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Endocrine-disrupting chemicals (EDCs) are prevalent in the environment, and epidemio-
logic studies have suggested that human exposure is linked to chronic diseases, such as 
obesity and diabetes. In vitro experiments have further demonstrated that EDCs promote 
changes in mesenchymal stem cells (MSCs), leading to increases in adipogenic differen-
tiation, decreases in osteogenic differentiation, activation of pro-inflammatory cytokines, 
increases in oxidative stress, and epigenetic changes. Studies have also shown alter-
ation in trophic factor production, differentiation ability, and immunomodulatory capacity 
of MSCs, which have significant implications to the current studies exploring MSCs for 
tissue engineering and regenerative medicine applications and the treatment of inflam-
matory conditions. Thus, the consideration of the effects of EDCs on MSCs is vital when 
determining potential therapeutic uses of MSCs, as increased exposure to EDCs may 
cause MSCs to be less effective therapeutically. This review focuses on the adipogenic 
and osteogenic differentiation effects of EDCs as these are most relevant to the ther-
apeutic uses of MSCs in tissue engineering, regenerative medicine, and inflammatory 
conditions. This review will highlight the effects of EDCs, including organophosphates, 
plasticizers, industrial surfactants, coolants, and lubricants, on MSC biology.

Keywords: endocrine disruptors, mesenchymal stem cells, adipogenesis, tissue engineering, tissue scaffolds, 
immunomodulation
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MeSeNCHYMAL STeM CeLLS (MSCs)

Mesenchymal stem cells are multipotent cells that maintain 
homeostasis in the human body by regeneration and repair of 
damaged and aged tissues. According to the International Society 
for Cellular Therapy, MSCs are cells that adhere to plastic in 
standard culture conditions, express surface antigens CD105, 
CD73, and CD90, lack hematopoietic antigens CD45, CD34, 
CD14 or CD11b, CD79alpha or CD19, and HLA-DR, and dif-
ferentiate into chondroblasts, myoblasts, osteoblasts, adipocytes, 
fibroblasts, and stromal cells (1). Figure 1 depicts MSC differen-
tiation into these lineages. An additional characteristic of MSCs 
is high self-renewal capacity, allowing these cells to retain their 
undifferentiated phenotype through senescence or until differen-
tiation is induced (2). MSCs have been isolated from various tis-
sues, including bone marrow, adipose tissue, periosteum, muscle 
tissue, blood vessels, lymphoid organs, skin, lung, umbilical cord 
blood, Wharton’s jelly, placenta, amniotic fluid, and fetal tissue 
(3–6).

With regard to tissue regeneration and repair, MSCs act by 
direct differentiation and paracrine signaling effects (4, 7–9). 
Under the appropriate stimuli, MSCs can differentiate into more 
specialized cells. Paracrine signaling effects of MSCs recruit other 

host cells and secrete growth factors and proteins to further 
stimulate regeneration to replace damaged cells (8). The wound-
healing capacity of MSCs has led to studies in tissue engineering 
and regenerative medicine, such as seeding MSCs onto scaffolds 
to repair critical-sized bony defects (10). Scaffolds provide a 
three-dimensional structure to mechanically stimulate MSCs to 
undergo osteogenic differentiation or to secrete paracrine factors 
(10–13). Together, these studies suggest that MSCs may have 
potential applications in the repair of fractures and bony defects 
(10–13).

Mesenchymal stem cells have also been shown to reduce 
inflammation and have sparked significant interest due to their 
potential use in immunotherapy. Specifically, MSCs suppress 
T-cell proliferation and cytotoxic potential, inhibit maturation 
and T-cell stimulation by dendritic cells, inhibit B-cell prolifera-
tion and differentiation, reduce production of pro-inflammatory 
cytokines, such as tumor necrosis factor alpha (TNF-α), and 
enhance production of anti-inflammatory cytokines, such as 
interleukin 10 (IL-10) and interleukin 4 (8, 9, 14–18). These effects 
are mediated by release of immunomodulatory factors such as 
nitric oxide synthase (NOS), indoleamine 2,3-dioxygenase, 
prostaglandin E2, and IL-10 in MSCs (18). MSCs are capable of 
prolonging survival of allografts, reducing acute graft-versus-host 
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disease, and improving outcomes in experimental autoim-
mune encephalomyelitis (15–19). Thus, MSCs may have broad 
therapeutic uses in the prevention and treatment of diseases with 
pro-inflammatory pathogenesis.

