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Guidelines have recommended significant reductions in dietary sodium intake to improve 
cardiovascular health. However, these dietary sodium intake recommendations have 
been questioned as emerging evidence has shown that there is a higher risk of cardio-
vascular disease with a low sodium diet, including in individuals with type 2 diabetes. This 
may be related to the other pleotropic effects of dietary sodium intake. Therefore, despite 
recent review of dietary sodium intake guidelines by multiple organizations, including 
the dietary guidelines for Americans, American Diabetes Association, and American 
Heart Association, concerns about the impact of the degree of sodium restriction on 
cardiovascular health continue to be raised. This literature review examines the effects 
of dietary sodium intake on factors contributing to cardiovascular health, including 
left ventricular hypertrophy, heart rate, albuminuria, rennin–angiotensin–aldosterone  
system activation, serum lipids, insulin sensitivity, sympathetic nervous system acti-
vation, endothelial function, and immune function. In the last part of this review, the 
association between dietary sodium intake and cardiovascular outcomes, especially in 
individuals with diabetes, is explored. Given the increased risk of cardiovascular disease 
in individuals with diabetes and the increasing incidence of diabetes worldwide, this 
review is important in summarizing the recent evidence regarding the effects of dietary 
sodium intake on cardiovascular health, especially in this population.

Keywords: sodium intake, salt intake, dietary sodium intake, diabetes mellitus, cardiovascular disease, 
cardiovascular death, morbidity and mortality, chronic kidney disease

iNTRODUCTiON

High dietary sodium intake has been related to high blood pressure for more than 4,000 years (1). 
The concept that fluid volume influenced arterial pressure was then deduced by Stephan Hales in the 
early 18th century. He provided the scientific rationale that sodium intake might be related to blood 
pressure since blood volume is largely determined by its sodium and water content (2). Over the next 
two centuries, other investigators including Ambard and Beaujard, demonstrated that high sodium 
intake contributes to high blood pressure in both humans and animals (1). The notion of sodium 
restriction potentially lowering blood pressure was supported by epidemiological observational 
studies of communities with habitual low sodium intake (3, 4). In communities with low sodium 
intake, blood pressure tended to be lower and did not rise with age. This led to the hypothesis that, 
at a population level, blood pressure may be correlated with sodium intake (3, 4). Since this early 
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Table 1 | Summary of guidelines for dietary sodium intake over time.

Year Summary of guidelines

2008 ADA:

•	 Normotension, HTN: <100 mmol/24 h
•	 DM, symptomatic HF: <86 mmol/24 h

2010 HHS and USDA:

•	 General population: <100 mmol/24 h
•	 Age ≥51, African-American HTN, DM, and CKD: 

<65 mmol/24 h

AHA: <65 mmol/24 h for entire U.S. population

2012 WHO: <86 mmol/24 h
KDIGO: <90 mmol/24 h

2013a ADA: <100 mmol/24 h, further reductions on individual basis
AHA: ideally <65 mmol/24 h
NHMRC: ideally <70 mmol/24 h

2014 ASH and ISH: reduce sodium intake, but no target level

2015 HHS and USDA: <100 mmol/24 h

ADA, American Diabetes Association; AHA, American Heart Association; WHO, World 
Health Organization; KDIGO, Kidney Disease: Improving Global Outcomes; HHS and 
USDA, U.S. Department of Health and Human Services and U.S. Department of 
Agriculture; ASH and ISH, American Society of Hypertension and International Society 
of Hypertension; NHMRC, National Health and Medical Research Council. HTN, 
hypertension; DM, diabetes mellitus; HF, heart failure; CKD, chronic kidney disease; BP, 
blood pressure.
aIOM: no clear evidence showing that guidelines for sodium intake <100 mmol/24 h is 
beneficial or harmful. No evidence that subgroups should have different sodium intake 
guidelines.
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body of work, there have been many epidemiological and experi-
mental studies confirming the association between high sodium 
intake and high blood pressure. As elevated blood pressure was 
associated with increased risk of cardiovascular disease (5), it was 
hypothesized that high dietary sodium intake may be associated 
with increased cardiovascular morbidity and mortality (5, 6).

Based on this body of evidence, multiple dietary guidelines for 
sodium intake have been published (Table 1). The 2010 dietary 
guidelines for Americans recommended sodium intake to be 
less than 2,300 mg/day (100 mmol/24 h) for the general popula-
tion and less than 1,500 mg/day (65 mmol/24 h) for higher risk 
subgroups who are at least 51  years old or African-Americans 
or have hypertension, diabetes, or chronic kidney disease (7). 
However, the American Heart Association (AHA) 2010 guide-
lines contended this and recommended for sodium intake to be 
less than 1,500 mg/day (65 mmol/24 h) for the entire U.S. popu-
lation (8). On the other hand, the World Health Organization 
(WHO) 2012 guidelines recommended a sodium intake of less 
than 2,000 mg/day (87 mmol/24 h) for adults (9). The American 
Diabetes Association (ADA) also released a statement in 2008 
recommending sodium intake to be less than 2,300  mg/day 
(100 mmol/24 h) in individuals with hypertension or normoten-
sion and less than 2,000 mg/day (87 mmol/24 h) for individuals 
with diabetes and symptomatic heart failure (10). Furthermore, 
the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 
international guidelines suggested a sodium intake of less than 
90 mmol/24 h to prevent progression of chronic renal disease in 
adults (11).

However, low dietary sodium intake has pleotropic effects, 
which could contribute to cardiovascular health. Therefore, 

rationalizing that low sodium intake reduces adverse cardiovas-
cular outcomes based on its blood pressure lowering effects alone 
may not be appropriate. In 2013, the Institute of Medicine (IOM) 
in the U.S. examined the evidence on the effect of dietary sodium 
intake on health outcomes in the U.S. general population and 
higher risk subgroups (12). It was concluded that there was a lack 
of clear scientific evidence showing benefit or harm of reducing 
sodium intake to recommended levels (<100 mmol/24 h) (12). 
There was also limited evidence supporting different dietary 
sodium guidelines for higher risk subgroups (12). Since then, 
guidelines for dietary sodium intake have been revised. The 
2015–2020 dietary guidelines for Americans now recommend 
sodium intake to be less than 2,300 mg/day (100 mmol/24 h) (13). 
The ADA supports this and also comments that further reductions 
in sodium intake need to be considered on an individual basis for 
those with diabetes and hypertension (14). In addition, the AHA 
2013 guidelines now specify that their current sodium intake rec-
ommendations of no more than 2,400 mg/day (104 mmol/24 h) 
and ideally less than 1,500 mg/day (65 mmol/24 h) are targeted 
toward reducing blood pressure (15). The American Society of 
Hypertension (ASH) and International Society of Hypertension 
(ISH) also suggest reducing sodium intake but do not recom-
mend a target level (16).

In Australia, the National Health and Medical Research 
Council (NHMRC) recommended sodium intake to be ideally 
less than 1,600  mg/day (70  mmol/24  h) and at a maximum of 
2,300 mg/day (100 mmol/24 h) for adults in 2013 (17). This rec-
ommendation was supported by the National Heart Foundation 
of Australia who also suggested for sodium intake to be less than 
2,300  mg/day (100  mmol/24  h) for adults and 1,600  mg/day 
(70 mmol/24 h) for those with hypertension (18).

MaTeRialS aND MeTHODS

A literature search in MEDLINE (1946–July 2016) was performed 
using a combination of the following search terms: salt, salt intake, 
dietary salt intake, dietary sodium intake, dietary sodium, dietary 
sodium chloride (adverse effects, antagonists, and inhibitors, 
urine), hypertension, heart rate, immune system, cardiovascular, 
cardiovascular disease, cardiovascular mortality, mortality, 
diabetes, type 2 diabetes, and type 1 diabetes. Combinations of 
limitations including English language, core clinical journals, and 
journal article were placed on the search terms. References from 
the relevant papers were also sourced.

