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The clinical use of classical glucocorticoids (GC) is narrowed by the many side effects it 
causes and the resistance to GC observed in some diseases. Since the great majority 
of GC effects depend on the activation of a glucocorticoid receptor (GR), many research 
groups had focused to better understand the signaling pathways involving those recep-
tors. Transgenic animal models and genetic modifications of the receptor brought a huge 
insight into GR mechanisms of action. This in turn opened a new window for the search 
of selective GR modulators that ideally may have agonistic and antagonistic combined 
effects and activate one specific signaling pathway, inducing mostly transrepression or 
transactivation mechanisms. Another important research field concerns to posttrans-
lational modifications that affect the GR and consequently also affect its signaling and 
function. In this mini review, we discuss many of those aspects of GR signaling, as well 
as findings like the ligand-independent activation of GR, which add another layer of com-
plexity in GR signaling pathways. Although several recent data have been added to the 
GR field, much work has yet to be done, especially to find out the biological relevance 
of those alternative GR signaling pathways. Improving the knowledge about alternative 
GR signaling pathways and understanding how these pathways intercommunicate and 
in which situations they are relevant might help to develop new strategies to take benefit 
of it and to improve GC or other compounds efficacy causing minimal side effects.

Keywords: glucocorticoid receptor, glucocorticoids, selective glucocorticoid receptor modulators, signaling 
pathways, nuclear translocation

inTRODUCTiOn

importance of Glucocorticoids (GC) in Controlling inflammation
Glucocorticoids (cortisol in humans and corticosterone in rodents) are steroid hormones [revised 
in Ref. (1)] involved in several physiological functions and in controlling inflammation (2–5). From 
their discovery (6, 7) until the present day, GC are considered the most effective anti-inflammatory 
drugs and one of the most widely prescribed drug classes worldwide (8–12).

Despite their potent anti-inflammatory effects, steroids cause relevant side effects when used for 
longer periods and at high doses (13–16), limiting their use and reducing adherence to treatment. 
Therefore, understanding the signaling mechanisms and pathways related to GC and their receptor 
[glucocorticoid receptor (GR)] is essential to provide the basis for the development of new selective 
glucocorticoid receptor modulators (SEGRMs) (17, 18). SEGRMs are expected to present the same 
or better efficacy compared to classical steroids, but causing minimal side effects (8, 14, 19–21). 
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The present mini review will discuss advances in GR signaling 
pathways looking for a better comprehension about the beneficial 
and harmful effects of endogenous and exogenous GC, especially 
in inflammation.

THe GR

The main actions of GC occur through the activation of GRs 
(NR3C1), which are transcription factors (TFs) belonging to 
the superfamily of nuclear receptors and are usually activated by 
ligands (6, 14, 22). GR is composed of three major functional 
domains, namely the N-terminal transactivation domain (NTD), 
the central DNA-binding domain (DBD), and the C-terminal 
ligand-binding domain (LBD) (23, 24). In the absence of ligands, 
GR is predominantly found in the cytoplasm complexed with 
accessory proteins (hsp90, hsp70, hsp56, p23, and immunophi-
lins) and is kept in a conformation of high-binding affinity to 
GC (25, 26) (see Figure 1: 1). GR can actively shuttle between 
cytoplasm and nucleus, being the balance rate of nuclear import 
and export which determines the receptor cellular location 
(27–29). Increases in receptor density affect its conformation and 
location and may cause ligand-free dimerization that facilitates 
the subsequent binding of ligands, thus bypassing dimerization-
dependent mechanisms of action (30).

One of the first proposed signaling pathways for GR was that 
the binding of a ligand to the LBD of monomeric GR would 
induce its nuclear localization sequence (NLS) exposure. Then, 
accessory proteins would dissociate from the monomeric recep-
tor, allowing it to dimerize and translocate along microtubules to 
the nucleus. There, GR dimers would bind to DNA through their 
DBD to exert their effects (27, 31–33).