eNDOCRiNe DiSRUPTORS

Endocrine-disrupting chemicals (EDCs) are environmental sub-
stances that alter the function of the endocrine system, producing 
adverse health effects in exposed organisms and their offspring 
(20). EDCs have been shown to have a variety of effects on MSCs. 
Recent studies gleaned from other cell types have also provided 
insight into the effects of EDCs on MSCs. These effects of EDCs 
may alter the therapeutic efficacy of MSCs and thus should be 
further elucidated.

eFFeCT OF eNDOCRiNe DiSRUPTORS 
ON MSCs AND MSC LiNeAGeS

Low concentrations of several EDCs have been found in 
various human tissues. While these concentrations are as low 
as 100  pM to 1  nM, EDCs have been demonstrated to exert 
effects at these concentrations (21–23). Structural similari-
ties between these EDCs and endogenous hormones indicate 
that the ability of EDCs to affect homeostasis may be through 
activation of hormone receptors. Like hormones, EDCs are 
able to function at very low doses in a tissue-specific man-
ner, which is consistent with EDCs having non-monotonic 
dose–response curves (21–24). Therefore, the presence of low 
levels in human subjects does not indicate lack of harm from 
EDC exposure (21–23). At these levels, studies have shown that 
EDCs induce adipogenesis, increase oxidative stress, promote a 
pro-inflammatory state, and produce epigenetic changes (22). 
Low levels of EDCs have been shown to induce adipogenesis, 
increase oxidative stress, promote a pro-inflammatory state, 
and produce epigenetic changes. These effects are depicted in 
Figure 2.

ADiPOGeNeSiS

Adipogenesis is the differentiation of preadipocytes into adipo-
cytes and is important for storage of lipids and metabolism in 
the human body. Adipogenesis requires a supportive environ-
ment and a peroxisome proliferator-activated receptor gamma 
(PPARγ) ligand (25). In order to support adipogenic differen-
tiation, the appropriate cell density, spatial cell distribution, 
extracellular matrix, and a soluble hormonal stimulus, such as 
insulin-like growth factor 1 receptor, glucocorticoid receptor 
(GR), or cyclic adenosine monophosphate-dependent protein 
kinase must be present. As the master regulator of adipogenesis 
both in vitro and in vivo, PPARγ has been demonstrated to be 
necessary and solely sufficient for adipogenic differentiation to 
occur in a supportive environment (21, 26, 27). PPARγ expres-
sion, induced by CCAAT/enhancer-binding protein (C/EBP) β 
and δ, engages in a feed-forward loop with C/EBPα to promote 
adipogenesis (21, 26).