DiSCUSSiON

effects of Sodium intake on blood 
Pressure
Recommendations to reduce sodium intake have been based on 
the prevailing view that high sodium intake is detrimental to 
blood pressure, which is a surrogate endpoint for cardiovascular 
morbidity and mortality (19). There is overwhelming evidence 
to support that higher sodium intake is associated with elevated 
blood pressure (1, 3, 4, 6, 20–23). This is consistent in both 
experimental animal models and human studies (6). Conversely, 
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Table 2 | Favorable versus unfavorable effects of reduced dietary 
sodium intake.

Favorable effects Unfavorable effects

↓ Blood pressure ↑ Cholesterol
↓ Left ventricular hypertrophy ↑ Catecholamines
↑ Antiproteinuric effect of drugs for 
albuminuria

↑ Renin–angiotensin–aldosterone 
system activation

↓ Pro-inflammatory state
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sodium restriction is associated with reduced blood pressure 
(6, 22, 23). Lower sodium intake, however, may have pleotropic 
effects (Table 2).

effects of Sodium on Cardiovascular 
Health
Over the recent years, dietary sodium has been shown to 
have other effects such as impacting on rennin–angiotensin– 
aldosterone system, left ventricular hypertrophy, heart rate, 
albuminuria (microalbuminuria/proteinuria), insulin sensitivity, 
lipids, immune function, endothelial dysfunction, and sympa-
thetic nervous system activity.

However, studies demonstrating the effects of dietary sodium 
on these factors have demonstrated inconsistent results. The 
discrepancy in results may be attributed to methodological dif-
ferences among studies. This includes differences in the methods 
of measurement and ranges of dietary sodium intake, study 
populations, study outcomes, and failure to explore non-linear 
associations (24). Many of the methodological controversies 
pertain to the accuracy in measuring dietary sodium intake (25). 
Twenty-four hours urine collection is considered the gold stand-
ard method for estimating sodium intake because approximately 
>90% of ingested sodium is excreted in the urine in healthy 
individuals (25). However, we have previously demonstrated 
that the intraindividual day-to-day variability of a single 24-h 
urine collection is approximately 20% (26). As such, averaging 
multiple 24-h urine collections to minimize random error from 
day-to-day variability in sodium intake provides the most accu-
rate estimation of an individual’s usual sodium intake (25). This 
is dependent on measures to identify and reduce under-collection 
or over-collection of these 24-h urine collections (25).

However, many studies estimate dietary sodium intake 
through dietary surveys or overnight and spot urine collections 
due to the lower burden on participants (25). Dietary surveys 
tend to underestimate dietary sodium intake by 30–50% due to 
underreporting, difficulty in measuring discretionary sodium use 
at the table and in cooking, and incomplete food composition 
databases (25, 26). Moreover, food composition databases can 
vary greatly in their approximations of the nutrient content in 
foods, depending on the food manufacturers, the methods in 
measuring nutrient content, natural variations in food composi-
tion, and frequency of updates to the food databases (27). This can 
further compound the inaccuracy in sodium intake estimations 
in dietary surveys. In addition, the validity of different dietary 
assessment tools is variable due to their limitations. Twenty-four 
hours dietary recalls do not reflect long-term dietary patterns and 
a single 24-h dietary recall does not account for daily variability 

in dietary intake (25). Conversely, food frequency questionnaires 
have the potential for recall bias (25). Therefore, the degree of 
imprecision in estimating dietary sodium intake can also be 
contributed by the choice of dietary assessment tool.

On the other hand, overnight and spot urine collections are 
weak surrogates for 24-h urine collections because they have 
not been sufficiently validated and could underestimate or 
overestimate 24-h urinary sodium excretion (25, 28). Although 
several formulae have been proposed to reliably approximate 
24-h urinary sodium excretions with overnight and spot urine 
collections, this has been controversial because overnight and 
spot urine collections can vary with different genders, ethnic 
groups, hydration status, and duration and volume of urine col-
lection (28). Moreover, urinary sodium excretion is also affected 
by diurnal variation (25). Therefore, overnight and spot urine col-
lections are unlikely to be satisfactory substitutes for 24-h urine 
collections in estimating an individual’s sodium intake.

In addition to the method used to estimate dietary sodium 
intake, the inconsistency in results could also be attributed to 
limitations of study design. Since many of the studies, which 
showed the effect of sodium intake on cardiovascular health are 
observational studies, they are susceptible to confounders and 
reverse causation. Potential confounders can be reduced in obser-
vational studies through restricting or matching participants and 
performing stratified or multivariate analysis (29). However, this 
is not applicable to unknown confounding variables, which can 
distort the association between the exposure and outcome of 
the study (29). In addition, observational studies are susceptible 
to reverse causation (29). Reverse causation tends to occur in 
studies that involve individuals with pre-existing cardiovascular 
morbidity and cardiovascular risk factors. These individuals may 
be more likely to restrict their sodium intake because of their 
comorbidities, which can create an association between lower 
sodium intake and increased cardiovascular morbidity and 
mortality. However, the increased cardiovascular morbidity and 
mortality may not be due to lower sodium intake. Conversely, it 
may be that lower sodium intake is a result of having pre-existing 
cardiovascular morbidity and risk factors. Therefore, caution 
is required in the interpretation of causal associations between 
exposure and outcome in observational studies.

In addition, there is a lack of consistency in definitions 
of “low,” “moderate,” and “high” dietary sodium intake and 
“severe” and “moderate” sodium restriction. For example, many 
studies used the term “moderate sodium restriction” when the 
mean or median reduction in dietary sodium intake is less than 
120 mmol/24 h. However, Grassi et al. used this term despite hav-
ing a 140 mmol/24 h reduction in sodium intake (mean sodium 
reduction 129–136  mmol/24  h) (30). Conversely, Ferrara et  al. 
(31) used the term “severe sodium restriction” when there is only 
a mean sodium reduction of 63–75 mmol/24 h. This highlights 
the importance of having consistent definitions of these terms 
to facilitate the interpretation of study results. In this review, 
these terms will be defined based on majority of the studies. 
Low, moderate, and high dietary sodium intake is defined as 
less than 120 mmol/24 h, 120–150 mmol/24 h, and more than 
150  mmol/24  h, respectively. Severe sodium restriction is 
defined as having mean or median sodium reduction of at least 
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120 mmol/24 h while moderate sodium restriction is defined as 
mean or median sodium reduction of less than 120 mmol/24 h.

effects of Sodium intake on left 
ventricular Hypertrophy
Higher sodium intake was proposed to be associated with left 
ventricular hypertrophy (32–35), which is an independent pre-
dictor of cardiovascular morbidity and mortality (36). In both 
individuals with normotension and those with untreated essen-
tial hypertension, there was a correlation between higher left 
ventricular mass and higher urinary sodium excretion reflective 
of a higher sodium intake (32). This substantiated the findings 
of another study highlighting that dietary sodium intake was the 
best predictor of the degree of left ventricular hypertrophy in 
individuals with essential hypertension (34). In addition, Kupari 
et al. (33) observed that in a random sample of subjects born in 
1954 with both systolic blood pressure and sodium intake above 
the population median, left ventricular mass was the highest. It 
was suggested that high sodium intake sensitized the heart to 
the hypertrophic stimulus of pressure load, which could result 
in the synergistic interaction of dietary sodium intake with 
blood pressure on left ventricular mass (33). On the other hand, 
moderate sodium intake restriction (mean sodium reduction 
of 63–75  mmol/24  h for 6  weeks) in men with inadequately 
controlled primary hypertension significantly reduced blood 
pressure and was associated with reductions in left ventricular 
mass to the same degree as thiazide diuretic therapy (31).

