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Non-alcoholic fatty liver disease (NAFLD) poses a serious health hazard affecting 20–40% 
of adults in the general population in the USA and over 70% of the obese and extremely 
obese people. In addition to obesity, nicotine is recognized as a risk factor for NAFLD, 
and it has been reported that nicotine can exaggerate obesity-induced hepatic steatosis. 
The development of NAFLD has serious clinical complications because of its potential 
progression from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), liver 
cirrhosis, and hepatocellular carcinoma. Multiple mechanisms can be involved in nicotine 
plus high-fat diet-induced (HFD) hepatic steatosis. Emerging evidence now suggests 
that nicotine exacerbates hepatic steatosis triggered by HFD, through increased oxi-
dative stress and hepatocellular apoptosis, decreased phosphorylation (inactivation) 
of adenosine-5-monophosphate-activated protein kinase and, in turn, up-regulation 
of sterol response-element binding protein 1-c, fatty acid synthase, and activation of 
acetyl-coenzyme A-carboxylase, leading to increased hepatic lipogenesis. There is also 
growing evidence that chronic endoplasmic reticulum stress through regulation of several 
pathways leading to oxidative stress, inflammation, perturbed hepatic lipid homeostasis, 
apoptosis, and autophagy can induce hepatic steatosis and its progression to NASH. 
Evidence also suggests a central role of the gut microbiota in obesity and its related 
disorders, including NAFLD. This review explores the contribution of nicotine and obesity 
to the development of NAFLD and its molecular underpinning.
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inTRODUCTiOn

In 2009, approximately 20% (~60 million) of Americans smoked and about ~88 million non-smokers 
were exposed to secondhand smoke (1). Unless dramatic progress is made in diminishing the initia-
tion and increasing cessation of combustible tobacco product use, a billion of preventable death will 
occur in twenty-first century worldwide (2). Thus cigarette smoking needs to be viewed as a chronic 
disease, and in addition to research on the difficult problem of smoking cessation, research also 
needs to be conducted on the detrimental effects of chronic cigarette use. The prevalence of smoking 
was 31.1% among persons below the federal poverty level (1), so smoking should be considered a 
health disparity. Cigarette smoking is the leading preventable cause of death and disability worldwide 
(3, 4). Smoking is a major risk factor for chronic obstructive pulmonary disease and lung cancer 
and devastating cardiovascular disease (CVD), such as myocardial infarction, sudden death, stroke, 
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and peripheral vascular disease (5–8), with a dose–response cor-
relation between CVD morbidity and mortality and the number 
of cigarettes smoked (8). Furthermore, usages of nicotine only 
formulations, such as transdermal patches, nicotine gum, and 
electronic cigarettes, in particular, are increasing (9, 10). The lack 
of targeted and effective strategies to control tobacco consumption 
contribute to large burden of cardiovascular disorders in low- and 
middle-income people worldwide, where CVD has become the 
leading cause of morbidity and mortality (8). Moreover, smoking 
leads to substantial financial costs to society. Between 2009 and 
2012, smoking cost the USA approximately $289–332.5 billion, 
with 46–53% of this amount spent on adult medical care and the 
rest due to loss of workplace productivity (4). The negative effects 
of smoking, thus, leads to reduced quality of life and loss of life and 
can lead to personal and national financial burden. The health risk 
associated with smoking can be exaggerated by obesity (11, 12).

Nicotinic acetylcholine receptors (nAChRs) are a family of 
ionotropic receptor proteins formed by five homologous or iden-
tical subunits and are involved in signal transduction between 
neurons and muscle cells (10, 13, 14). nAChRs are divided into 
muscle (α1, β1, γ/ε, and δ) and neuronal nAChRs (α 2–10 and 
β 2–4) (10, 14, 15). Neuronal nAChRs are further subdivided 
into those that form homomeric receptors when expressed in 
heterologous systems (α7-10) and those that form heteromeric 
receptors (α2-6 and β2-4) in different combinations (10, 14, 
15). nAChRs are also expressed in various tissues, including 
adipocytes, pancreatic beta cells, hepatocytes, myocytes, and 
cardiomyocytes (16–19). The nAChRs, which are activated by 
nicotine or its metabolites cotinine, can activate various signaling 
pathways that can alter cellular metabolic homeostasis (10). This 
review discusses emerging evidence of contribution of nicotine 
when combined with obesity to the development of hepatic 
steatosis and insights into the molecular mechanisms by which 
nicotine contributes to non-alcoholic fatty liver disease (NAFLD).