Endocrine-disrupting chemical exposure in  utero and 
after birth has been linked to increased adipogenesis and the 
obesity epidemic. During development in utero and in the first 
few years of life, children are exposed to EDCs that can induce 
changes in stem cells during periods of differentiation and alter 
developmental programing of metabolism (21, 25, 28). These 
changes induced in MSCs, including epigenetic alterations, may 
predispose MSCs to undergo adipogenesis, leading to obesity 
later in life (25, 29–31). Continued lifelong exposure to EDCs 
may further exacerbate the situation by promoting adipogenesis 
and altering metabolism in a population already susceptible to 
obesity (32). In vivo studies of the effects of endocrine disruptors 
have confirmed the findings of in  vitro studies. Studies in rats 
and mice have demonstrated increased body weight and visceral 
adiposity in animals exposed to EDCs (33–37). Perinatal and 
prenatal exposures have also been shown to result in excessive 
weight gain and adipose tissue mass in offspring (30, 31, 38–47). 
Human studies have demonstrated a positive association between 
EDC exposures and obesity, increased weight circumference, or 
increased body mass index (28, 30, 40, 42, 48–65).
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The precise mechanism by which EDCs promote adipogen-
esis has been linked to PPARγ and promotion of a supportive 
environment for adipogenesis. Several EDCs have been shown to 
upregulate MSC and preadipocyte differentiation into adipocytes 
at concentrations ranging from 100 pM to 100 μM: dichlorodiphe-
nyltrichloroethane or 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-
ethane (DDT), 4-nonylphenol (4-NP), octylphenol (OP), 
bisphenol A (BPA), polychlorinated biphenyl (PCB)-77, PCB-
101, PCB-153, PCB-180, di-(2-ethyl hexyl)phthalate (DEHP), 
mono-(2-ethylhexyl)phthalate (MEHP), dibutyl phthalate 
(DBP), benzyl butyl phthalate (BBP), dicyclohexyl phthalate 
(DCHP), and mono-benzyl phthalate (MBzP) (30, 35, 37, 39, 40, 
42, 43, 46, 63, 66–80). Many endocrine disruptors target PPARγ 
by binding to it directly to activate downstream cascades that lead 
to enhanced adipogenesis or by increasing PPARγ expression to 
allow for a lower threshold for activation. These EDCs include 
DDT, dichlorodiphenyldichloroethylene or 1,1-dichloro-2,2-bis 
(p-chlorophenyl)-ethylene (81), 4-NP, OP, BPA, PCB-77, DEHP, 
MEHP, DBP, BBP, and MBzP (35, 37, 39, 43, 63, 66, 68–70, 
75, 77–80, 82–85). Perinatal exposure to 4-NP has also been 
shown to increase PPARγ gene expression and sterol regulatory 
element-binding factor 1 (SREBF-1) expression in adipose tis-
sue (83). SREBF-1 is a key transcriptional activator involved in 
adipogenesis and transcription of PPARG, the gene encoding 
PPARγ. BPA has been shown to directly upregulate SREBF1. 
BPA has also been shown to upregulate mammalian target of 
rapamycin pathways in human preadipocytes, and the activation 
of this pathway through phosphoinositol-3 kinase/Akt leads to 
the activation of PPARγ and SREBF-1 (85, 86). Thus, PPARγ and 
SREBF-1 are key transcriptional factors in adipogenesis. The 
expression of C/EBPα and expression of factors promoted by 

PPARγ, such as lipoprotein lipase and fatty acid binding protein 
4/adipocyte protein 2 (aP2), have been shown to be increased in 
response to DDT, DDE, 4-NP, BPA, PCB-77, DEHP, MEHP, and 
BBP (37, 39, 42, 45, 46, 66, 68, 69, 73, 75, 76, 78, 82–84, 86–89). 
p,p′-DDT has also been shown to increase binding of C/EBPα to 
its DNA response element, demonstrating that the promotion of 
adipogenesis may be occurring through both increased expres-
sion and activation of targeted receptors (66).

In order to promote a supportive environment for adipogen-
esis, studies have also shown that 100 pM to 1 µM of EDCs, such 
as BPA and DCHP, may directly or indirectly cause increased 
interaction with the GR. BPA and DCHP have been shown to 
act through the GR to increase lipid accumulation and adipogen-
esis (34, 67, 71). BPA also has GR-mediated indirect effects by 
increasing mRNA expression and enzymatic activity of 11beta-
hydroxysteroid dehydrogenase 1. This enzyme converts cortisone 
to cortisol, which can bind the GR in adipose tissue and promote 
adipogenesis (46).

In addition to PPARγ- and GR-mediated pathways, EDCs have 
been shown to enhance adipogenesis through other pathways. 
Paradoxically, 100 nM to 10 µM concentrations of DDT and BPA 
have the capacity to enhance adipogenesis by estrogen receptor 
(ER)-mediated signaling, which has classically been shown to 
inhibit adipogenesis (68, 69, 90–93). Biasiotto and colleagues 
addressed the issue of multiple endocrine disruptors simultane-
ously acting on MSCs in the environment (Figure 3). This study 
demonstrated that the combination of endocrine disruptors such 
as BPA and NP present at concentrations of 40 and 90  nM in 
wastewater may promote adipogenesis through ER-mediated 
pathways. Pure BPA at 50 and 80 µM also induced adipogenesis 
in this study (35). At 25 and 50 µM of BPA, induction of aP2, 
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PPARγ, C/EBPα, and C/EBPβ expression has been shown to at 
least partially occur through a non-classical ER pathway (72). 
Interestingly, 4-NP exposure in mice has seemingly the opposite 
effects with the deletion and downregulation of ERα in adipose 
tissue, as increased adiposity due to fat cell differentiation was 
observed in mice (83).