Further evidence showed that ligand binding triggers NLS 
exposure due to the replacement of immunophilin FKBP51 
by FKBP52, which interacts with dynein, carrying the whole 
monomeric GR complex along microtubules to a nuclear pore. 
FKBP52 also facilitates the entry of GR monomeric complex into 
the nucleus, as well as exporting the accessory proteins back to 
the cytoplasm via importins (25, 34–37) (see Figure 1: 1). Once 
in the nucleus, monomeric GR can assume different conforma-
tions depending on the glucocorticoid-responsive elements 
(GREs). GR monomer can recruit another monomer to form a 
GR homodimer on DNA, through distinct hydrophobic motifs of 
the LBD (38). Nevertheless, the subcellular compartment for GR 
dimerization is still in debate, and the GR binding regions used 
by specific GREs are still unclear (39). Therefore, more studies 
aiming to create predictive models for GR activity may help the 
development of new compounds.

Regarding GR nuclear translocation, it is suggested that dif-
ferent ligands can induce the exposure of one of the two so far 
described NLS for GR, influencing its nuclear translocation speed 
(27, 28, 34, 40). Classical GR ligands are suggested to induce 
NLS-1 exposure, which interacts with importins and nucleop-
orins, leading to rapid nuclear translocation (within 4–6 min). 
Shuttling of unliganded GR depends on NLS-1 interaction with 
importin-alpha. On the other hand, NLS-2 exposure is strictly 
ligand dependent and mediates slower GR nuclear translocation 
(45 min–1 h) (28, 36, 41).

TRAnSGeniC AniMAL MODeLS

Since GR was cloned (42), the development of animals and cells 
with full or partial GR depletion and with different GR mutations 
allowed the study of the role of GR. The first GR knockout mice 
(GRnull) presented severe lung developmental abnormalities and 
died shortly after birth (43). On the other hand, animals that 
overexpress GR are resistant to septic shock (44). Organ-specific 
GR depletion have shown that (a) hepatic GR is responsible for 
gluconeogenesis and production of postnatal insulin-like growth 
factor-1 (45, 46); (b) GR depletion in the central nervous system 
leads to numerous behavioral abnormalities (47); (c) mice with 
specific depletion of GR in macrophages, neutrophils (48–50), 
or endothelial cells (51) are more sensitive to pro-inflammatory 
stimuli, evidencing the important role for GR in these cells for the 
physiological control of inflammation.

Development of a mutation in the second zinc finger of DBD 
(52) (called GRdim) prevented GR homodimerization on most 
tandem GREs (53). Notwithstanding that this mutation strongly 
attenuates GR dimerization and impairs GR transcription activity 
from tandem GREs (21, 54, 55), it does not completely abrogate 
transactivation mechanisms, since it was recently discovered that 
it depends on promoter contexts (56). Furthermore, DNA motifs 
specify the genomic occupancy of monomeric GR and interfere 
with the availability of GR dimers binding sites (39). However, 
unlike GRnull mice, GRdim animals are viable and normal with 
respect to the major physiological GR-mediated functions (54), 
although more susceptible to inflammation (57). In a model of 
antigen-induced arthritis using GRdim mice, it was shown that 
GR dimerization is necessary for the anti-inflammatory effects of 
GC by suppressing Th1 and Th17 cells activity (58). Considering 
other GR mutations, it was observed that (a) heterozygous GR 
knockout mice, in which GR expression is reduced by half, were 
less sensitive to dexamethasone therapy in experimental autoim-
mune encephalomyelitis (59); (b) mice with selective GR deple-
tion in T cells (GRlck-Cre) succumb to toxoplasma infection due 
to increased TNF and IFN-γ production by Th1 cells (60); and 
(c) mice with selective GR depletion in the thymocytes showed 
loss of the adaptive immune response and were immunocom-
promised (61).

