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Circadian clocks orchestrate the daily changes in physiology and behavior of light-sen-
sitive organisms. These clocks measure about 24 h and tick in a self-sustained and 
cell-autonomous manner. Mounting evidence points toward a tight intertwining between 
circadian clocks and metabolism. Although various aspects of circadian control of 
metabolic functions have been extensively studied, our knowledge regarding circadian 
mitochondrial function is rudimentary. In this review, we will survey the current literature 
related to the circadian nature of mitochondrial biology: from mitochondrial omics studies 
(e.g., proteome, acetylome, and lipidome), through dissection of mitochondrial morphol-
ogy, to analyses of mitochondrial processes such as nutrient utilization and respiration. 
We will describe potential mechanisms that are implicated in circadian regulation of 
mitochondrial functions in mammals and discuss the possibility of a mitochondrial-au-
tonomous oscillator.

Keywords: circadian rhythms, clocks, mitochondria, mitochondrial respiration, reactive oxygen species, oxygen, 
mitochondrial dynamics

inTRODUCTiOn

Light-sensitive organisms harbor molecular oscillators that measure time with periodicity of about a 
day known as circadian clocks. These clocks enable organisms to optimize a wide range of biological 
functions with the geophysical time (1–3). In mammals, these activities include rest/activity cycles, 
feeding/fasting, and various other physiological processes. The mammalian circadian timing system 
consists of a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain that synchronizes 
subsidiary oscillators in the rest of the body. While the brain’s “master clock” is entrained by daily 
light–dark cycles, the dominant timing cue for clocks in peripheral organs appears to be feeding 
time. Circadian clocks are believed to function based on negative transcription–translation feedback 
loops generated through the action of several core clock genes. These include the transcriptional 
activators Clock and Bmal1, the repressors Per1/2/3 and Cry1/2, and the nuclear receptors’ family 
members Rev-Erb and Ror. These clocks tick in virtually every cell of the body and function in a 
self-sustained and cell-autonomous manner.

Growing evidence support the presence of an intricate interplay between circadian clocks and 
metabolism. Circadian clocks play a prominent role in the regulation of various metabolic pathways. 
In turn, several metabolites and metabolic processes are implicated in the clock’s function. Several 
comprehensive reviews have covered in detail the molecular architecture of the core clock  machinery 
(4–7) and their interplay with metabolism (2, 8–11). Among the large number of studies on circadian 
control of metabolism, only a handful of studies investigated in-depth circadian facets of mitochon-
drial function. Mitochondria constitute major metabolic hubs in eukaryotic cells involved in many 
vital processes including energy production via aerobic respiration, lipid biosynthesis, and calcium 
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homeostasis. It is, therefore, conceivable that some of these func-
tions might be under circadian clock control.

We review herein the current literature related to the circadian 
nature of mitochondrial biology in mammals. We elaborate on 
potential mechanisms underlying circadian control of mitochon-
drial functions and discuss the possibility of a mitochondrial-
autonomous oscillator.

CiRCADiAn RHYTHMS in 
MiTOCHOnDRiAL COMPOSiTiOn

Rhythmic changes in the proteome, acetylome, and lipidome 
of mitochondria were uncovered lately as detailed below. These 
changes are expected to support rhythms in mitochondrial 
functions.

The Mitochondrial Proteome
The mitochondrial proteome consists of several hundred dif-
ferent proteins (12). While the majority of the mitochondrial 
proteome is encoded by the nuclear genome (13) and trans-
ported into mitochondria via protein import machinery, only 
13 protein-coding genes are transcribed and synthesized locally. 
Substantial daily changes in the mitochondrial protein composi-
tion were uncovered by whole liver proteomics (14, 15) and more 
recently by proteomic analyses of isolated mitochondria (16). In 
fact, over a third of the mitochondrial proteins accumulated in 
mitochondria in a daily manner (16). Notably, the vast majority 
of rhythmic proteins reached their zenith levels about the same 
time, during the early light phase. Further functional annota-
tion of the rhythmic mitochondrial proteome evinced that key 
catabolic and oxidative functions of mitochondria exhibit diurnal 
oscillation (16). Of note, several components of the pyruvate 
dehydrogenase complex (PDC) that catalyzes the rate-limiting 
step in mitochondrial carbohydrate metabolism accumulate 
early in the light phase. While carnitine palmitoyl-transferase 1 
(CPT1), the rate-limiting enzyme in the entry of fatty acids into 
the mitochondrial matrix, oscillates with zenith levels between 
the late dark and early light phase.