effects of Sodium intake on Heart Rate
Increased heart rate was demonstrated to be independently 
associated with increased cardiovascular and all-cause mortality 
(37, 38). This may be attributed to its effect on the diastolic period, 
which is important for the myocardial perfusion of the left ventri-
cle (39). In addition, the long-term load on both the left ventricle 
and systemic arteries had been proposed to be related to the prod-
uct of heart rate and systolic blood pressure (39). Therefore, heart 
rate may play a more important role in cardiovascular health than 
anticipated. However, the effects of dietary sodium on heart rate 
have been frequently overlooked in favor of its effects on blood 
pressure (39). Studies that demonstrated the effects of dietary 
sodium on heart rate have shown conflicting results. Graudal 
et  al. (40) observed that sodium restriction (sodium reduction 
of 42–341 mmol/24 h in studies lasting 4–90 days) was indepen-
dently associated with increased heart rate in healthy individuals 
and individuals with hypertension. Higher heart rate associated 
with lower sodium intake may contribute to higher cardiovas-
cular morbidity and mortality. Although a few randomized 
controlled trials showed a possible dose–response relationship 
between reduced dietary sodium and increased heart rate, the 
data were insufficient for a reliable conclusion (40). In contrast, 
high sodium intake (250 mmol/24 h for 7 days) was associated 
with reduced mean 24-h heart rate in individuals with mild-to-
moderate essential hypertension (41). This was also observed in 
sodium-resistant individuals with hypertension or normotension 
(sodium intake of up to 300 mmol/24 h) (39) and healthy normo-
tensive individuals (sodium intake of 154 mmol/24 h for 7 days) 

(42). However, a few studies have demonstrated no significant 
change in heart rate with high sodium intake (305 mmol/24 h for 
7 days) in normotensive individuals (43) or low sodium intake 
(sodium intake of 80 mmol/24 h for 8 weeks) in individuals with 
untreated mild-to-moderate essential hypertension (30). Given 
the discrepancy in results, more studies in this area are required 
to investigate the relationship between dietary sodium intake and 
heart rate.

effects of Sodium intake on albuminuria
Albuminuria is known to be an established risk factor for cardio-
vascular disease, especially in individuals with diabetes (44, 45). 
This risk increases across the range of urinary albumin excretion, 
including within the normal range (44). Epidemiological studies 
demonstrated that increased sodium intake was independently 
associated with increased urinary albumin excretion (46, 47). In 
individuals with type 1 diabetes, higher dietary sodium intake 
may be associated with microalbuminuria, especially in over-
weight individuals (48). This was supported by a randomized 
controlled trial showing that individuals with type 2 diabetes and 
microalbuminuria had a greater increase in blood pressure and 
increase in albumin excretion ratio during high sodium intake 
(250 mmol/24 h for 7 days) (49). This was associated with insulin 
resistance, indicating that insulin resistance could contribute to 
increased sodium sensitivity of blood pressure and albuminuria 
(49). The association between higher sodium intake and increased 
albuminuria was also demonstrated by another study in 270 
individuals with type 2 diabetes (50). However, this study showed 
a reverse J-shaped relationship between sodium intake and albu-
minuria, where both lower (sodium intake of <170 mmol/24 h) 
and higher (sodium intake of >203 mmol/24 h) dietary sodium 
intake were associated with higher urinary albumin excretion 
(50). On the contrary, Horikawa et al. (51) reported that there 
was no significant association between overt nephropathy and 
sodium intake in Japanese individuals with type 2 diabetes aged 
40–70  years old. In contrast, blood pressure and urine protein 
excretion were reduced during modest sodium restriction (mean 
sodium reduction of 78 mmol/24 h for 4 weeks) in black individu-
als with hypertension (52). The discrepancies among results from 
different studies suggest that further investigations are required 
to establish the effects of dietary sodium intake on albuminuria.

In addition, sodium restriction was shown to potentiate the 
antiproteinuric effect of drugs used to treat albuminuria (53). 
These drugs include angiotensin-converting enzyme inhibitors 
and angiotensin receptor blockers (54). They reduce albuminuria 
by blocking rennin–angiotensin–aldosterone system in individu-
als with type 2 diabetes, thereby reducing cardiovascular risk and 
nephropathy (45). We have reported that the antiproteinuric 
and antihypertensive effects of angiotensin receptor blockers 
(losartan) were increased during low sodium intake (mean 
sodium intake of 80–85  mmol/24  h) in individuals with type 
2 diabetes, hypertension, and albuminuria (53). We have also 
demonstrated that increased sodium intake through sodium sup-
plementation (100 mmol/2h) reduced the antialbuminuric effect 
of angiotensin receptor blockers (telmisartan) with or without 
hydrochlorothiazide in individuals with hypertension and type 2 
diabetes (55). However, it was observed that this blunting effect 
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was only in individuals with habitual low sodium intake (24-h 
urinary sodium excretion of <100  mmol/24  h). In individuals 
with suppressed rennin–angiotensin–aldosterone system due to 
habitual high sodium intake (24-h urinary sodium excretion of 
>200  mmol/24  h), increased sodium intake does not alter the 
response to angiotensin receptor blockers (55). Therefore, this 
suggested that renal albumin excretion can be modulated by 
dietary sodium intake when the rennin–angiotensin–aldosterone 
system is not suppressed by habitual low sodium intake, but is not 
responsive to further increases in dietary sodium intake when the 
rennin–angiotensin–aldosterone system is suppressed by habitual 
high sodium intake (55, 56). Additionally, angiotensin receptor 
blockers reduced the relative risk of renal and cardiovascular 
events to a greater extent during lower dietary sodium intake 
in individuals with type 2 diabetes complicated by nephropathy 
(57). In contrast, higher sodium intake attenuated the renal and 
cardiovascular protective effects of angiotensin receptor blockers 
in these individuals (57). This was supported by a study, which 
showed that the antiproteinuric effect of angiotensin-converting 
enzyme inhibitors (lisinopril) was abolished with high sodium 
intake (200 mmol/24 h) and was restored with sodium restriction 
(sodium intake of 50 mmol/24 h) in individuals with proteinuria 
aged 26–56 years old (58).

effects of Sodium intake on  
Renin–angiotensin–aldosterone System
The rennin–angiotensin–aldosterone system evolved over time to 
maintain sodium and body volume homeostasis (59). This system 
is therefore important in maintaining sodium and fluid balance 
during reduced sodium or reduced fluid intake (60). Physiologic 
compensatory activation of the rennin–angiotensin–aldosterone 
system may occur during sodium restriction (61). Activation 
of the rennin–angiotensin–aldosterone system contributes to 
increased cardiovascular morbidity and mortality (62). Plasma 
renin activity has been suggested as a surrogate marker of 
rennin–angiotensin–aldosterone system activation and high 
plasma renin activity was demonstrated to be an independent 
predictor of major vascular events and cardiovascular mortality 
in a population of high-risk individuals with atherosclerosis 
and/or diabetes (63). This suggests that blockade of the renin– 
angiotensin–aldosterone system may be beneficial for cardiovas-
cular health. However, studies have shown that the aldosterone 
escape phenomenon can occur in some individuals during 
long-term blockade of the renin–angiotensin–aldosterone sys-
tem (64–66). This phenomenon is characterized by increases in 
plasma aldosterone levels after the initial reduction or lack of 
change in aldosterone levels with renin–angiotensin–aldosterone 
system blockade (64). This may be more pronounced in individu-
als on a sodium restricted diet (66). Therefore, the renoprotective 
effect of renin–angiotensin–aldosterone system blockade may be 
reduced in these individuals with lower sodium intake. Despite 
recognized benefits of renin–angiotensin–aldosterone system 
blockade in individuals with diabetes, a greater reduction in 
dietary sodium intake is associated with an increased risk of 
developing aldosterone escape (66), which may be associated 
with increased cardiovascular (67) and renal morbidity (64). In 

individuals with type 1 diabetes and diabetic nephropathy, the 
degree of aldosterone escape was observed to be associated with 
a greater decline in glomerular filtration rate (64). Therefore, 
individuals with diabetes on sodium restriction may require 
additional aldosterone blockade to achieve optimal renopro-
tection (64, 65). Hence, dietary sodium restriction may not be 
appropriate in all individuals.

