhibited ultraviolet (UV) light-induced oxidative DNA damage. 
Moreover, genistin and daidzin (the glycosidic forms of the two 
isoflavones) showed a protective effect on DNA damage; only 
genistin, but not daidzin, was able to counteract the proliferation 
of human melanoma cells (M14). These data suggest that not only 
the isoflavone aglycons but also the corresponding glycosides may 
trigger significant antitumor effects in melanoma cells. Genistein, 
at non-cytotoxic concentrations, was reported to reduce the 
growth as well as the motility of mouse B16 melanoma cells, 
through modulation of the activity of enzymes involved in the 
degradation of the extracellular matrix [i.e., urokinase-type plas-
minogen activator (uPA)]. Moreover, in vivo i.p. administration 
of genistein was found to decrease tumor-associated angiogenesis 
in nude mice-bearing mouse melanoma xenografts (B16); similar 
results were obtained with a soybean-based diet (164, 165).

The flavanone LQ is extracted from conventional herbal 
medicine-glycyrrhizae and is considered a highly selective 
ERβ agonist (166). In a recent paper, Shi and coworkers (167) 
investigated whether LQ may potentiate the antimetastatic 
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effect of chemotherapeutic drugs [cis-diamine dichloroplatinum 
(CDDP)] in murine B16F10 melanoma cells. It was found that LQ 
significantly potentiates the anti-migratory/anti-invasive effects 
of CDDP, and this is mediated by downregulation of the PI3K/
Akt pathway. LQ also enhanced the CDDP-induced suppres-
sion of lung metastasis formation in nude mice bearing B16F10 
xenografts.

It has been reported that LQ displays only 20% greater binding 
affinity for ERβ than ERα (166); however, recent data demonstrate 
that different molecular mechanisms, in addition to its ability to 
bind ERβ, can account for its activity. In particular, it has been 
recently shown that the LQ/ERβ complex is able to recruit ERβ 
coactivators and that it specifically binds to ERβ responsive ele-
ments in the promoter region of target genes (159, 166, 168).

As a further support to the notion that ERβ is involved in LQ 
antitumor activity, data from the literature demonstrate that, in 
temozolomide-resistant U138 glioma cells, LQ treatment sensi-
tizes cancer cells to drug-induced inhibition of cell proliferation 
and significantly increases ERβ expression. Moreover, LQ treat-
ment significantly inhibits the activity of the PI3K/Akt pathway, 
and this effect is completely reversed by ERβ knockdown (142).

On the other hand, LQ is known to have a lower affinity for 
ERβ than estradiol (169); this raises the question of the dose of 
this compound that should be necessary to exert a physiologi-
cal/therapeutic effect. Although further studies are required to 
specifically answer this question, it must be underlined that LQ 
has been reported to inhibit tumor growth in preclinical mouse 
models of gliomas and human cervical cancers (138, 170, 171).

Liquiritigenin is a component of licorice roots, and licorice 
root extracts are utilized by menopausal women as dietary supple-
ments to fight menopausal symptoms as an alternative to classical 
pharmacological interventions (172, 173). In addition to LQ and 
iso-liquiritigenin, licorice extracts contain a series of different 
compounds, such as glycyrrhizin, glabridin, glabrene, calycosin, 
methoxychalcone, vestitol, and glycycoumarin. Glycyrrhizin, 
when consumed at high doses and for a long period, is associated 
with serious side effects, such as hypertension. Therefore, atten-
tion has been recently given to the other components of licorice 
root extracts with the aim to investigate their possible interaction 
with the ER system. Most of these compounds have been reported 
to behave as SERMs, specifically acting as ERα agonists in some 
cell types while behaving as ERα antagonists in other cell contexts 
(169, 174, 175).

Whether the components of licorice root extracts might 
exert antiproliferative effects on cancer cells, and particularly 
on melanoma cells, by interfering with the estrogenic system is 
still unclear. To this purpose, it must be recalled that ERβ, and 
not ERα, is the predominant ER subtype in melanocytic lesions 
(see above). The novel flavonoid isoangustone A has been shown 
to inhibit the proliferation of human melanoma cells through 
blockade of cell-cycle progression and downregulation of the 
PI3K/Akt pathway (176); glycyrrhizin seems to protect human 
melanoma cells from UVB irradiations (177); more recently, the 
licorice component licochalcone A has been reported to reduce 
the growth of different cancer cell lines, including melanoma cells 
(178). However, the possible involvement of ERβ in the antitumor 
activity of these compounds still needs to be investigated.

The flavone apigenin is another phytoestrogen that received 
growing attention as a potential chemopreventive agent and 
suppressor of cancer growth (155, 179–182). In A375 human 
melanoma cells, apigenin was reported to induce apoptosis 
through accumulation of reactive oxygen species in mitochon-
dria, upregulation of Bax, caspase 3, 9, and PARP and down-
regulation of Bcl-2, thus triggering the mitochondrial apoptotic 
pathway (183). Apigenin was also shown to reduce the metastatic 
potential of melanoma cells in vitro (184) as well as in vivo in 
a preclinical model of mice injected with B16-BL6 murine 
melanoma cells (185). In addition, the antimetastatic activity 
of this compound in murine B16F10 melanoma cells has been 
demonstrated to be mediated by suppression of signal transducer 
and activator of transcription 3 (STAT3) phosphorylation and 
downregulation of STAT3 target genes MMP-2, MMP-9, VEGF, 
and Twist1, known to be involved in the metastatic behavior of 
cancer cells (186). Moreover, apigenin was found to overcome 
resistance to the anticancer agent TRAIL (tumor necrosis factor-
related apoptosis-inducing ligand), a very promising compound 
that kills different tumor cells while sparing normal tissues, but 
is very often associated with development of resistance. Apigenin 
inhibits the expression of the p53 antagonist murine double 
minute 2 (Mdm2), thus increasing p53 levels and, consequently, 
upregulating the TRAIL receptor 2, the p53 target gene (187). 
However, whether ERβ might be involved in the antitumor 
activity of apigenin in melanoma is still unclear. On the other 
hand, this phytoestrogen has been reported to exert its antitumor 
activity in breast and prostate cancer cells through activation 
of ERβ (180); interestingly, in prostate cancer cells, apigenin 
induces apoptosis by selectively inhibiting proteasomal activity, 
thus rescuing ERβ from degradation and, therefore, increasing its 
intracellular levels (188).