Both transcriptional and posttranscriptional events can 
potentially account for the above-described changes in the 
mitochondrial proteome. Indeed, the transcript levels of several 
nuclear-encoded mitochondrial proteins are altered in clock 
genes mutant mice (17, 18). Moreover, BMAL1 was shown to 
bind their promoters by ChIP (19, 20). However, global analysis 
evinced poor correlation between the phase of the mitochondrial 
proteome and its respective transcriptome (16). It is therefore 
likely that the observed daily changes in the mitochondrial 
proteome arise from posttranscriptional mechanisms such as 
rhythmic translation, protein import, and/or degradation. Future 
studies are expected to shed light on the contribution of these 
different mechanisms.

The Mitochondrial Acetylome
Posttranslational modifications, such as phosphorylation, acety-
lation, and ubiquitinilation, control protein stability and activity. 
Global acetylome analysis of mouse liver identified daily changes 

in the acetylation status of many mitochondrial proteins (21). 
Remarkably, CLOCK-dependent acetylation sites were enriched 
for mitochondrial proteins including participants of the Krebs 
cycle and glutathione metabolism. Likewise, Peek and colleagues 
found that the acetylation status of many mitochondrial proteins 
differs between wild-type and BMAL1-deficient mice (22). For 
example, acetylation of fatty acid metabolism enzymes correlates 
with their activity and are BMAL1 dependant. In addition, the 
respiratory complex I is rhythmically acetylated, in accordance 
with changes in mitochondrial respiration (23). Overall, these 
results suggest that circadian clocks play a regulatory role in mito-
chondrial protein acetylation. It will be interesting to determine 
whether other posttranslational modifications of mitochondrial 
proteins, such as phosphorylation, are rhythmic as well, and 
further dissect their functional relevance.

The Mitochondrial Lipidome
Lipids are the principal building blocks of biological membranes 
and among others define the physical qualities of mitochondrial 
membranes, as well as their protein content (24). In addition, 
lipids serve as a major energy source for mitochondrial respira-
tion and some lipids are even synthesized in mitochondria. We 
recently applied high-throughput lipidomic analyses on isolated 
mitochondria from mouse liver to investigate the daily mitochon-
drial lipidome (25). We found that about one third of the lipids 
in mitochondria exhibit daily rhythms. Both the composition 
and phase of the rhythmic lipids depend on feeding regimen 
(nighttime restricted vs. ad libitum feeding) and circadian clock 
(PER1/2 null vs. wild type mice). In ad  libitum fed mice, the 
majority of mitochondrial lipids reach their peak levels at the 
transition between the light and the dark phase, while an opposite 
phase is observed in mice fed exclusively during the dark phase. 
By contrast, in the absence of the core clock proteins PER1 and 
PER2, the oscillating lipids exhibit a wide range of peak times 
without an overt phase, supporting a role for circadian clocks in 
coordination of mitochondrial lipid accumulation (25). Likewise, 
mitochondrial fatty acid composition as well as their metabolism 
was reported to depend on BMAL1 (22). Future studies on these 
rhythmic lipids are expected to further clarify their relevance to 
the daily changes in mitochondrial morphology and function as 
detailed below.

CiRCADiAn RHYTHMS in 
MiTOCHOnDRiAL MORPHOLOGY

Mitochondrial dynamics, namely, changes in shape and size due 
to fission, fusion, and mitophagy, strongly affect mitochondrial 
function. In general, respiration is more efficient in fused mito-
chondria compared to fragmented mitochondria, primarily due 
to changes in nutrient availability (26).

Early electron microscopy works showed that the shape and 
volume of mitochondria change between the light and dark phase 
in rat hepatocytes (27). A recent study identified daily rhythms in 
mitochondrial dynamics in mouse liver and revealed that many 
genes participating in mitochondrial dynamics are expressed in a 
daily manner and are dependent on BMAL1 (20). Consequently, 
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mitochondria isolated from Bmal1 liver-specific knockout mice 
are bigger, more rounded, and do not exhibit morphological 
changes throughout the day. Additionally, in the absence of 
Bmal1, mitochondria are more susceptible to oxidative stress-
related damage.