nAFLD is Highly Prevalent in Obese 
individuals and Can Be exaggerated by 
Smoking
Non-alcoholic fatty liver disease is the most common liver disorder 
and is associated with metabolic syndrome and diabetes mellitus. 
It includes the whole spectrum of fatty liver, ranging from simple 
steatosis to steatohepatitis [non-alcoholic steatohepatitis (NASH)], 
which can progress to liver cirrhosis and hepatocellular carcinoma 
(20–22). Data from the Framingham Heart Study showed that fatty 
liver is characterized by dysglycemia and dyslipidemia independ-
ent of visceral adipose tissue (23). There is increasing evidence 
that smoking can also contribute to NAFLD. Multiple logistic 
regression analysis from a retrospective follow-up study over a 
10-year period, involving 2,029 Japanese subjects, demonstrated 
that cigarette smoking (adjusted odd ratio 1.91; 95% confidence 
interval 1.34–2.72) is an independent risk factor for NAFLD (24). 
A statistically significant association between smoking history and 
severity of liver fibrosis was demonstrated in a large multicenter 
cohort of 1,091 subjects with biopsy-proven NAFLD (25). Of fur-
ther importance, the health risk associated with smoking, whether 
passive or active, is exaggerated by obesity, and smoking and obesity 

are the leading causes of morbidity and mortality worldwide (11, 
12). The life expectancy of an obese smoker is 13 years less than 
that of a normal-weight non-smoker (11). Furthermore, smoking 
lowers the body weight and body mass index (BMI), which make 
many people reluctant to quit smoking (11).

In the United States, 72% of the adult male population is 
overweight or obese out of which 11% have a BMI of 35 kg/m2 
and 4% a BMI of at least 40 kg/m2 (26). Obese men are at a higher 
risk to develop atherosclerosis, coronary heart disease, diabetes, 
hypertension, dyslipidemia, and NAFLD (27). NAFLD, in turn, 
can also be an independent risk factor of atherosclerosis and 
CVD (28, 29). Currently, 34% of the general population and over 
75% of the obese and extremely obese individuals are estimated to 
have hepatic steatosis (30). Hispanics have the highest prevalence 
of hepatic steatosis followed by Caucasians and then African-
Americans (31).

Mechanisms Linking nicotine to nAFLD
The hallmark of NAFLD is accumulation of triglycerides (TG) in 
the hepatocytes (steatosis). Multiple mechanisms have proposed 
to explain the accumulation of TG in the liver, including (i) 
increased dietary fat intake, (ii) excess free fatty acid (FFA) deliv-
ery from lipolysis of white adipose tissue, (iii) increased de novo 
lipogenesis, (iv) reduced fatty acid β-oxidation, and (v) reduced 
fat export in the form of very low-density lipoprotein (VLDL) 
(21, 32). The precise molecular mechanisms of the pathogenesis 
of steatosis and its progression to NASH are not well understood. 
AMP-activated protein kinase (AMPK) is a central regulator of 
lipid homeostasis and mediates suppression of lipogenic gene 
expression, such as acetyl-coenzyme A-carboxylase (ACC) and 
fatty acid synthase (FAS) through inhibition of sterol regula-
tory element binding protein-1c (SREBP1-c) and carbohydrate 
response-element binding protein (ChREBP) (33–35). ACC is 
the rate determining enzyme for the synthesis of malonyl-CoA, 
both a critical substrate for fatty acid biosynthesis and a potent 
inhibitor of fatty acid oxidation (33). AMPK can phosphorylate 
and inactivate ACC leading to inhibition of de novo fatty acid and 
cholesterol synthesis (33). AMPK can also increase the activity 
of malonyl-CoA decarboxylase to further decrease malonyl-CoA 
levels (33). Lipogenesis is further regulated by glucose, which 
activates ChREBP, which, in turn, activates gene expression of 
most enzymes involved in lipogenesis (21).