In individuals with mild-to-moderate hypertension, a high 
renin–sodium profile before and after antihypertensive treat-
ment was independently associated with a higher subsequent 
risk of myocardial infarction (68, 69). He et  al. (70) showed 
that plasma renin activity and plasma aldosterone increased 
during acute severe sodium restriction (5  days) in individuals 
with hypertension (mean sodium reduction of 293 mmol/24 h) 
and individuals with normotension (mean sodium reduction of 
266 mmol/24 h). In contrast, He and MacGregor (23) reported 
that there was only a small increase in plasma renin activity and 
plasma aldosterone with modest sodium restriction over a longer 
period (≥4  weeks) in individuals with hypertension (median 
24-h urinary sodium reduction of 78 mmol/24 h) and individu-
als with normotension (median 24-h urinary sodium reduction 
of 74  mmol/24  h). However, in a meta-analysis of individuals 
with hypertension or normotension, sodium restriction was 
shown to significantly increase plasma renin and aldosterone 
in proportion to the decrease in sodium intake, even in studies 
with longer duration (≥4 weeks) of moderate sodium restriction 
(sodium reduction of <100 mmol/24 h) (22). This suggested that 
the acute increase in plasma renin and aldosterone might persist 
if sodium restriction was maintained (22). This was further 
supported by a more recent meta-analysis, which demonstrated 
that low sodium intake (<120 mmol/24 h) was associated with 
significant increases in plasma renin and aldosterone, including 
in studies with a longer period of sodium restriction (≥4 weeks) 
(71). This discrepancy may be explained by the difference in 
the degree and period of sodium restriction because maximum 
stimulation of renin–angiotensin–aldosterone system occurred 
during prolonged very low sodium intake (61). In a cross-
sectional study, we have demonstrated that in individuals with 
type 1 and type 2 diabetes, lower 24-h urinary sodium excretion 
was associated with higher serum aldosterone (72). This was 
more prominent in those who were not taking medications that 
would interfere with the renin–angiotensin–aldosterone system. 
However, we could not detect such a relationship between plasma 
renin activity and 24-h urinary sodium excretion, which could be 
partly attributed to the overall reduced plasma renin activity in 
individuals with diabetes (72). Conversely, in an interventional 
study, we reported that in individuals with hypertension and type 
2 diabetes, plasma renin activity level was significantly higher 
with habitual “low” sodium intake (mean 24-h urinary sodium 
excretion of 126  mmol/24  h) than with habitual high sodium 
intake (mean 24-h urinary sodium excretion of 256 mmol/24 h) 
(73). We have demonstrated that short-term sodium supple-
mentation (100 mmol/24 h) led to a significant reduction in the 
angiotensin receptor blockers-induced increase in plasma renin 
activity and a trend toward blunting of the angiotensin receptor 
blocker-induced increase in serum aldosterone in individuals 
with type 2 diabetes (73).
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effects of Sodium intake on lipids
Moderate to severe sodium restriction has adverse effects on 
serum lipids (22, 74, 75). Since the risk of cardiovascular disease 
increases in proportion to serum lipid levels (76), the adverse 
effects of sodium restriction on serum lipids could contribute 
to increased cardiovascular risk. Studies demonstrated that total 
cholesterol and low density lipoprotein cholesterol increased sig-
nificantly with short-term low sodium intake (20 mmol/24 h for 
1 week) in non-obese normotensive individuals aged 19–78 years 
old (74) and in healthy men (75). Graudal et al. (22) observed 
increased total cholesterol and low density lipoprotein cholesterol 
levels without changes in high-density lipoprotein cholesterol 
and triglycerides mainly in studies with short-term large reduc-
tions in sodium intake (sodium reduction of >100 mmol/24 h 
for <4 weeks). However, a few studies with long-term moderate 
sodium restriction (mean sodium reduction of 75 mmol/24 h for 
>4 weeks) in the meta-analysis reported that the effect of sodium 
restriction on lipids was not statistically significant (22). This 
suggested that total cholesterol and low density lipoprotein cho-
lesterol were increased during short-term severe sodium restric-
tion, but there were no significant changes in serum lipid levels 
during long-term moderate sodium restriction in studies with 
individuals with hypertension or normotension (22). Moreover, 
another meta-analysis of studies in individuals with hypertension 
or normotension also demonstrated that increased cholesterol 
and triglycerides during moderate sodium restriction (median 
sodium reduction of 81 mmol/24 h) were in short-term studies 
(<2 weeks), with no statistical significance in long-term studies 
(≥4 weeks) (71). This was substantiated by studies showing that 
moderate sodium intake over a longer period did not affect serum 
lipid concentrations in non-obese normotensive individuals 
(sodium reduction of 115 mmol/24 h) (77) and individuals with 
mild-to-moderate hypertension (mean 24-h urinary sodium 
reduction of 52 mmol/24 h) (78). In addition, a meta-analysis of 
long-term randomized controlled trials (≥4 weeks) reported that 
sodium restriction had no significant effect on serum lipid levels 
in adults (79). Therefore, this suggested that the extent and dura-
tion of sodium restriction could influence its effect on lipid levels.

effects of Sodium intake on Glucose 
Metabolism
Dietary sodium restriction has also been suggested to adversely 
affect glucose metabolism and decrease insulin sensitivity (74, 
80). In addition, its activation of the renin–angiotensin–aldos-
terone system (61) and sympathetic nervous system (22, 71, 
74) may further reduce insulin sensitivity (81–83). The renin– 
angiotensin–aldosterone system has been shown to predomi-
nantly mediate reduced insulin sensitivity through angiotensin 
II (82). Garg et  al. (84) reported that short-term severe salt 
restriction (24-h urinary sodium excretion of <20  mmol/24  h 
for 7 days) was independently associated with increased insulin 
resistance in healthy individuals. However, although plasma 
renin activity, angiotensin II levels, 24-h urine aldosterone, and 
24-h urine noradrenaline excretion were also increased during 
low sodium intake, there were no significant correlations with 
the increase in insulin resistance (84). This may be related to the 

small sample size in some studies and differences in the methods 
used to assess renin–angiotensin-aldosterone system and sympa-
thetic nervous system activity. When the insulin-sensitive target 
tissues, such as skeletal muscle, are less responsive to insulin-
mediated glucose uptake, more insulin secretion is required (80). 
Therefore, it was proposed that the reduced insulin sensitivity 
during sodium restriction could contribute to hyperinsulinism 
(74, 80), which can in turn induce insulin resistance (85) and is 
associated with cardiovascular disease and type 2 diabetes (78). 
One study observed that in non-obese normotensive individuals 
aged 19–78 years old, serum insulin was significantly increased 
during short-term low sodium intake (20 mmol/24 h for 1 week), 
indicating impaired glucose metabolism (74). Another study 
supported this by demonstrating that insulin-mediated glucose 
disposal during euglycemic clamp conditions was lower with 
short-term low sodium intake in normotensive individuals. This 
showed that insulin sensitivity was reduced during short-term 
low sodium intake (sodium intake of 20 mmol/24 h for 6 days) 
(80). However, Luther et al. (60) reported that glucose-stimulated 
insulin secretion was reduced without affecting insulin sensitivity 
during short-term low sodium intake (20 mmol/24 h for 7 days) 
in normotensive individuals without diabetes. This discrepancy 
in results could be attributed to methodological differences in 
measuring outcomes. Therefore, more trials using consistent 
methods to measure glucose metabolism or insulin sensitivity 
are required to investigate the effect of low sodium intake on 
insulin sensitivity. Meland et  al. (78) reported that long-term 
moderate sodium intake (mean 24-h urinary sodium excretion of 
125 mmol/24 h for 8 weeks) did not affect insulin sensitivity since 
fasting insulin, insulin C-peptide, and serum glucose levels were 
unchanged in individuals with mild-to-moderate hypertension. 
Therefore, it was suggested that the effect of sodium intake on 
insulin sensitivity could be related to the degree and period of 
reduced sodium intake. On the other hand, high sodium intake 
improved insulin sensitivity (80), especially in individuals with 
diabetes (86). During high sodium intake (200  mmol/24  h for 
6  days) in healthy lean normotensive individuals, the insulin-
mediated glucose disposal during euglycemic clamp conditions 
was increased, indicating increased insulin sensitivity (80). This 
was substantiated by another study demonstrating that sodium 
loading with 8 g of salt a day (136 mmol/24 h) to achieve high 
sodium intake (24-h urinary sodium of 252 mmol/24 h) reduced 
the glycemic and insulinemic response to glucose in individuals 
with hypertension and type 2 diabetes (86). This showed that 
glucose tolerance and insulin resistance could be improved with 
sodium supplementation.