Dependency of mitochondrial morphology on clock genes 
was also reported in mouse skeletal muscle (28) and heart (17) 
and is linked to impaired mitochondrial function in these organs. 
Mitochondria in macrophages exhibit daily morphological 
changes in vitro as well (29). By contrast, the overall number of 
mitochondria, assessed by mitochondrial genome copy number, 
appears to be constant throughout the day and is independent of 
clock genes (16, 17, 20, 30). Collectively, these studies point to 
circadian regulation of mitochondrial dynamics, such as changes 
in mitochondrial mass and morphology, with major implications 
on mitochondrial function.

CiRCADiAn RHYTHMS in 
MiTOCHOnDRiAL nUTRienT 
UTiLiZATiOn AnD ReSPiRATiOn

A central function of mitochondria is energy production through 
nutrient oxidation, a process known as oxidative phosphoryla-
tion. Pyruvate and fatty acids are catabolized into acetyl CoA in 
the mitochondrial matrix through the action of the PDC and 
fatty acid oxidation (FAO), respectively. The acetyl groups are 
then fed into the Krebs cycle, and the process culminates with 
the transfer of acetyl-derived high-energy electrons along the 
respiratory chain. This process is coupled to production of ATP 
by the ATP synthase complex upon flux of protons through the 
inner mitochondrial membrane. In recent years, several studies 
tested the circadian control of mitochondrial nutrient utilization 
and respiration, using assays that measure oxygen consumption 
rate (OCR) in cultured cells and isolated mitochondria as detailed 
below. OCR measurements of synchronized C2C12 muscle cells 
in culture are rhythmic with ~24 h period (22). Similar results 
were obtained with HepG2 cells, albeit with a significantly shorter 
period (~15 h) (23). Analysis of isolated hepatocytes from wild-
type mice harvested in different times of the day revealed higher 
respiration levels during the dark phase compared to the light 
phase in the presence of pyruvate. These daily differences were 
diminished in hepatocytes derived from liver-specific BMAL1-
deficient mice (20).

Additional analyses of mitochondrial respiration were con-
ducted with isolated mitochondria from mouse liver, muscle, and 
rat brain (16, 22, 28, 31). Mitochondria isolated from livers of 
wild-type mice exhibit higher OCR than those of Bmal1 knockout 
mice (22), Bmal1 liver-specific knockout mice (20), and Per1/2 
double knockout mice (16). Likewise, measurements of FAO by 
[14C]-labeled fatty acid supplementation evinced that this prop-
erty is also reduced in Bmal1 knockout mice (22). Experiments 
performed with mitochondria isolated from mice around the 
clock shed light on daily aspects of mitochondrial nutrient utili-
zation. In the presence of succinate, the respiration of mitochon-
dria is constant throughout the day (20) (Asher lab, unpublished 
data). By contrast, supplementation of FAO substrates such as 

palmitoyl-carnitine and palmitoyl-CoA  +  carnitine results in 
rhythmic respiration with zenith level early in the light phase, 
in accordance with CPT1 protein levels. Carbohydrates (i.e., 
pyruvate and malate) utilization is rhythmic as well, but peaks 
later during the light phase (16). The differences in peak time 
of mitochondrial respiration in experiments conducted with 
isolated mitochondria (16) vs. hepatocytes (20) might reflect the 
role of mitochondrial extrinsic cellular mechanism in controlling 
mitochondrial respiration. Remarkably, these daily rhythms in 
mitochondrial respiration are strongly influenced not only by the 
molecular circadian clock but also by nutrition type (e.g., high fat 
diet) and eating pattern (i.e., nighttime restricted feeding). Each 
of these factors differentially affects the overall level, rhythm, and 
phase of oscillation for several mitochondrial enzymes and the 
processing of their respective substrates (16).

Taken together, these studies suggest that mitochondrial respi-
ration exhibits daily rhythms that are dependent on the molecular 
clock, nutrients, feeding pattern, and diet composition.