GR-MeDiATeD MeCHAniSMS OF ACTiOn

Glucocorticoid effects usually depend on its interaction with 
GR in the cytoplasm to trigger a variety of cell responses that 
culminate in several changes in the whole body (62). Although 
most cells have similar GC response machineries, steroids exhibit 
varied effects in different tissues (63). This might be attributed 
to GR ubiquitous expression (except in red blood cells), to 
the numerous mechanisms that alter its function, and to the 
enormous assortment of GR-binding sites and their availability. 
Binding site availability depends on chromatin state, which is 
specific for each tissue and cell type. Also, GC concentration 
may determine which GREs are occupied by GR. Therefore, 
chromatin accessibility and GREs distinct sensitivity also help to 
explain why GC trigger different effects in different tissues (33). 
By using different chromatin immunoprecipitation sequencing, 
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FiGURe 1 | Schematic illustration of glucocorticoid receptor (GR) activation and GR-mediated mechanisms of action. (1) Cytoplasmic GR resides in the 
cytoplasm complexed with accessory proteins and present high affinity to ligands. Once ligands like glucocorticoids and other steroids or selective glucocorticoid 
receptor modulators (SEGRMs) bind to the cytoplasmic GR, the GR complex interacts with dynein and is transported along microtubules to a nuclear pore. 
Interaction with importins and nucleoporins of the nuclear pore allow the GR complex to enter the nucleus, dissociate from chaperones, and induce genomic effects. 
Dissociated chaperones and GR constantly shuttle between the nucleus and the cytoplasm through the nuclear pore. Reactive oxygen and nitrogen species 
(RONS), some cytokines, other substances, and conditions like shear stress can induce unliganded GR nuclear translocation, which seem to be cytoskeleton 
independent. However, unliganded GR nuclear translocation is still not completely understood. (2) Ligand-bound GR, and sometimes unliganded GR, can induce 
genomic effects through direct or indirect transactivation or transrepression mechanisms. GRα homodimers binding to glucocorticoid-responsive elements (GRE) 
(A), monomeric GRα DNA binding in a concerted manner with another transcription factor (TF) (B), direct (C) or indirect (D) binding of GRα onto a TF, and recently 
demonstrated monomeric GRα half-site binding (e) can result in promoter activation and gene expression. GR-negative regulation of gene transcription can occur 
by monomeric GRα DNA-binding crosstalk with another TF (F), GRα homodimers competition for an overlapping binding site (G), direct (H) or indirect (i) binding of 
GRα onto a TF, sequestration of a DNA-bound TF (J), direct binding of monomeric GRα onto a negative GRE (nGRE) (K), two monomeric GRα binding with inverted 
polarities to inverted repeated nGREs (L), or GRβ competition for an overlapping GRE, impairing GRα binding (M). (3) Ligands and other substances also can bind 
and interact with membrane-bound GR (claimed to be a GRγ isoform), causing fast non-genomic effects. (4) Ligands, particularly steroids in high concentrations, 
can induce non-genomic effects through GR-independent mechanisms of action. (5) Ligands and other substances can bind to mitochondrial GR, which is also 
suggested to be a GRγ isoform. Ligand-bound and unliganded mitochondrial GR induce genomic effects when bound to the mitochondrial DNA (mtDNA), and 
those effects are important to regulate mitochondrial functions and energy metabolism. (6) Posttranslational modifications can affect GR activation and function in all 
stages, enhancing or decreasing its function.
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it was shown that C/EBPβ maintains chromatin accessibility 
to facilitate selective GR binding to GREs in liver tissue (64), 
another evidence of cell type-specific GR-induced transcription. 
Intracellular GR location, interaction with other proteins, bind-
ing capacity and sensitivity to GC and other modulators, receptor 
degradation rate, and intracellular density directly interfere with 
GC efficacy. Finally, the effects triggered by the GC-GR complex 
are tissue and cell type dependent and vary with the posttransla-
tional modifications that will affect the receptor according to the 
host condition (19, 55).