Two-Hit or Multiple-Hit Hypothesis
Steatosis can prime the liver to develop more progressive liver 
pathologies in response to additional metabolic and/or environ-
mental stressors. Mechanistically, this is commonly mediated by 
the prevalent “two-hit” hypothesis that implies accumulation of 
TG in hepatocytes (steatosis) in the first hit, followed by triggering 
progression to inflammation, oxidative stress, and apoptosis in 
the second hit (22, 35, 36). In more advanced cases, fibrosis is also 
exacerbated, leading to the progressive form of NAFLD, known 
as NASH. Environmental stressors [such as high-fat diet (HFD), 
cigarette smoke, drugs, and pollutants] or metabolic stressors 
(such as obesity, diabetes, hypertension, hypertriglyceridemia 
and hypercholesterolemia) are known to trigger progression to 
the second phase. Nonetheless, the molecular underpinning of 
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FiGURe 1 | Representative H&e-stained liver sections from mice fed with normal chow diet (nCD) without (A) or with (B) nicotine exhibit normal 
histological appearance. Compared with a mouse on a high-fat diet (HFD), where a modest increase in lipid accumulation (arrow) is detected (C), combined 
treatment with nicotine and HFD causes a marked increase in lipid accumulation in the liver (D). (e–H) Representative light microscopic images of glutaraldehyde-
fixed, osmium tetroxide post-fixed, epoxy-embedded, and toluidine-blue-stained live sections from different treatment groups show nicotine plus a HFD (H) causes 
a striking increase in lipid accumulation of varying sizes in hepatocytes compared to those from mice on a HFD alone [(G), arrow]. Mice fed with NCD with (F) or 
without nicotine (e) have normal liver morphology. Scale bar = 25 μm [reproduced with permission from Friedman et al. (42)].
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steatosis is not well understood. Oxidative stress coupled with 
hepatocyte apoptosis is believed to play a pivotal role in patho-
genesis of NAFLD (22, 37, 38). In fact, emerging data suggest that 
hepatocyte apoptosis plays a key component in the progression of 
simple steatosis to NASH (22, 37). Notably, a proof-of-principle, 
randomized, double blind, placebo-controlled study of GS-9450 
(selective inhibitor of caspases 1, 8, and 9) suggests that reducing 
hepatocellular apoptosis may be a valuable therapeutic strategy in 
patients with NASH (39).

Smoking exacerbates effects  
of Dietary Fat on Liver
Animal experiments using first-hand (delivered via a smoking 
device designed to puff the smoke into the inhalation chamber 
housing the animals), second-hand smoke (side-stream whole 
smoke solution delivered via a puffer box), or nicotine and 
models of genetic or diet-induced obesity (DIO) provide perhaps 
the strongest evidence linking nicotine to hepatic steatosis and 
NAFLD. Yuan and colleagues (40) demonstrated that HFD-fed 
apoB100 transgenic mice on C57Bl6J background exposed to 
second-hand smoke exhibit lipid accumulation in the liver and 
this effect was mediated by inactivation of AMPK and activation 
of its downstream target SREBP-1. In another study, Azzalini and 
colleagues (41) demonstrated that first-hand smoke exacerbates 
NAFLD in obese Zucker rats. The effect of first-hand smoke on the 
severity of hepatic steatosis was associated with increased oxida-
tive stress, hepatocyte apoptosis, expression of key genes involved 
in hepatic fibrogenesis, and inactivation of Akt but stimulation 
of extracellular signal regulated kinase (ERK) signaling. We used 
the model of DIO in C57BL6J mice to study the mechanisms 
underlying the detrimental effects of nicotine and HFD in the 
development of fatty liver disease (42). Like humans, these mice, 