OXYGen AnD MiTOCHOnDRiAL 
RHYTHMiCiTY

Reactive oxygen species (ROS) are byproducts of mitochondrial 
oxidative activity. The ROS hydrogen peroxide (H2O2) is scavenged 
by the peroxiredoxins (Prx’s) protein family members, which are 
reversibly oxidized to generate Prx-SOH. Upon high peroxide 
concentration, a hyperoxidized form of Prx, namely, Prx-SO2, 
accumulate and can then be reduced by sulfiredoxin (Srx). Prx3, 
the mitochondrial isoform of Prx, exhibits daily oscillations in 
its oxidation state. These oscillations are dependent on Srx levels 
in mitochondria, which are rhythmic as well and are regulated 
through its mitochondrial import and degradation (32). The 
regulation on Srx is ROS dependent and therefore generates a 
metabolic feedback loop between ROS levels Prx3 and Srx. Of 
note, the oscillations in Prx3-SO2 levels were shown to play an 
important role in rhythmic production of corticosterone from 
cholesterol in the adrenal gland mitochondria (33).

Oxygen is obligatory for mitochondrial aerobic respiration, 
and recent studies identified a reciprocal interplay between 
oxygen and the circadian clock (34–36). Rhythmic oxygen levels 
reset circadian clocks through HIF1α (34). Concomitantly, clock 
genes in concert with HIF1α regulate mitochondrial respiration 
upon changes in oxygen levels (35). Thus, both hands, namely, 
ROS and hypoxia, appear to intertwine with circadian control of 
mitochondrial function.

THe SCn CLOCK AnD MiTOCHOnDRiAL 
FUnCTiOn

Several studies examined mitochondrial activity of SCN neuron 
in the context of circadian clock function. Notably, SCN cells 
exhibit daily rhythms in cytochrome c oxidase activity and 
mitochondrial membrane potential (37). Moreover, studies with 
SCN astrocytes identified circadian oscillation in calcium release 
from mitochondria (38, 39). These rhythms have been linked to 
oscillations in extracellular ATP concentration, which appear to 
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play a role in coupling of SCN neurons (38, 39). Furthermore, 
treatment of mice with the mitochondrial toxin 3-nitropropionic 
acid results in disruption of SCN clock outputs, as monitored by 
behavioral rhythms and ex vivo reporter measurements (40).

AUTOnOMOUS MiTOCHOnDRiAL 
RHYTHMS

Mitochondria are considered as successors of ancient aerobic 
bacteria, consumed by an early eukaryotic predator cell over 
1.5 billion years ago (41). This theory, known as endosymbiotic 
theory, proposes that mitochondria were once independent 
free-living organisms and possessed the full machinery for 
survival and reproduction. However, throughout evolution, 
some of their capabilities have been lost or transferred to the 
host cell. It is possible that the mitochondrial ancestor has 
possessed some kind of an oscillator to temporally coordinate 
contradictory metabolic processes. As such, even the simplest 
mitochondria-possessing cells, i.e., the budding yeast, present 
oscillations in mitochondrial oxidative activity (42). The “yeast 
metabolic cycle” shares some conserved characteristics with 
the circadian clock (42, 43), although its period is only of few 
hours. Given the high conservation of mitochondrial rhythms 
from yeast to mammals, and the observed rhythms in ROS-
related mitochondrial enzymes, it is tempting to speculate that 
mitochondria harbor their own autonomous clocks. Along this 
line, a self-sustained transcription-independent mitochondrial 

oscillator has been suggested in the form of Prx3-SO2 (32), yet so 
far, its independency from the  transcription–translation-based 
clock has not been established.

SUMMARY AnD OPen QUeSTiOnS

In this review, we discussed daily rhythmicity in mitochondrial 
composition, morphology, and function alongside their underly-
ing regulatory mechanisms (Figure 1). As shown, experiments 
performed with different clock mutant models support the 
potential role of circadian clocks in control of mitochondrial 
rhythmicity. However, it cannot be excluded that some of these 
effects are attributed to specific clock genes irrespective of their 
function within the core clock oscillator. In this respect, CRY 
proteins were reported to localize also in mitochondria; however, 
their specific mitochondrial function is unknown (44).

Another question is whether mitochondrial rhythmicity 
is achieved through systemic cues (such as feeding–fasting or 
rest–activity cycles) or via cell-autonomous mechanisms. It is 
likely that both scenarios co-regulate mitochondrial homeo-
stasis throughout the day. In this conjuncture, experiments 
addressing mitochondrial function in cultured cells support a 
cell-autonomous effect on mitochondrial function. Whereas 
experiments with mice show that feeding rhythms are sufficient 
to restore some mitochondrial functions even in the absence of 
a functional clock. Remarkably, the ability of mitochondria to 
preserve functional differences when isolated in different hours 
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