Endocrine-disrupting chemicals can also increase adipogen-
esis in a paracrine manner by affecting soluble cues in the preadi-
pocyte or MSC environment. Leptin, an anti-obesity hormone, 
has been shown to promote the use of metabolic fuels such as 
fatty acids rather than storage of fatty acids to form triglycerides. 
PCB-101, PCB-153, and PCB-180 at 1 µM concentrations have 
been shown to increase lipid accumulation and indirectly induce 
adipogenesis by inhibiting leptin (74).

Together, these results suggest that EDCs have the capacity 
to induce adipogenesis of MSCs and preadipocytes through 
increases in PPARγ signaling and alterations in the molecular 
environment. Increased adipogenic differentiation may lead to a 
reduced number of MSCs committing to the osteoblastic lineage 
and may reduce the ability of MSCs to undergo osteogenic dif-
ferentiation (Figure 1). More studies should be performed with 
concentrations of EDCs in the picomolar to nanomolar range 
as EDCs may exert additional effects at these concentrations 
(21–23). Further limitations of the current studies in this field 
are the limited number of studies performed on undifferenti-
ated, stem cells and the lack of data on the effects of exposure 
to multiple EDCs (Figure  3). Areas for improvement include 
implementation of more studies involving MSC exposure to 
EDCs and multiple EDCs simultaneously (Figure 3).

OSTeOGeNeSiS

Osteogenesis is the differentiation of MSCs into osteoblasts. 
Osteogenic differentiation is driven by Runx2, a transcription 
factor that regulates the expression levels of osteogenic genes. 
These genes include alkaline phosphatase (94), osteopontin, 
type I collagen, osteocalcin, and osterix (6, 94). There are several 
other signaling pathways involved in osteogenic differentiation, 
including bone morphogenetic protein (BMP), transforming 
growth factor beta (TGF-β), and Wnt/β-catenin signaling. 
Similar to adipogenesis, osteogenic differentiation relies on a 
mechanical stimulus with the appropriate growth surface stiff-
ness, topography, tension, cytoskeletal organization, and soluble 
medium factors (95–99). A general principle is that stimulation 
of adipogenesis results in suppression of osteogenesis and vice-
versa (76, 100–102). Thus, given the induction of adipogenesis by 
many EDCs, it is logical that EDCs have been shown to reduce the 
expression of genes and activity of transcription factors involved 
in MSCs undergoing osteogenic differentiation.

Several EDCs have been shown to reduce expression of Runx2 
and other key osteogenic genes at varying stages of bone differ-
entiation. Chlorpyrifos has been shown to inhibit osteogenesis in 
MSCs through inhibition of acetylcholinesterase, leading to an 
increase in acetylcholine (103). Increased acetylcholine has been 
shown to reduce ALP activity by nicotinic acetylcholine recep-
tors and muscarinic acetylcholine receptors in preosteoblasts and 
osteoblasts, reducing osteogenic differentiation (104). MEHP has 

been shown to significantly suppress ALP activity, Runx2 expres-
sion, and osterix expression in MSCs (76). DEHP results in reduc-
tion of ALP expression, Runx2 protein levels, and mineralization 
in osteoblasts (105). The mechanisms by which 10 µM of MEHP 
and DEHP and 20 µM of MEHP inhibited osteogenesis were not 
determined in these studies, although Watt and Schlezinger and 
Bhat et al. demonstrated that the reduction in osteogenesis was 
not a result of decreased cell viability.

One proven mechanism of reduction of MSC osteogenesis by 
EDCs is their induction of apoptosis of osteoblast lineage cells. A 
total of 2.5 µM of p-NP has been shown to reduce osteogenesis 
of MSCs and to reduce cell viability (106). Aroclor 1254 and BPA 
have been reported to reduce osteogenesis of preosteoblasts and 
to reduce cell viability at concentrations ranging from 1 to 10 µM 
for Aroclor 1254 and from 2.5 to 12.5 µM for BPA (107, 108). A 
total of 1–10 µM concentrations of 4-NP, BBP, and DBP have also 
been shown to decrease viability of osteoblasts and preosteoblasts 
through promotion of apoptotic pathways (109, 110). Notably, 
the EDC effects in these studies occurred in a dose-dependent 
manner with higher doses of EDCs being more likely to result 
in reduced cell viability and decreased osteogenic differentiation. 
EDCs exert their effects over long-term environmental exposures.