effects of Sodium intake on Sympathetic 
Nervous System activity
Sodium restriction also leads to the compensatory stimula-
tion of the sympathetic nervous system (22, 71, 74), which has 
multiple adverse effects on the cardiovascular system, including 
left ventricular hypertrophy progression, vascular remodeling, 
arterial stiffness, and atherosclerosis (87). This could lead to 
increased cardiovascular risk. In individuals with hypertension 
or normotension, low sodium intake (<120  mmol/24  h) was 
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associated with increased plasma adrenaline and noradrenaline 
(71). In addition, Graudal et al. (22) reported that the increase 
in noradrenaline was observed mainly in short-term studies 
(<4  weeks). This was supported by a study demonstrating an 
increase in plasma noradrenaline concentration during short-
term low sodium intake (20 mmol/24 h for 1 week) in non-obese 
normotensive individuals aged 19–78  years old (74). However, 
Grassi et  al. (30) showed that in individuals with untreated 
essential hypertension, a low sodium intake of 80  mmol/24  h 
increased sympathetic stimulation and this effect was maintained 
despite ongoing sodium restriction for 8  weeks. In contrast, a 
meta-analysis of randomized controlled trials demonstrated 
that there was no change in catecholamines and sympathetic 
tone with long-term moderate sodium restriction in individu-
als with hypertension (median 24-h urinary sodium reduction 
of 78 mmol/24 h) and individuals with normotension (median 
24-h urinary sodium reduction of 74  mmol/24  h) (23). This 
was substantiated by a meta-analysis of long-term randomized 
controlled trials (≥4 weeks) showing that sodium restriction had 
no effect on urinary and plasma adrenaline and noradrenaline 
(79). The inconsistency in results was suggested to be related 
to the extent and duration of sodium restriction. In short-term 
severe sodium restriction (median of 7  days, mean sodium 
reduction of 196  mmol/24  h), there were significant increases 
in noradrenaline (22). In contrast, there was no such significant 
change in noradrenaline in long-term moderate sodium restric-
tion (median sodium reduction of 78  mmol for a median of 
6 weeks in individuals with hypertension, median sodium reduc-
tion of 74 mmol/24 h for a median of 4 weeks in individuals with 
normotension) (23). Despite the association between the increase 
in muscle sympathetic nerve activity and concomitant increase 
in plasma noradrenaline during sodium restriction (30), the 
discrepancy in results could also be explained by methodological 
differences. Whereas most studies assessed sympathetic stimula-
tion via plasma and/or urinary catecholamines (79), Grassi et al. 
(30) measured sympathetic stimulation via muscle sympathetic 
nerve activity (microneurography), which is considered the gold 
standard method for assessing sympathetic outflow in humans 
(88). This highlights that more trials are required to elucidate the 
association between low dietary sodium intake and sympathetic 
nervous system activity.

effects of Sodium intake on vascular 
endothelial Function
Vascular endothelial dysfunction has been proposed to con-
tribute to the development of atherosclerosis (89), which is 
involved in the pathogenesis of cardiovascular disease (90). In 
recent decades, endothelial dysfunction was demonstrated to 
be associated with high sodium intake in both animal models 
and humans (89). Since endothelial dysfunction was shown to be 
predictive of future cardiovascular events (89), it was proposed 
that high sodium intake could contribute to increased risk of 
cardiovascular disease. In normotensive Sprague–Dawley rats 
on a high sodium diet for 4–5 weeks, arteriolar responsiveness 
to endothelium-dependent vasodilation induced by acetylcho-
line was decreased during high sodium intake (91). This was 

attributed to impaired microvascular endothelial function since 
responsiveness of vascular smooth muscle to nitric oxide was 
unaffected by high sodium intake. It was suggested that this was 
related to the stimulation of increased oxidant levels by high 
sodium intake through increased generation of reactive oxygen 
species in the microvascular endothelium (91). A study sug-
gested that the increased generation of reactive oxygen species 
could be partly due to increased activity of NAD(P)H oxidase 
and xanthine oxidase, which are oxidant enzymes that produce 
superoxide anions (92). It was hypothesized that reactive oxygen 
species could contribute to reduced bioavailability of nitric oxide 
since the half-life of nitric oxide is reduced when superoxide 
anions are present (92). Given that nitric oxide plays an important 
role in vascular function by promoting vasodilation and inhibit-
ing platelet and leukocyte activation (90), reduced nitric oxide 
bioavailability could contribute to impaired endothelial function 
in the microvasculature during high sodium intake (91) and may 
therefore contribute to the pathogenesis of atherosclerosis.

However, other studies demonstrated that low sodium intake 
was associated with endothelial dysfunction (93–95). Tikellis 
et al. (94) observed that 6 weeks of low sodium diet was associ-
ated with a fourfold increase in plaque accumulation in the aorta, 
increased vascular inflammation, and renin–angiotensin–aldos-
terone system activity in atherosclerosis-prone apolipoprotein E 
knockout mice. Diabetic apolipoprotein E knockout mice were 
also reported to have increased plaque accumulation, vascular 
inflammation, and renin–angiotensin–aldosterone system 
activity after 6  weeks of a low sodium diet (95). Conversely, a 
high sodium diet attenuated plaque accumulation and reduced 
renin–angiotensin–aldosterone system activity in the diabetic 
apolipoprotein E knockout mice (95). In dogs on a low sodium 
diet for 2  weeks, a 60% reduction in flow-induced dilation in 
coronary arteries was observed (93). Huang et al. (93) proposed 
that the associated increase in plasma angiotensin II levels dur-
ing the low sodium diet induced increased activation of protein 
kinase C, which upregulated vascular NAD(P)H oxidase to pro-
duce superoxide and reduce nitric oxide bioavailability. This may 
explain why the low sodium diet impaired endothelial response 
to shear stress (93).