Apigenin has also been shown to cross-react with progesterone 
receptors (189). This compound induces apoptosis and blocks the 
medroxyprogesterone acetate-dependent growth of aggressive 
breast cancer xenograft tumors (190–193). On the other hand, 
the expression/activity of the progesterone receptor and the pos-
sible cross-reaction of apigenin with this receptor in melanoma 
cells still need to be clarified. Progesterone receptors have been 
shown to be expressed in both conjunctival nevi and melanoma 
specimens. However, the rate of progesterone receptors was not 
found to correlate with the disease course; progesterone has been 
reported to inhibit the proliferation of melanoma cells, but this 
effect was found not to be mediated by the progesterone receptor 
(194, 195). Silymarin, extracted from Silybum marianum, is a 
mixture of four flavolignans (silybinin, isosilybinin, silydianin, 
and silychristin) and the isoflavone taxifolin. Since the first 
demonstration that silymarin selectively binds to ERβ (but not 
to ERα), this mixture was considered an ERβ specific ligand 
(196). The effects of silymarin were analyzed on ultraviolet light 
(UV)-induced cell apoptosis in human A375-S2 melanoma cells. 
It was found that this flavonoid prevents UV irradiation-induced 
apoptosis of these cells, through the activation of the Akt and 
SIRT1 pathways (197–199). On the other hand, silymarin has 
been recently shown to inihibit melanoma cell growth both 
in vitro and in vivo (200, 201) and to induce cell cycle arrest in 
melanoma cells directly targeting the MEK1/2 pathway (202). 
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Moreover, Vaid and coworkers (203) investigated the effects of 
silymarin on the metastatic properties of human melanoma cell 
lines. They reported that this polyphenolic flavonoid significantly 
inhibits the migratory/invasive behavior of these cells, and this 
antimetastatic behavior is mediated by the Wnt/β-catenin path-
way. Taken together, these observations strongly support the 
notion that the natural ERβ agonist silymarin may exert both a 
chemopreventive and an antitumor activity in melanoma cells. 
Similar observations were previously reported for experimental 
models of colon carcinogenesis (204).

It must be underlined that silymarin can also bind the androgen 
receptor, and it activates the same molecular pathways involved in 
the ERβ signaling, specifically in prostate cancer cells (205, 206). 
However, the expression and the possible role of this receptor in 
skin carcinogenesis is still a matter of debate (60, 107, 207, 208). 
Moreover, to the authors’ knowledge, no data are so far available 
in the literature on the possible role of androgen receptors in the 
antitumor activity of silymarin in melanoma.

Given the antiproliferative/proapoptotic activity of phytoes-
trogens in melanoma, as well as in different types of tumors, and 
based on their high-binding affinity to the ERβ subtype, further 
studies are needed to definitely confirm the role of ERβ in the 
antitumor activity of these natural compounds. Results from 
these studies will likely open the way to novel, nutraceutical-
based, chemopreventive and therapeutic (i.e., combinatorial) 
options for this aggressive pathology.

CONCLUSiON

Increasing evidence supports a close relationship between the sex 
hormone (i.e., estrogens and ERs) milieu and melanoma growth 
and progression. Clinical studies have pointed out that ERβ, but 
not ERα, is the predominant ER subtype in melanoma tissues, 
and its levels of expression are downregulated during melanoma 

progression toward the most aggressive phases. Considering that 
ERβ is the ER subtype widely shown to be associated with an 
anticancer effect in tumors in which it is expressed, these clini-
cal observations strongly support the notion that ERβ might be 
considered as a possible molecular target for the development 
of therapeutic strategies for melanoma. However, the data so 
far available on the direct antitumor effects of ERβ ligands in 
melanoma are still scanty. Clinical studies reported that the ER 
antagonist tamoxifen provides only variable improvements in the 
rates of response of melanoma patients to chemotherapy. In vitro 
studies demonstrate that ERβ agonists can impair melanoma cell 
proliferation, but this depends on the genetic mutational status 
(NRAS vs. BRAF) of melanoma cells. Taken together, these data 
strongly support the notion that evaluation of the oncogenic 
mutation (BRAF vs. NRAS) together with the expression of the 
ER subtype (ERβ vs. ERα) in melanoma patients should be taken 
into consideration when considering the most specific therapeu-
tic approach to be applied. Moreover, based on the promising 
experimental and preclinical data so far available, we believe 
that a better identification of the molecular mechanisms of the 
antitumor activity of natural ERβ ligands will likely improve the 
treatment strategies for melanoma patients.
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