One additional potential mechanism for the reduction in MSC 
osteogenic differentiation is the alteration of the cellular micro-
environment through EDC reduction of serum estradiol levels. 
Estradiol has been shown to induce MSC differentiation toward 
an osteogenic lineage and to increase MSC expression of osteo-
genic genes including Runx2, ALP, collagen I, TGF-β1, and BMP2 
(91, 111–114). EDCs including chlorpyrifos, OP, BPA, DEHP, 
MEHP, DBP, and mono-butyl phthalate (MBP) have been shown 
to reduce serum estradiol and testosterone levels (115–122). EDC 
reduction in the level of estradiol in the MSC microenvironment 
may cause MSCs to shift away from an osteogenic lineage and 
toward an adipogenic lineage. The reduction in serum estradiol 
and the mechanisms by which it may affect MSCs must be further 
investigated in future studies.

These studies suggest that EDCs may alter the capacity of MSCs 
to undergo osteogenic differentiation by reducing cell viability 
and altering cell microenvironment (Figure 1). A strength of the 
studies on the osteogenic effects of EDCs was the use of a treatment 
period that is classified as “long-term” or greater than or equal to 
7 days. Long-term treatment periods more accurately mimic the 
effects of chronic environmental exposure to EDCs. Limitations 
of current studies of EDC inhibition of osteogenesis include 
lack of studies testing EDC concentrations in the picomolar to 
nanomolar range, lack of studies in MSCs and preosteoblasts, and 
lack of assessment of exposure to multiple EDCs simultaneously 
(Figure  3). Areas for improvement include implementation of 
more studies using low concentrations of EDCs, in vitro studies 
testing various EDCs in MSCs and preosteoblasts, in vivo studies 
of MSCs isolated from EDC-exposed animal subjects, and studies 
of exposure to multiple EDCs simultaneously (Figure 3).

OXiDATive STReSS

Oxidative stress is an imbalance in the production of free radi-
cals and detoxification by antioxidants. Oxidative stress can be 
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measured by alterations in the levels and activity of antioxidant 
enzymes, such as superoxide dismutase, catalase, glutathione 
(GSH) peroxidase levels, the GSH/glutathione disulfide ratio, and 
malondialdehyde levels. These enzymes detoxify reactive oxygen 
species (ROS) by reducing them to water and other unharmful 
forms, preventing cellular damage and aging. Alterations in the 
levels of these enzymes can prevent the cell and organism from 
being adequately protected against ROS. Cellular aging is the 
decreased efficiency of function that occurs from damage from 
processes such as oxidative stress over time (123).

Oxidative stress has been associated with reduced self-renewal 
and early senescence of stem cells. While EDCs have been shown 
to induce ROS in a variety of cell types, studies have not been 
performed directly on MSCs. DEHP has been shown to promote 
oxidative stress and increase ROS in adipocytes (124). BPA has 
been shown to increase structural chromosome aberrations in 
bone marrow cells likely secondary to oxidative stress (125). 
ROS alter MSC biology by inhibiting osteogenesis, and increased 
ROS levels are associated with MSCs undergoing adipogenic 
differentiation (126). Additionally, MSCs exposed to ROS during 
expansion and MSCs from older subjects have reduced T cell sup-
pression capacity due to alterations in MSC immunophenotype 
(126–128). Oxidative stress also affects the ability to expand MSCs 
in culture due to replicative senescence and reduced proliferation 
(126, 129). Therefore, it is essential to determine whether EDCs 
induce ROS in MSCs because ROS may induce changes in MSCs 
that may affect the ability to expand cells for use in therapy, alter 
differentiation ability, and reduce immunomodulatory capacity.

The effects of EDCs on ROS generation have not been well 
described. Limitations of current studies include lack of studies 
performed directly on MSCs, lack of studies testing various EDCs, 
lack of testing exposure to multiple EDCs simultaneously, and 
lack of long-term studies to assess the effects of chronic exposure 
to ROS. These limitations and areas of improvement to address in 
future studies are outlined in Figure 3.