The discrepancy in findings in animal studies was also 
seen in studies in humans (96, 97). During sodium loading 
(200  mmol/24  h for 5  days) in young healthy normotensive 
men on a low-salt diet, Tzemos et  al. (97) observed that the 
acetylcholine-induced endothelium-dependent vasodilation 
was reduced, indicating a reduction in the stimulated release 
of nitric oxide from the endothelium. In addition, there was 
reduced endothelium-dependent vasoconstriction induced by 
NG-monomethyl-l-arginine (l-NMMA), which indicated that 
the inhibition of basal release of endothelium-derived nitric oxide 
was reduced (97). This showed that vascular endothelial function 
was impaired during short-term high salt intake (24-h urinary 
sodium excretion of 225 mmol/24 h, 5 days) (97). However, since 
systolic blood pressure was increased in this study (97), it would 
be difficult to distinguish the adverse effect of increased sodium 
intake on endothelial function from that of increased blood 
pressure. DuPont et al. (96) separated the effect of high sodium 
intake from that of increased blood pressure by investigating 
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endothelium-dependent dilation in healthy sodium-resistant 
individuals, who have a change of 5 mmHg or less in 24-h mean 
arterial pressure between low and high sodium diets. It was 
observed that high sodium intake (300–350 mmol/24 h) reduced 
endothelium-dependent dilation (96). Since endothelium-
independent dilation was not affected by high sodium intake, 
it demonstrated that there was no change in vascular smooth 
muscle responsiveness. Therefore, the reduced endothelium-
dependent dilation during high sodium intake was attributed to 
impaired endothelial function (96). Conversely, sodium restric-
tion improved endothelial function (98). It was reported that an 
acute increase in flow-mediated dilation was observed after 2 days 
of moderate sodium restriction (24-h urinary sodium reduction 
of 42 mmol/24 h) in obese and overweight individuals. This was 
sustained even after prolonged sodium restriction (6 weeks) (98). 
Moreover, there was an association between a greater increase 
in flow-mediated dilation and a greater decrease in 24-h urinary 
sodium to creatinine ratio (98). Therefore, this indicated that long-
term moderate sodium restriction improved endothelial function 
(98). This was supported by another study demonstrating that 
moderate sodium restriction (sodium reduction of 80 mmol/24 h 
for 4  weeks) improved both macrovascular (conduit arteries) 
and microvascular (resistance vessels) endothelial function in 
middle-aged and older adults with moderately elevated systolic 
blood pressure (99). It was proposed that this could be related to 
increased nitric oxide and tetrahydrobiopterin (BH4) bioavailabil-
ity and reduced oxidative stress during sodium restriction (99). 
However, despite the increased bioavailability of BH4, which is an 
important cofactor for endothelial nitric oxide synthase activity 
in the endothelial production of nitric oxide (99), there was no 
change in the expression and activation of endothelial nitric oxide 
synthase during sodium restriction (99). In contrast, in cultured 
bovine endothelial cells, increased bath sodium concentrations 
were observed to reduce endothelial nitric oxide synthase activity 
(100). On the other hand, Omland et al. (101) showed that low 
sodium intake (10 mmol/24 h for 5 days) was not associated with 
any significant change in the endothelium-dependent vasodilation 
to methacholine in healthy individuals. This may be because indi-
viduals in this study had a lower sodium intake (10 mmol/24 h) 
compared to other sodium restriction studies (≥20 mmol/24 h). 
Conversely, in individuals with or without diabetes, García-Ortiz 
et al. (102) demonstrated a J-shaped relationship between quartiles 
of sodium intake with arterial stiffness parameters and carotid 
intima-media thickness, which is a commonly used biomarker 
for arteriosclerosis and future cardiovascular disease risk (103). 
The discrepancy in results suggests that more studies are required 
to investigate the association between dietary sodium intake and 
vascular endothelial function.

effects of Sodium intake on immune 
Function
Sodium intake has been proposed to have effects on both the 
innate and adaptive immune system (104–109), which may 
impact on atherosclerosis and cardiovascular morbidity and 
mortality. Atherosclerosis is a major component in the patho-
genesis of cardiovascular disease (90) and consists of chronic 

low-grade inflammation and atherogenesis (110). Oxidized low 
density lipoproteins involved in atherogenesis (111) are proposed 
to be one of the leading antigens involved in mediating T cell 
infiltration into atherosclerotic plaques (110). This is predomi-
nated by CD4+ T helper (Th) cells, which predominantly have a 
Th1 phenotype (110, 112, 113). Th1 cells are pro-inflammatory 
cells which activate pro-inflammatory macrophages and cytolytic 
CD8+ T cells (110). Moreover, the cytokines produced by Th1 
cells, especially IFNγ, are proposed to promote atherogenesis 
through the activation of macrophages, endothelial cells, and 
smooth muscle cells (114). Additionally, IFNγ also impairs cho-
lesterol efflux and weakens the fibrous cap to destabilize athero-
sclerotic plaques (114). On the other hand, the role of Th2 cells in 
atherosclerosis is less clear (110, 113). Despite the suggestion that 
Th2 cells are antiatherogenic (110, 112, 114), the IL-4 cytokine 
produced by these cells has controversial effects (110, 112).  
Studies have shown that IL-4 could have deleterious or no effect 
on atherosclerosis (115, 116). Therefore, the role of IL-4 in 
atherosclerosis needs to be elucidated. Th17 cells have been dem-
onstrated to be present in atherosclerotic plaques and may have 
a pathogenic role in atherosclerosis because they are considered 
to be highly pro-inflammatory (110). The IL-17A cytokine pro-
duced by Th17 cells exerts its pro-inflammatory effects through 
the recruitment of pathogenic macrophages to the region of 
inflammation (117) and is also an important mediator of angio-
tensin II-induced hypertension (105, 118). Conversely, regulatory  
T (Treg) cells are proposed to be protective in atherosclerosis 
(110, 119) because they produce anti-inflammatory cytokines 
such as IL-10 and TGFβ and suppress immune responses through 
direct and indirect mechanisms (105, 107, 110).

In addition, the innate immune system has also been proposed 
to be involved in atherosclerosis. Classical lipopolysaccharide 
(LPS)-induced M1 macrophages are pro-inflammatory and pro-
duce pro-inflammatory cytokines, which promote endothelial 
dysfunction, destabilization of atherosclerotic plaques in advanced 
atherosclerosis and thrombus formation in acute coronary syn-
dromes (117), and direct the differentiation and proliferation 
of Th1 and Th17 cell subpopulations (120). On the other hand, 
alternatively activated M2 macrophages are non-inflammatory 
and produce anti-inflammatory cytokines such as IL-10 and 
TGFβ, which inhibit the recruitment of inflammatory cells and 
production of pro-inflammatory cytokines (117). However, M2 
macrophages may have some pro-atherogenic effects because they 
can produce IL-4 (117). In addition to the controversy mentioned 
previously, IL-4 also promotes CD36 expression, which is known 
to be involved in the uptake of oxidized low density lipoproteins 
and foam cell formation (114).

High sodium intake might be associated with an imbal-
ance in immune homeostasis, with a predisposition toward a 
pro-inflammatory state (104–109). During high sodium intake, 
plasma sodium levels are not increased due to the tight regulation 
of plasma electrolytes by the kidneys (104). However, sodium 
can accumulate in the skin and muscles via a renal-independent 
mechanism, resulting in an approximate 40mM (40  mmol/L) 
increase in interstitial sodium compared to plasma in rodents 
(104). Given that lymphoid tissues have higher osmolarity, the 
increase in osmolarity in the interstitial compartments can have 
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effects on immune cells in these regions (104, 109, 121). Increased 
sodium chloride concentrations in vitro (increased by 40 mmol/L) 
have been demonstrated to promote activation of Th17 cells and 
M1 (pro-inflammatory) macrophages and blunt activation of 
M2 (non-inflammatory) macrophages and Treg cells (104, 121). 
The activation and responses of activated M1 macrophages were 
increased in the presence of higher sodium chloride concentra-
tions in vitro (increase by 40 mmol/L) (104, 121). On the other 
hand, the activation and ability of M2 macrophages to suppress 
CD4+ and CD8+ T cell proliferation were blunted (104). However, 
this was not associated with increased polarization toward the 
M1 phenotype in macrophages (104). In addition, a study in 20 
healthy non-smoking individuals showed that short-term high 
sodium intake (sodium intake of 256 mmol/24 h for 7 days) was 
associated with the induction of pro-inflammatory intermediate 
(CD14++CD16+) monocytes and increased production of intracel-
lular reactive oxygen species (122). Moreover, it was also associ-
ated with increased monocyte–platelet aggregates (122), which 
play an important role in thrombotic disorders (123). Conversely, 
short-term low sodium intake (sodium intake of 85.5 mmol/24 h 
for 7 days) was associated with a regression of these changes (122). 
This suggested that high sodium intake may be associated with 
increased inflammation and thrombosis and low sodium intake 
may reverse these changes. However, the findings of this study 
may not be applicable to long-term changes in sodium intake. 
Yi et al. (106) addressed this by investigating the effects of long-
term high and low sodium intakes on immune function in six 
healthy men. In this study, long-term high dietary sodium intake 
(203 mmol/24 h for 50 ± 10 days) was associated with increased 
monocyte count (106). Conversely, long-term lower dietary 
sodium intake (sodium intake of 153 mmol/24 h for 50 ± 10 days 
and 102 mmol/24 h for 50 ± 10 days) was associated with reduced 
production of pro-inflammatory cytokines IL-6 and IL-23 and 
increased production of anti-inflammatory cytokine IL-10 (106).