when fed a HFD deriving 60% of calories from fat, developed 
visceral adiposity, hyperglycemia, insulin and leptin resistance, as 
well as hepatic steatosis (43, 44). We elected to use a single drug 
(nicotine) as opposed to first-or second-hand smoke in order to 
eliminate the confounding effects of other components involved 
in cigarette smoking. Adult C57BL6 male mice were fed a normal 
chow diet or HFD and received twice daily injections of nicotine 
(0.75  mg/kg BW, IP) or saline for 10  weeks. Of note, the daily 
dosage of 1.5 mg/kg BW in mice results in a serum concentration 
of nicotine that is similar to the clinically relevant concentrations 
found in habitual cigarette smokers and nicotine-containing 
chewing gum users (19). We purposely used shorter (10-week) 
duration to examine the synergistic effects of these two insults 
in the initiation of NAFLD, as a longer exposure to HFD alone 
results in extensive steatosis (45) and systemic inflammation (46). 
We found that nicotine alone did not lead to hepatic steatosis, 
but it caused hepatic steatosis only when combined with HFD 
(Figure 1) (42). A significant (p < 0.01) increase in the Vv% of 
lipid droplets together with a reduction in the Vv% of endoplasmic 
reticulum (ER) (67.8%) and glycogen (49.2%) was also noted in 
hepatocytes from mice on HFD plus nicotine, compared to mice 
on HFD alone. The additive effects of nicotine on the severity of 
HFD-induced hepatic steatosis was associated with significantly 
greater oxidative stress, increased hepatic TG levels, higher inci-
dence of hepatocellular apoptosis, inactivation (dephosphoryla-
tion) of AMPK, and activation of its downstream target ACC (42).

Indeed, these above studies, using various experimental models, 
demonstrated that nicotine further worsens HFD-induced hepatic 
steatosis. Summation of the results further indicate that increased 
oxidative stress and hepatocellular apoptosis, inactivation of Akt 
and AMPK, and activation of its downstream targets SREBP-1 
and ACC, together with stimulation of ERK are involved in the 
pathogenesis of nicotine plus HFD-induced hepatic steatosis.
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FiGURe 2 | Potential mechanisms of nicotine plus HFD-induced hepatic steatosis in obese mice. Nicotine plus a HFD promotes abdominal lipolysis, 
resulting in free fatty acid (FAA) release from adipose tissue into the circulation, thereby contributing to the buildup of lipids as triglyceride in the liver. In addition, 
nicotine plus a HFD may also promote de novo lipogenesis through inactivation of AMP-activated protein kinase (AMPK) and activation of its downstream target  
acetyl-coenzyme A-carboxylase (ACC), leading to the development of hepatic steatosis. Inactivation of AMPK can also stimulate lipogenesis through upregulation of 
key genes in the lipogenic pathway, such as fatty acid synthase (FAS) and ACC, by activating the transcription factor sterol regulatory element binding protein 1 c 
(SREBP-1c). Intrahepatic lipid accumulation can also trigger hepatocellular apoptosis through generation of oxidative stress coupled with activation of c-Jun 
NH2-termina kinase (JNK)-mediated apoptotic signaling. AMPK inactivation could further sensitize liver cells to nicotine plus HFD-induced apoptosis. There is also 
growing evidence that chronic endoplasmic reticulum stress through regulation of several pathways leading to oxidative stress, inflammation, perturbed hepatic lipid 
homeostasis, apoptosis, and autophagy, can also induce hepatic steatosis and its progression to non-alcoholic steatohepatitis. Evidence also suggests a central 
role of the gut microbiota in obesity and its related disorders, including non-alcoholic fatty liver disease (NAFLD). It is possible nicotine plus a HFD through changes 
in short-chain fatty acids metabolism, increased intestinal permeability and lipopolysaccharides activation of Toll-like receptors and inflammasomes, endogenous 
ethanol production, decreased choline availability and increased trimethylamine (TAM) production could cause NAFLD. The multiple mechanisms of nicotine and 
obesity-induced hepatic steatosis can results from both its nicotinic acetylcholine receptor-mediated and non-receptor effects.
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Contribution of Adipose Tissue Lipolysis 
to nicotine and HFD-induced Hepatic 
Steatosis
Adipose tissue has the unique function of storing TG in lipid 
droplets and upon lipolysis, to provide FFA to other organs 
during time of energy shortage (47). In obesity and other condi-
tions where cellular lipid homeostasis is perturbed, lipolysis can 
contribute to ectopic lipid accumulation (48). Mounting experi-
mental evidence supports that nicotine considerably decreases 
HFD-induced adiposity in mice, as determined by dual-energy 
X-ray absorption densitometry, computed tomography, as well 
as by magnetic resonance imaging, with no change in lean body 
mass (19, 49). Nicotine when combined with a HFD, however, 
significantly increases the levels of serum, hepatic TG, and 
circulating FFA (19, 42, 50). These results indicate that nicotine 
in mice on a HFD promotes lipid distribution from adipose 
tissue to other organs. Decisive evidence that increased adipose 
tissue lipolysis contributes to nicotine plus HFD-induced hepatic 
steatosis derives from studies showing that acipimox, an inhibitor 
of adipose tissue lipolysis, treatment significantly prevented nico-
tine plus HFD-induced increase in hepatic TG levels and hepatic 
steatosis (Figure  2) (42). A recent study (19) has also demon-
strated that acipimox treatment significantly prevented nicotine 
plus HFD-induced increase in serum FFA levels and serum and 