PRO-iNFLAMMATORY STATe

Inflammation is a localized response to tissue injury. EDCs 
including diazinon, parathion, malathion, BPA, PCB-77, PCB-
153, and PCB-180 increase the levels of pro-inflammatory 
cytokines, such as TNF-α and interleukin 6 in adipose tissue  
(34, 37, 48, 71, 74, 81, 84, 88, 130–134). Together, these EDC effects 
induce a pro-inflammatory phenotype in adipose tissue. Animal 
studies have also demonstrated an increase in pro-inflammatory 
cytokines in adipose tissue following exposure to parathion and 
PCB-77 (48, 130).

The pro-inflammatory state induced by EDCs may fundamen-
tally alter MSC biology. In general, MSCs suppress inflammation, 
and pro-inflammatory cytokines increase the immunomodula-
tory capacity of MSCs (135–137). While MSCs have immuno-
suppressive effects in the context of vigorous inflammation, 
recent studies have demonstrated that low-level inflammation or 
inhibited expression of immunosuppressive factors such as NOS 
can result in MSC induction of immune response (18, 138). The 
chronic, subacute exposure to EDCs, such as diazinon, parathion, 
malathion, BPA, PCB-77, PCB-153, and PCB-180, may induce 

low-level inflammation, leading to increased pro-inflammatory 
cytokines secreted by MSCs and induction of the immune 
response (18).

Pro-inflammatory effects of EDCs may also have an effect on 
MSC differentiation. Interestingly, pro-inflammatory conditions 
may increase expression of osteogenic genes such as ALP and 
result in increased mineralization (139, 140). Li et  al. further 
demonstrated that conditioned medium from TNF-α-activated 
MSCs can enhance osteogenesis through paracrine mechanisms 
(139). However, Sidney and colleagues demonstrated decreases 
in cell viability and reduction in formation of bone nodules by 
primary osteoblasts in response to cytokine stimulation (141). 
These two opposing studies may be explained by differences in 
long-term and short-term exposures to pro-inflammatory con-
ditions. In a study of long-term exposure to pro-inflammatory 
cytokines (TNF-α and interleukin 1 beta), stem cells from the 
apical papilla demonstrated inhibition of osteogenesis while in 
short-term culture, cytokines induced mineralization (142).  
A similar study in bone marrow MSCs demonstrated promotion 
of osteogenesis with short-term TNF-α exposure and inhibition 
of osteogenesis with long-term exposure (143). In these two stud-
ies, inhibition of osteogenesis occurred at greater than or equal to 
7 days while promotion of osteogenesis occurred at time points 
less than 7 days. This is the reasoning behind our definitions of 
short-term and long-term exposure to inflammation throughout 
this review. The model of EDC effects is more likely to represent 
a long-term exposure and thus to decrease osteogenesis.

In summary, these studies indicate that long-term exposure 
to EDCs may result in MSC induction of a pro-inflammatory 
state that can inhibit osteogenesis. The primary strength of these 
studies stressed the long-term effects of EDCs and the differential 
effects of short and long-term exposure to EDCs. Limitations 
include lack of studies demonstrating induction of inflammatory 
state directly in MSCs and lack of studies on effects of exposure to 
multiple EDCs simultaneously. Future studies should investigate 
the pro-inflammatory state of MSCs after in  vitro and in  vivo 
EDC exposures (Figure 3). Additionally, the effects of multiple 
endocrine disruptors should be tested simultaneously in MSCs to 
improve understanding of environmental exposures of humans 
to multiple EDCs (Figure 3).