The classical mechanism of action of nuclear receptors involves 
gene transcription (transactivation) or direct or indirect impair-
ment of transcription of other TFs (transrepression) (Figure 1: 
2). Currently, the most accepted transactivation model involves 
GR dimerization after binding of GC-GR monomeric complexes 
to GREs (see Figure  1A). This induces GR conformational 
changes to recruit cofactors, like histone acetyl transferases and 
C/EBPβ, that change the chromatin state facilitating gene expres-
sion (64–66). The type of dimer that will be formed and which 
cofactors will be recruited seem to be determined by the gene 
sequence in question (67, 68). Interestingly, it was recently shown 
that monomeric GR interacts with a half-site motif and drives 
transcription (see Figure 1E) in liver and primary macrophages, 
being more prevalent than homodimer binding under physi-
ological conditions and being essential for those tissue-specific 
functions. Exogenous GC appear to favor gene expression by the 
binding of GR homodimers and disruption of GR monomeric 
binding from their half-site motifs (53). This discovery calls for 
a revision of transactivation mechanisms and other possible 
transrepression mechanisms involving monomeric GR binding 
to half-sites (Figures 1B–E).

Protein–protein interaction of GR with other TFs is an 
important mechanism of direct transrepression known as teth-
ering mechanism. Monomeric GR can crosstalk with another 
TF (Figure  1F) or directly interact with critical points of TFs 
before they bind to its responsive element on DNA (Figure 1J). 
In this case, best exemplified for the nuclear transcription factor  
kappa-B (NF-κB), interaction may occur in the cytoplasm, 
preventing NF-κB activation and its nuclear translocation, or in 
the nucleus, impairing DNA NF-κB-binding capacity (62, 69). 
Nonetheless, GR monomers can also repress TFs even if they are 
already bound to DNA (70) (see Figures 1H,I) and can compete 
for an overlapping binding site (Figure 1G). Therefore, GR can 
regulate the expression of different TFs such as NF-κB, AP-1, 
STATs, Oct, NF-1, C/EBP, COUP-TFII, PPARs, and LXR (71–77).

Glucocorticoid receptor binding to DNA can also suppress 
gene expression by interacting with novel described negative 
GREs (nGREs). Recently, an extensive conserved family of 
negative palindromic GREs (IR nGREs) was found to form a 
repressing complex through association of SMRT/NCoR core-
pressors and HDACs, mediating transrepression by the direct 
binding of agonist-bound GR (78). Evidence showed that two GR 
monomers can bind to nGREs with inverted polarity if compared 
on how they bind to GREs (Figure 1L). This kind of monomer 
binding induce a unique conformational change that, together to 
the recruitment of corepressors, guarantee the presence of single 
monomers of GR bound to nGREs (79). As nGREs are near to 

responsive elements of other TFs, that binding can allosterically 
prevent the binding of other factors to DNA and recruit corepres-
sors (62, 78) (see Figure 1K).

Indirect modes of reducing gene expression involve 
GC-induced expression of inhibitory proteins such as glucocor-
ticoid-induced leucine zipper (GILZ) protein via modulation of 
MAPK pathways (16, 80). GILZ protein binds to the p65 subunit 
of NF-κB in T-cells and macrophages, impairing gene transcrip-
tion and suppressing inflammation (81, 82). In addition, Lethe, 
a pseudogene non-coding RNAs induced by cytokines (IL-1β, 
TNF-α) and GC, might be involved in the negative feedback 
NF-κB signaling to control inflammation (83).

Since it was believed that GC side effects occur through trans-
activation mechanism, researchers became interested in identify-
ing SGRMs to enhance GC therapeutic effects with fewer side 
effects (20, 21, 49, 84). Compound A (CpdA) is a non-steroidal 
ligand analog that binds GR with high affinity and induces its 
nuclear translocation. However, it mostly triggers transrepression 
tethering mechanisms with NF-κB (20, 85, 86) and/or binding 
to nGREs (79), while inhibiting GR dimerization and preventing 
dimerization-dependent side effects such as hyperglycemia (79, 
85). GR unique conformation upon CpdA binding may impair 
receptor phosphorylation, which is the suggested mechanism why 
CpdA does not induce GC resistance and maintain its efficacy 
even after long periods of administration (86). Unfortunately, 
CpdA also present a limited therapeutic window due to its toxic 
effects in higher concentrations (84). In vitro studies with CpdX, 
a novel SEGRM, demonstrated that it is efficient in decreasing 
inflammation through tethering mechanism, albeit not induc-
ing GRE transactivation and IR nGRE transrepression (87). In 
vivo studies are necessary to reveal the clinical value of CpdX. 
Compound C108297 presents agonistic and antagonistic proper-
ties in the rat brain (88) and can simultaneously prevent diet-
induced obesity and inflammation (89). Although promising, 
it is still unclear whether C108297 is an antagonist or a partial 
agonist and if it induces a unique conformational of the GR-LBD 
or a two-state agonist conformation (88). Therefore, more studies 
are needed to better understand the signaling pathways involved 
in C108297 effects. Moreover, since new evidence suggests that 
those agonists or modulators do not necessarily need to be a GR 
ligand, SEGRMs concept is still in debate (90).