Serum-and-glucocorticoid-regulated kinase 1 (SGK1) acts as a 
mediator of sodium homeostasis by regulating sodium reabsorp-
tion through activation of epithelium sodium channels (ENaC) in 
the kidneys (108). Expression of this enzyme can be induced by 
exogenous sodium and it is involved in impairing Treg function 
and enhancing Th17 cell differentiation during increased sodium 
chloride concentrations in  vitro and during increased sodium 
intake in vivo (107, 108). Increases in sodium chloride concentra-
tions promoted SGK1 and IL-23 receptor expression and Th17 cell 
differentiation in a SGK-1-dependent manner in vitro (40 mmol/L 
sodium chloride) and in  vivo (mouse models) (108). This was 
supported by another study, which demonstrated that increased 
sodium chloride concentrations (increased by 40 mmol/L) in vitro 
promoted the stable induction of human and murine Th17 cells 
through the activation of the p38/MAPK pathway involving 
nuclear factor of activated T cells 5 (NFAT5) and SGK1 (109). 
Moreover, Th17 cells induced under increased sodium chloride 
conditions exhibit a pathogenic phenotype associated with 
increased expression of pro-inflammatory cytokines including 
IL-17A (109). In addition, Treg cells are also affected by increases 
in sodium chloride concentrations. Hernandez et al. (107) dem-
onstrated that increased sodium chloride concentrations in vitro 
(increased by 40 mmol/L in human and murine Treg cells) and 

in vivo (8 and 1% sodium chloride in immune-deficient NOD-scid 
IL2Rgnull mouse models) significantly impaired the suppressive 
function of Treg cells and promoted a pro-inflammatory Th1-type 
effector phenotype associated with a SGK1-dependent increase in 
IFNγ secretion in Treg cells. This illustrated that T cell popula-
tions can exhibit plasticity depending on the microenvironment 
and highlights the importance of environmental influences on  
T helper cell polarization.

Most of the studies investigated the effect of high sodium 
intake on immune function (104, 105, 107–109). There is a pau-
city of data showing the effect of sodium restriction on immune 
cells. In addition, the studies were mainly performed in vitro or 
in experimental models where genetic modification is possible 
(104, 107–109). The evidence in human studies is insufficient and 
circumstantial (110). Moreover, the focus of many studies was 
on autoimmune diseases (107, 109). Although atherosclerosis 
involved chronic low-grade inflammation (110), findings from 
these studies may not be completely translational to cardiovas-
cular disease. Therefore, more studies are required to investigate 
the effect of sodium restriction on immune cells and its impact 
on subsequent development of cardiovascular disease in humans.

There is ample evidence demonstrating that the effects of 
sodium extend beyond blood pressure and contribute to cardio-
vascular health. As a result, it may not be suitable to derive an 
association between sodium intake and cardiovascular outcomes 
based on blood pressure alone. Therefore, studies that explore the 
association between sodium intake and cardiovascular morbidity 
and mortality are important.

Association between Sodium Intake and Mortality
Despite overwhelming evidence supporting the association 
between high sodium intake and elevated blood pressure (6), the 
evidence demonstrating a relationship between dietary sodium 
intake and cardiovascular outcomes is limited and mostly indi-
rect (124). Some studies proposed that there was no association 
between dietary sodium intake and cardiovascular morbidity 
and mortality (125, 126). A study of older adults in the general 
population showed that sodium intake was not associated with 
10-year mortality, incident cardiovascular disease, and incident 
heart failure (125). In addition, there was no strong evidence 
that sodium restriction reduced all-cause mortality and cardio-
vascular disease morbidity in individuals with hypertension or 
normotension (126).

In contrast, observational studies and meta-analyses sug-
gested that high sodium intake increased adverse cardiovascular 
outcomes (79, 127–135) (Figure  1). Tuomilehto et  al. (134) 
reported that higher sodium intake independently predicted 
increased mortality and risk of coronary heart disease in Finnish 
individuals aged 25–64 years old. It was observed that the associa-
tion was more prominent in men who had high BMI (≥27 kg/
m2) (134). This finding was supported by studies conducted 
in the general population aged 25–74  years old (127) and in 
individuals with prehypertension aged 45–75 years old (systolic 
blood pressure of 120–139 mmHg or diastolic blood pressure of 
80–89 mmHg) (135). Moreover, higher sodium intake was shown 
to be associated with increased risk of stroke and stroke mortality 
in the general population (131, 133). In addition, a meta-analysis 
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of prospective studies in adults also demonstrated an association 
between higher sodium intake and increased risk of stroke and 
total cardiovascular disease (132). On the other hand, a study 
projected substantial benefits of dietary sodium restriction on 
reducing cardiovascular outcomes based on the effects of sodium 
restriction on blood pressure reduction (128). Despite the inap-
propriate assumption of a linear relationship between sodium 
intake and blood pressure and between blood pressure and car-
diovascular events in this study (128), there are other studies sup-
porting the reduction of cardiovascular morbidity and mortality 
during sodium restriction (128, 130). The observational follow-
up study of Trials of Hypertension Prevention (TOHP) phase I 
and II showed that lower average sodium intake was associated 
with reduced mortality in individuals with prehypertension aged 
30–54 years old, suggesting that sodium restriction may reduce 
long-term risk of cardiovascular events in these individuals (129, 
130). This relationship was observed even in the lowest range of 
sodium intake (<100  mmol/24  h) (129). Additionally, Aburto 
et al. (79) also reported reduced risk of stroke and fatal coronary 
heart disease with lower sodium intake in adults.

In contrast, we demonstrated that low sodium intake was 
associated with higher cardiovascular morbidity and mortality 
in individuals with type 2 diabetes (136, 137) (Figure  1). This 

association was also observed in the general population even 
after excluding individuals with pre-existing cardiovascular 
disease (138, 139) (Figure  1). Conversely, other studies which 
followed suggested a J-shaped (24, 140) or U-shaped (141–144) 
relationship (Figure 1). O’Donnell et al. (140) reported a J-shaped 
association between cardiovascular events and sodium intake 
measured by estimated sodium excretion, with a lower risk of 
death and cardiovascular events when estimated sodium intake 
was between 3 and 6 g/day (130–261 mmol/24 h) in the general 
population aged 35–70 years old in the Prospective Urban Rural 
Epidemiology (PURE) study. Another study in individuals at 
high risk of cardiovascular disease supported this by showing 
that the risk of cardiovascular events was higher with estimated 
sodium intake less than 3  g/day (130  mmol/24  h) and greater 
than 7 g/day (304 mmol/24 h) (24). In contrast, Pfister et al. (142) 
showed a U-shaped association between sodium intake measured 
by 24-h urinary sodium excretion and heart failure in the general 
population. This U-shaped association was also observed between 
sodium intake and all-cause mortality in individuals with type 1 
diabetes without end-stage renal failure (144). A meta-analysis 
demonstrated that usual sodium intake (115–215  mmol/24  h) 
had the lowest risk of all-cause mortality and cardiovascular 
disease events with no difference between the higher and lower 
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end of this “normal” range in adults (141). Mente et  al. (143) 
supported this by demonstrating a U-shaped association between 
sodium intake and cardiovascular events and mortality in the 
general population. However, this relationship was only observed 
in individuals with hypertension. In individuals with hyperten-
sion, a lower sodium intake of less than 3 g/day (130 mmol/24 h) 
and higher sodium intake of at least 7 g/day (304 mmol/24 h) 
were associated with a higher risk of cardiovascular events and 
death than a sodium intake of 4–5 g/day (174–217 mmol/24 h). 
Conversely, in normotensive individuals, only lower sodium 
intake was associated with increased risk of cardiovascular events 
and death (143). This suggests that the current recommendations 
to reduce sodium intake may need to be revaluated.