DeveLOPMeNT OF ePiGeNeTiC 
CHANGeS

Epigenetic changes are alterations in gene activity that do not 
alter DNA sequence. EDCs can induce epigenetic changes in the 
undifferentiated cells of the fetus or in undifferentiated adult stem 
cells by oxidative stress or changes in ligand signaling. Epigenetic 
changes following EDC exposure include alterations in DNA 
methylation, histone acetylation, and microRNA (miRNA) 
expression. Several of the epigenetic changes induced by EDCs 
may explain their propensity to induce adipogenesis and inhibit 
osteogenesis. These epigenetic changes can also be passed to sub-
sequent generations of stem cells and if present in the germline, 
can persist in subsequent generations of offspring (21, 23, 29, 31, 
40, 42, 144).
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Epigenetic effects of EDCs may be key in the induction of 
adipogenesis and the inhibition of osteogenesis in MSCs. The 
non-canonical Wnt/β-catenin pathway, which has been associ-
ated with osteogenic differentiation, has been shown to inhibit 
PPARγ transactivation by H3K9 methylation of its target genes 
(145). Inhibition of PPARγ results in a shift toward osteogenic 
differentiation while decreased methylation would activate 
PPARγ and shift toward adipogenic differentiation. BBP has been 
directly shown to cause histone modifications that induce MSCs 
to undergo adipogenic differentiation such as the enhancement 
of H3K9 acetylation, the increase of histone acetyltransferases 
such as p300 expression and GCN5 expression, the reduction 
of histone deacetylase expression, and the decreased dimethyla-
tion of H3K9 (75). Notably, these effects were seen at 100 nM to 
50 µM concentrations of BBP with the decreased dimethylation 
effect occurring in the concentration range of 100 nM to 10 µM. 
Decreased trimethylation of histone H3K9(me3) and increased 
expression of miR-146a have also been shown in multiple cell 
types following exposure to BPA but have not yet been directly 
shown in MSCs (123, 146, 147).

Data regarding the epigenetic effects induced by EDCs are 
preliminary. In vitro studies on the epigenetic effects should 
specifically be performed in MSCs isolated from various tissues. 
Once in vitro EDC epigenetic effects in MSCs are clarified, MSCs 
should be isolated from human subjects of various ages and tested 
for EDC-specific epigenetic changes. These subjects should also 
have serum levels of EDCs tested at multiple time points to 
identify the concentration of EDCs to which human subjects and 
their stem cells are exposed over time. Studying the EDC-induced 
epigenetic changes in MSCs in humans exposed to EDCs present 
in the environment would provide information about cumulative, 
lifetime EDC exposures in potential MSC donors (Figure 3).

POTeNTiAL iMPLiCATiONS OF eDC 
eXPOSURe ON THeRAPeUTiC 
POTeNTiAL OF MSCs

effect on Tissue engineering
The observed adipogenic effects and potential ROS-inducing 
effects of EDCs, such as DDT, BPA, alkylphenols, PCBs, and 
phthalates, on MSCs have important implications with regard 
to tissue engineering. The therapeutic efficacy of MSCs with 
regard to the repair of defects and fractures is twofold. MSCs 
must be able to differentiate into appropriate lineages, and they 
must be able to secrete appropriate paracrine factors that recruit 
other host cells and stimulate regeneration of the damaged tissue  
(4, 7–9).

One well-described effect of EDCs in the literature is the 
induction of adipogenesis and inhibition of osteogenesis in MSCs. 
In the context of tissue engineering for critical-sized defects and 
fractures, tissue scaffolds may be seeded with MSCs that have 
been exposed to EDCs, and the EDC exposure may impair the 
capacity of the MSCs for osteogenic differentiation. This leads to 
decreased bone formation, representing the impaired ability of 
MSCs to heal critical-sized defects and fractures. EDC-exposed 
MSCs may undergo adipogenesis, further reducing the ability 

of MSCs to directly regenerate damaged tissues and to promote 
wound healing. An additional point of consideration is that 
MSCs may be exposed to EDCs in the MSC donor or through 
high serum concentrations of EDCs in the MSC recipient. Thus, 
exposure of the MSC donor or the MSC recipient to EDCs may 
reduce the ability of the MSCs to promote wound healing by 
driving MSCs toward adipogenic differentiation.

In addition to induction of adipogenesis, EDC promotion of 
ROS production may reduce the capacity of MSCs to self-renew 
and differentiate, resulting in cellular senescence and aging. 
Studies of aged MSCs have demonstrated a reduced capacity 
for activation, migration, and differentiation (128, 148). Donors 
with greater lifetime exposure may have more aged MSCs, and 
seeding tissue scaffolds with these aged MSCs may result in  
a reduced capacity to regenerate damaged tissues and to recruit 
other cells to the site of injury. When determining an appropriate 
MSC donor source for promotion of wound healing, the lifetime 
exposure of the donor to EDCs should be carefully considered. 
A potential method for considering lifetime exposure is outlined 
in the Section “Development of Epigenetic Changes.”