hepatic TG levels, as well as hepatic steatosis (Figure 2). This con-
cept is supported by another evidence showing that inhibition of 
adipose tissue lipolysis by adipose-specific ablation of desnutrin 
prevented ectopic lipid accumulation in the liver even when fed 
with a HFD (51). Together, these results suggest that adipose 
tissue lipolysis plays a major role in the development of nicotine 
plus HFD-induced hepatic steatosis.

Mechanistically, nicotine activates AMPKα2 in adipocytes, 
which phosphorylates MAP kinase phosphatase-1 (MKP1) at 
serine 334, resulting its proteasome-dependent degradation (19). 
Nicotine-induced reduction in MKP1, in turn, activates both p38 
mitogen-activated protein kinase (p38 MAPK) and c-jun-NH2-
terminal kinase (JNK), which phosphorylates insulin receptor 
substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to 
its degradation and the subsequent inhibition of Akt, resulting in 
increased adipose tissue lipolysis and circulating FFA levels (19).

The Role of eR Stress
Chronic ER stress induces several pathways leading to oxida-
tive stress, inflammation, perturbed hepatic lipid homeostasis, 
apoptosis, and autophagy that can lead to hepatic steatosis and its 
progression to NASH [reviewed in Ref. (52)]. ER stress is related 
with hepatic lipid metabolism by directly increasing lipogenesis 
and limiting VLDL formation. It has been demonstrated that 
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ER stress contributes to increased hepatic lipogenesis in ob/ob 
mice through SREBP1c activation while overexpression of ER 
chaperone BIP decreased ER stress and inhibited lipogenesis 
by inactivating SREBP1 (53). Furthermore, ER stress modulates 
several factors, including nuclear factor 2 erythroid-related factor 
2 (Nrf2), JNK, nuclear factor κB (NF-κB), and c/EBP homologous 
protein (CHOP), all of which play a role in the inflammatory pro-
cess, cellular defense against oxidative stress, and cell death. For 
example, Nrf2 serves as master regular of a cellular defense system 
against oxidative stress (54, 55). Under physiological conditions, 
Nrf2 is sequestered in the cytoplasm by Keap1, which facilitates its 
ubiquitination and proteasomic degradation. Upon exposure to 
oxidative stress, the sequestration complex brakes down and the 
dissociated Nrf2 translocates into the nucleus, where it binds to cis-
acting antioxidant response elements and promotes the transcrip-
tion of a large number of cytoprotective genes (56, 57). However, 
under pathological conditions, such as NASH, NRf2 activity is 
impaired (52). Consistent with the role of NrF2 in NAFLD, it has 
been demonstrated that genetic ablation of Nrf2 markedly exac-
erbates NASH (58). Conversely, enhanced expression of Nrf2 in 
mice bearing a hepatocyte-specific knockdown of Keap1 attenu-
ated the fatty liver induced by a methionine- and choline-deficient 
diet (59). JNK is activated in various animal models of obesity and 
also in patients with NASH and its deletion results in attenuation 
of fatty liver (22). Activation of JNK has also been documented 
in HFD-induced hepatic steatosis in apoplipoprotein E knockout 
mice (60) or nicotine plus HFD-induced hepatic steatosis in obese 
mice (42). NF-κB is a transcription factor and a primary regula-
tor of inflammatory action. Activation of NF-κB dimers is due 
to inhibiton of NF-κB kinase (IKK)-mediated phosphorylation-
induced proteasomal degradation of IκB, enabling the active 
NF-κB transcription factor subunits to translocate to the nucleus 
and induce target gene expression. Persistent activation of NF-κB 
signaling has been shown in animal models of NAFLD as well as 
in patients with NASH (35). Furthermore, CHOP plays a pivotal 
role in ER-induced cell death. Deletion of CHOP decreases 
hepatocyte apoptosis in alcohol-induced liver disease and reduces 
cholestsis-induced liver fibrosis (61, 62).