GR iSOFORMS AnD POSTTRAnSLATiOnAL 
MODiFiCATiOnS

There are two major GR isoforms that differ only in their 
C-terminal regions, GRα and GRβ (subtypes of each isoform and 
other isoforms will not be discussed due to space limitation). The 
DBD is conserved across the nuclear receptor family and consists 
of two zinc fingers motifs important to GR dimerization and 
tandem GRE binding. GRα is the classic receptor responsible for 
GC actions, whereas GRβ does not bind GC and its biological 
relevance is still uncertain. It has been suggested that GRβ acts as 
a negative regulator of GRα isoform (see Figure 1M), because it 
can bind to GREs but does not induce its transcription (91–94). 
GRβ has an intrinsic transcriptional activity in non-GC-regulated 
genes (95). Recently, a pro-inflammatory role for GRβ was shown 
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in the liver tissue of obese mice, suggesting that steatosis corre-
lates to GRβ increased expression in adipose and liver tissues. The 
same study showed that GRβ antagonizes GC-induced signaling 
through GRα during fasting (96). So far, this is the first study 
showing a pro-inflammatory role for GRβ. More studies should 
focus in unveiling the biological relevance of GRβ in other tissues 
and cofactors of its singular signaling pathway.

Several posttranslational modifications also play an impor-
tant role in enhancing or decreasing GR functionality to confer 
distinct biological functions (see Figure 1: 6). Examples include 
phosphorylation, acetylation, ubiquitination, methylation, 
nitrosylation, nitration, and SUMOylation [revised in Ref. 
(19, 97)]. Due to space limitations, we will focus on recent 
data about some of them. Nitrosylation of specific cysteine 
residues decreases GR binding capacity (98, 99) and increases 
resistance to GC action (100, 101), while tyrosine nitration 
residues favor nuclear translocation and receptor activity (102). 
However, exogenous NO seems to activate the endothelial cell 
GR (103). NO effects very much depend on its concentration 
and compartmentalization, and this is probably the reason 
for divergent results. Regarding to SUMOylation, it is related 
to stabilization, location, and transcriptional activity of GR, 
typically increasing it (104). However, recent reports demon-
strated that SUMOylation is mandatory for GC-dependent 
transrepression mediated by IR nGREs. SUMOylation of GR 
lysine residues (mouse: K310 and human: K293) within the 
NTD is essential for the assembly of the repressive complex 
SMRT/NCoR-1-HDAC3 (105). The same SUMOylation site is 
essential for the tethering transrepression mechanism medi-
ated by NF-κB/AP-1, which needs the formation of a GR small 
ubiquitin-related modifiers (SUMOs)–SMRT/NCoR1-HDAC3 
repressing complex (87).

LiGAnD-inDePenDenT ACTivATiOn OF GR

Beyond the consensus that steroidal or analog binding induces 
GR nuclear translocation, several evidences have shown that 
GR can be activated in the absence of ligands (30, 106–110). 
Sodium arsenite and dinitrophenol (31), some conditions such 
as elevated pH and temperature, and shear stress (111) can induce 
GR nuclear translocation in a ligand-independent manner (31, 
111, 112) (Figure 1: 1). Interestingly, GR nuclear translocation 
induced by shear stress does not depend on ligands or intact 
cytoskeleton (113), but it is related to the nuclear lamina (114).