Differences in Effects of Dietary Sodium Intake on 
Health in the Diabetes Population Compared to the 
General Population
Cardiovascular disease accounts for up to 80% of deaths in indi-
viduals with diabetes (145). Since diabetes is associated with mul-
tiple cardiovascular disease risk factors, including hypertension, 
dyslipidemia, microalbuminuria, and left ventricular hypertrophy 
(145), which in turn are associated with dietary sodium intake, the 
impact of sodium intake on cardiovascular morbidity and mortal-
ity in diabetes may differ from the general population (Figure 2). 
Hypertension is present in approximately 70% of individuals with 

type 2 diabetes (146) and this further increases cardiovascular dis-
ease risk in these individuals (147). Individuals with diabetes were 
shown to have significantly increased total exchangeable sodium 
compared to normal individuals (148). This excess body sodium 
may play an important pathogenetic role in maintaining diabetes-
associated hypertension (148). In addition, a high prevalence of 
sodium sensitivity has been reported in individuals with type 1 
diabetes (149) and in individuals with hypertension and type 2 dia-
betes (150). However, in contrast to individuals without diabetes, 
low sodium diets did not reduce the reactivity of blood vessels to 
angiotensin II, indicating that sodium restriction may be less effec-
tive for blood pressure control in individuals with hypertension and 
type 2 diabetes compared to individuals without diabetes (150).

In addition, central sympathetic hyperactivity was reported in 
individuals with type 2 diabetes, with the greatest sympathetic 
hyperactivity seen in those with concurrent essential hypertension 
(83, 151). Type 2 diabetes is associated with hyperinsulinemia (78), 
which is secondary to insulin resistance (145). Hyperinsulinemia 
has been known to increase sympathetic output through the 
sympathoexcitatory effects of increased insulin (152). Moreover, 
Huggett et  al. (83) have demonstrated an association between 
increased sympathetic nervous system activity and increased 
insulin levels. Therefore, the excessive sympathetic nervous 
system activation observed in type 2 diabetes may be attributed 
to increased insulin levels (151). This sustained over-activation of 
the sympathetic nervous system may contribute to the increased 
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cardiovascular morbidity and mortality associated with type 2 
diabetes (83). As such, the effects of dietary sodium intake on 
sympathetic nervous system activity may play a more important 
role in the cardiovascular health of individuals with diabetes.

Diabetic nephropathy is the leading cause of end-stage renal 
disease worldwide (153, 154). Despite the lack of understanding 
of the pathogenesis of diabetic nephropathy, it was observed that 
the occurrence of glomerular hyperfiltration in early diabetes con-
tributes to it (154, 155). Studies have shown increased glomerular 
filtration rate and renal plasma flow in individuals with type 1 
diabetes and higher effective renal plasma flow in individuals with 
type 2 diabetes compared to individuals without diabetes (155–
157). In addition, the renal hemodynamic response to variations 
in dietary sodium intake may be different in diabetes compared 
to the general population (154). This is due to primary tubular 
hyperresorption in early diabetes and the corresponding normal 
physiologic action of the tubuloglomerular feedback system (154, 
158). Glucose and sodium in the renal proximal tubule lumen 
are reabsorbed via sodium-glucose cotransporters (SGLT) in the 
luminal side of proximal tubule epithelial cells (159). This is driven 
by the sodium gradient within these cells, which is generated by 
the sodium-potassium ATPase pump in the basolateral membrane, 
thereby facilitating the transport of glucose against a concentration 
gradient (159). The tubuloglomerular feedback system theory 
stipulates that increased glucose and sodium reabsorption in the 
proximal tubules of the kidney during primary tubular hyperre-
sorption in early diabetes leads to reduced sodium concentration 
at the macula densa, which in turn leads to afferent arteriolar 
vasodilation to increase glomerular filtration rate, resulting in glo-
merular hyperfiltration (154). In individuals with type 1 diabetes, 
sodium restriction was demonstrated to exacerbate the underlying 
renal hemodynamic abnormalities seen in early disease, including 
increased glomerular filtration rate and decreased renal vascular 
resistance (157). In contrast to the increase in effective renal 
plasma flow associated with higher sodium intake in individuals 
without diabetes (160), individuals with type 1 diabetes were 
observed to have significantly higher renal plasma flow during 
extreme sodium restriction (157). In addition, individuals with 
type 2 diabetes were reported to have low baseline plasma renin 
activity (161), which may be associated with an increased risk of 
developing aldosterone escape (64). They had a heightened renal 
vasodilator response to angiotensin receptor blockers (irbesartan) 
despite a limited increase in plasma renin activity during extreme 
sodium restriction (161). Therefore, it was proposed that plasma 
renin might not reflect intrarenal renin levels in type 2 diabetes 
(161). Moreover, the increase in plasma renin activity induced by 
the angiotensin receptor blocker suggested that there might be 
increased intrarenal angiotensin II production suppressing plasma 
renin activity in type 2 diabetes (161).

Given these differences between people with diabetes and 
the general population (Figure  2), cardiovascular outcomes 
associated with variations in dietary sodium intake in diabetes 
may not be the same as that expected of the general population. 
Therefore, the paradoxical relationship between low sodium 
intake and higher cardiovascular morbidity and mortality should 
not be disregarded, especially in patient populations with specific 
clinical conditions (162).

In individuals with type 1 diabetes, both high and low dietary 
sodium intakes were shown to be associated with increased 
all-cause mortality (144). Moreover, in these individuals, there 
was also an inverse association between sodium intake and the 
development of end-stage renal disease (144), which is associated 
with a significantly increased mortality risk (163). As a result, this 
could contribute to increased mortality risk during low sodium 
intake in individuals with type 1 diabetes. Lower dietary sodium 
intake was observed to be associated with higher all-cause and 
cardiovascular mortality in individuals with type 2 diabetes (136, 
164). This was supported by the finding that lower 24-h urinary 
sodium excretion over time was also associated with increased 
all-cause mortality in these individuals (137). Therefore, this sug-
gests that the low dietary sodium intake recommendations for the 
general population may not be suitable for high-risk subgroups, 
such as individuals with type 1 diabetes or type 2 diabetes.

CONClUSiON

Dietary sodium intake recommendations support sodium restric-
tion based on previous evidence suggesting a reduction in blood 
pressure. It was proposed that this would be associated with a 
subsequent reduction in cardiovascular morbidity and mortality. 
However, increasingly, it is now being understood that sodium 
intake has other pleiotropic effects that affect cardiovascular 
health, highlighting that the association between sodium intake 
and cardiovascular outcomes cannot be based on blood pressure 
alone. Therefore, current dietary sodium intake guidelines have 
been revised since the IOM reported that there was no clear 
benefit or harm of sodium restriction to less than 100 mmol/24 h 
in 2013. However, recently, the current dietary sodium guidelines 
have been challenged because there is emerging evidence to sug-
gest an associated increase in morbidity and mortality with lower 
dietary sodium intake in high-risk groups, including those with 
diabetes. These studies suggest that the current dietary guidelines 
may be too strict; therefore, they may not be suitable and may 
need further revision. However, there is a lack of data from 
randomized controlled trials to determine the optimal level of 
dietary sodium intake for specific populations. In addition, there 
is a paucity of data with a lack of randomized controlled trial 
data in humans to explain the possible mechanisms contributing 
to the adverse outcomes associated with lower dietary sodium 
intake in high-risk populations.
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