It is worth noting here that both nicotine (63, 64) and HFD 
(65, 66) are capable of generating hepatic ER stress. Thus, it is 
possible that nicotine plus HFD could generate severe hepatic 
ER stress leading to hepatic steatosis. Clearly, further studies are 
needed to define the role of ER stress in fatty liver disease trig-
gered by nicotine and HFD.

Connections of Gut Microbiota to nAFLD
Evidence linking dysbiosis (also known as disruption of the nor-
mal gut microbiota) contributes to the pathogenesis of NAFLD 
has accumulated rapidly (67–69). Early studies have shown that 
patients with biopsy-proven NAFLD had significantly increased 
gut permeability compared to healthy volunteers (70). Both the 
increased gut permeability and prevalence of small intestinal 
bacterial overgrowth correlated with severity of steatosis in the 
patients with the NAFHD (70). The strongest evidence support-
ing the role of dysbiosis in NAFLD, however, stems from animals 
studies where the gut microbiome has been manipulated. It 
has been shown that microbiome from obese mice is linked to 

increased energy from the diet and this trail can be transmissible 
to lean adult germ-free mice by co-housing with obese mice (71). 
A growing number of studies examining how dysbiosis might 
drive NAFLD have identified a number of plausible mechanisms, 
including changes in short-chain fatty acids (SCFAs) metabolism, 
increased intestinal permeability and lipopolysaccharides (LPS) 
activation of toll-like receptors (TLRs) and inflammasomes, 
endogenous ethanol production, decreased choline availability, 
and trimethylamine production (69). For example, it has been 
shown that SCFAs can lower FAS activity and hepatic lipid syn-
thesis in HFD-fed mice through activation of AMPK and inac-
tivation of its downstream substrate ACC (72). Evidence exists 
that smoking can also induce profound changes in intestinal 
microbiota (73, 74). Taken together, it is possible that nicotine 
plus a HFD through changes in SCFAs metabolism, increased 
intestinal permeability and LPS activation of TLRs and inflam-
masomes, endogenous ethanol production, decreased choline 
availability and trimethylamine production could cause NAFLD.

COnCLUSiOn AnD PeRSPeCTiveS

Nicotine when combined with a HFD leads to NAFLD through 
multiple mechanisms, summarized in Figure 2, including gen-
eration of severe oxidative stress and increased hepatocellular 
apoptosis as well inducing adipose tissue lipolysis resulting in 
excess delivery of FFA and perturbation of hepatic lipid homeo-
stasis through inactivation of AMPK. There is also growing 
evidence that chronic ER stress through regulation of several 
pathways leading to oxidative stress, inflammation, perturbed 
hepatic lipid homeostasis, apoptosis, and autophagy, can also 
induce hepatic steatosis and its progression to NASH. Evidence 
also suggests a central role of the gut microbiota in obesity and its 
related disorders, including NAFLD. The multiple mechanisms 
of nicotine and obesity-induced hepatic steatosis is mediated by 
both its nAChR-mediated and non-receptor effects.

A better understanding of the mechanisms and various diverse 
signaling pathways responsible for nicotine plus HFD-induced 
NAFLD may also unveil novel pharmacological targets to treat 
fatty liver disease and adverse metabolic sequelae. The emerg-
ing knowledge about a direct connection of smoking or tobacco 
products to obesity and fatty liver disease should be considered 
during the evaluation of regulations on nicotine product manu-
facturing, distribution, and marketing.
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