Unliganded GR acts as a positive regulator of the tumor sup-
pressor gene BRCA1. This beneficial effect is lost upon addition 
of ligand, suggesting unliganded GR displacement from BRCA1 
promoter in response to steroids decreases BRCA1 expression 
and increases the risk for breast cancer (109). That fact might 
be related to endogenous monomeric GR binding to half-site 
motifs, as already discussed. Transient transfection and GR 
overexpression in GR-deficient cells (COS-1) induced nuclear 
GR dimerization, GR binding to DNA, and transcription in 
the absence of exogenous GC (30) (see Figures  1: 1 and 2). 
Moreover, TNF-α can induce ligand-independent activation of 
GR pathways in COS-1 and epithelial cells, leading to decreased 
levels of IL-6 and IL-8 (108). However, the mechanisms of 

ligand-independent GR activation are not completely under-
stood. One report suggests that GR phosphorylation at Ser-211 
is enough for ligand-independent activation (107), whereas 
another report suggests that phosphorylation at Ser-134 also 
can induce ligand-independent GR nuclear translocation as 
part of the cellular stress pathway (115), but other mechanisms 
might be involved.

nOn-GenOMiC MeCHAniSMS OF ACTiOn

Several GC effects occur within a few seconds or minutes after 
administration, evidencing a non-genomic mechanism of action. 
This mechanism is particularly important in the vascular system 
and in dampening inflammation (62, 116) and usually involves 
activation of non-cytoplasmic GR or even GR-independent 
pathways (see Figures  1: 3 and 4). Nevertheless, activation of 
cytoplasmic GR cannot be excluded (33).

Membrane-bound receptors (mGR) have distinct proper-
ties if compared to cytoplasmic GR and are more related to 
intracellular signaling pathways mediated by G-protein-coupled 
receptors (117, 118). Although some studies suggest that mGR 
is a GRα isoform (117), others claim that it is in fact a GRγ 
isoform (119) (Figure 1: 3). Importantly, high doses of GC can 
act independently of GR by increasing second messengers, such 
as inositol-3-phosphate, cyclic adenosine monophosphate, and 
calcium ion (8, 20, 120, 121) (Figure 1: 4). The presence of GR in 
human mitochondria (122) and similar GRE sequences in mito-
chondrial DNA (123) were identified long time ago. Moreover, 
direct GC-stimulated mitochondrial transcription mediated by 
mitochondrial GR was also demonstrated in hepatocarcinoma 
cells (124). It was recently suggested that GRγ isoform resides in 
mitochondria and is related to cell energy metabolism regulation 
in a ligand-independent manner (119) (see Figure 1: 5).

Protein–protein interaction between ligand-activated GR and 
the regulatory subunit (p85α) of phosphoinositol-3-kinase in 
endothelial cells activates the protein kinase Akt, which phos-
phorylates and activates NO synthase-3. This mechanism would 
explain the rapid and transient cardiovascular protective effect 
of high GC doses in myocardial emergencies. A rapid decrease 
in peripheral resistance and blood pressure is observed minutes 
after GC administration, accompanied by an increase in coronary 
and cerebral blood flows (116). Since rapid vasoconstriction and 
changes in bronchial blood flow are observed few seconds after 
inhaled GC administration in asthmatic attacks, it suggests that 
non-genomic effects also may vary according to the tissue (125). 
Furthermore, endothelial cell stimulation with dexamethasone 
rapidly activates ERK and kinase c-Jun N-terminal MAPK to 
produce reactive oxygen species and activate TFs (126).

SUMMARY AnD FUTURe DiReCTiOnS

In summary, recent data have added new layers of complexity to 
GR signaling pathways. Clearly GR signaling does not depend 
only on ligand binding, and its classical mechanisms of action 
need further revision. Given the physiological and clinical 
importance of GC and their side effects, it is essential to further 
investigate alternative GR signaling pathways and their respective 
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biological relevance. This might help to develop new strategies to 
take benefit of it as well as to improve GC or analogs efficacy with 
minimal side effects.
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