Therefore, EDCs may reduce the therapeutic efficacy of MSCs 
in wound healing by inducing adipogenic differentiation and 
promoting ROS production. These EDC effects impair differ-
entiation of MSCs into appropriate lineages for wound healing, 
MSC recruitment of other host cells, and stimulation of damaged 
tissue regeneration by MSCs. Future in  vivo studies of tissue 
engineering should test the capacity of MSCs to regenerate dam-
aged tissues and heal critical-sized defects in the context of EDC 
exposure. It is particularly essential to collect these data as animal 
subjects in tissue engineering studies may have natural levels of 
exposure to EDCs that do not accurately reflect the exposure of 
human subjects to EDCs.

effect on immunomodulatory Capacity
The immunomodulatory capacity of MSCs is likely altered by 
exposures to EDCs, such as organophosphates, DDT, BPA, 
alkylphenols, PCBs, and phthalates. The ability to use MSCs to 
increase survival of allografts, reduce graft-versus-host disease, 
accelerate wound healing, and improve outcomes in demyelinat-
ing diseases is also twofold. MSCs suppress pro-inflammatory 
conditions and have various effects on the immune system (8, 9, 
14–18). The therapeutic efficacy of MSCs is also contingent upon 
the lack of immunogenicity of the MSCs themselves to prevent 
pro-inflammatory reaction upon treatment.

The effects of EDCs in altering immunomodulatory capacity 
of MSCs include the promotion of oxidative stress and induc-
tion of adipogenesis. MSCs exposed to oxidative stress and 
MSCs which have undergone cellular senescence have shown 
reduced ability to suppress inflammation (148). Therefore, 
donor MSCs that have been aged by exposure to EDCs may have 
less therapeutic effect in conditions such as multiple sclerosis. 
Additionally, EDC-induced ROS production may upregulate 
adipogenic differentiation in MSCs. MSCs undergoing adi-
pogenesis have been demonstrated to have a slightly different 
immunophenotype and secretome from MSCs not committed 
to a lineage, which could result in increased immunogenicity 
upon treatment (149, 150).
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The chronic, subacute inflammatory state induced by EDCs 
has further been shown to increase secretion of pro-inflammatory 
cytokines by MSCs (8, 18, 151, 152). This could lead to impaired 
wound healing, acute graft loss, worsening of graft-versus-host 
disease, and worsened outcomes in demyelinating diseases. 
However, MSCs have also been shown to have stronger immuno-
suppressive effects in the context of higher levels of inflammation, 
levels which may be present in autoimmune diseases. It is possible 
that upon inoculation, donor MSCs may be exposed to a suffi-
cient level of inflammation to induce their immunosuppressive 
properties.

Therefore, EDCs impair the capacity of MSCs to immu-
nomodulate pro-inflammatory conditions by inducing adi-
pogenesis, promoting oxidative stress, and causing a chronic, 
subacute pro-inflammatory state. These changes may result in 
reduced immunosuppression and increased immunogenicity of 
MSCs. Further studies are needed in vivo that examine the immu-
nomodulatory capacity of MSCs following EDC exposure. It is 
possible that animals are not exposed to the same levels of EDCs 
and thus are not accounting for potentially reduced capacity of 
MSCs to improve outcomes in pro-inflammatory conditions fol-
lowing the exposure to EDCs.

CONCLUSiON

Endocrine-disrupting chemicals may alter the therapeutic 
potential of MSCs by effects on MSC differentiation capacity 

and biologic properties, including induction of adipogenesis, 
inhibition of osteogenesis, increase in oxidative stress, and 
promotion of a pro-inflammatory state. These effects may lead 
to reduced capacity of MSCs to differentiate into appropriate 
lineages and to induce paracrine signaling in wound healing. 
Additionally, they may decrease immunomodulatory effects by 
MSCs. The implications for tissue engineering and treatment 
of pro-inflammatory conditions are concerning and should 
be further explored with in vivo exposures to EDCs in animal 
subjects and studies of these potential effects on therapeutic effi-
cacy. All of the alterations in MSC biology that result in changed 
therapeutic potential may ultimately be rooted in epigenetic 
alterations induced by EDCs that remain to be clarified, so 
future in vitro and in vivo studies should also explore epigenetic 
effects of EDCs on MSCs isolated from various tissues in the 
body. EDC-induced effects on MSCs should be considered 
when analyzing results of previous studies and should be further 
explored in future studies to more fully understand the implica-
tions for MSC therapies.
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