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It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are 
associated to increased cancer incidence and mortality. Moreover, cancer development 
and progression as well as cancer resistance to traditional anticancer therapies are often 
linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which 
involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression 
of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, 
new drugs targeting various IGF axis components have been developed. However, 
these drugs have several limitations including the occurrence of insulin resistance and 
compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and 
survival. Therefore, new therapeutic approaches are needed. In this regard, the pleio-
tropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have 
promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ 
by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation 
by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such 
as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer 
cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs 
and other PPAR-γ agonists may be exploited as potential preventive and therapeutic 
agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic 
patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents 
have reached conflicting results, possibly because they have not selected tumors with 
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iNTRODUCTiON

Peroxisome proliferator activated receptors (PPARs) are tran-
scription factors that regulate gene expression and repression 
upon binding to natural or synthetic ligands (1). PPARs belong 
to the nuclear hormone receptor superfamily that includes recep-
tors for steroids, thyroid hormones, vitamin D, and retinoic acid. 
Different subtypes of PPARs called PPAR-α, PPAR-β, PPAR-γ, 
and PPAR-δ have been identified. Each of them displays differ-
ential tissue distribution and mediates specific functions in early 
development, cell proliferation, differentiation, apoptosis, and 
metabolic homeostasis (1). PPAR-γ is expressed at high levels in 
adipose tissue and at lower levels in several other tissues, such 
as breast, colon, lung, ovary, prostate, and thyroid (1, 2). Many 
synthetic PPAR-γ ligands have been developed. The most widely 
used synthetic agents belong to the thiazolidinedione (TZD) class 
of antidiabetic drugs (also referred to as glitazones or TZDs) 
that includes ciglitazone, troglitazone, pioglitazone (PIO), and 
rosiglitazone (RGZ). Some glitazones are already in the clinical 
use as insulin sensitizers in patients with type 2 diabetes mel-
litus (T2DM) (3). Activation of PPAR-γ plays an inhibitory role 
in cell growth and proliferation by favoring cell differentiation 
(4). These properties make PPAR-γ activation by natural and 
synthetic ligands an attractive option in cancer prevention and 
treatment. However, PPAR-γ ligands exert their effects through 
both PPAR-γ dependent and independent pathways, often trig-
gering cross talks with other signaling pathways, including the 
insulin-like growth factor (IGF) system signaling.

Dysregulated activation of IGF axis has recently emerged as 
a relevant factor in development and progression of a variety 
of human malignancies (5–8). For instance, cancer cells are 
frequently characterized by altered expression of various compo-
nents of the IGF including autocrine and/or paracrine secretion 
of IGFs (IGF-I and IGF-II) and overexpression of their cognate 
receptors [the IGF-I receptor, IGF-insulin receptor (IR), and the 
closely related IR]. In particular, IR overexpression may explain 
the increased sensitivity of cancer cells to hyperinsulinemia. 
Notably, in cancer cells, IR is often predominantly expressed as 
the “fetal” insulin receptor isoform A (IR-A), which binds both 
insulin and IGF-II (9). IR overexpression also contributes to 
enhanced signaling of IGF-II and IGF-I through the formation of 
IR/IGF-IR hybrid receptors (5). Not surprisingly, a number of epi-
demiological studies have consistently demonstrated that insulin 
resistance and hyperinsulinemia, common features of obesity and 
T2DM, are often associated with increased risk for several types 
of cancer (including cancers of the breast, colorectum, liver, and 
pancreas) (10–12) (Figure 1). One viable anticancer strategy is, 
therefore, to reduce insulin resistance and/or target the various 

IGF system components that are deregulated and that sustain the 
constitutive overactivation of IGF axis in cancer cells.

This review will focus on the mechanisms that link insulin 
resistance to cancer risk and will discuss the possible clinical 
implications of PPAR-γ agonists in cancers with dysregulated 
IGF axis.

THe LiNK BeTweeN OBeSiTY, iNSULiN 
ReSiSTANCe, AND CANCeR

Several epidemiological studies have consistently shown that 
metabolic disorders characterized by hyperinsulinemia and 
insulin resistance, such as obesity and T2DM, are associated with 
a significantly increased risk of cancer and cancer-specific mor-
tality (13). The links underlying this association are not entirely 
clear and appear to involve a number of complex mechanisms.

Mechanisms involving the insulin/iGFs 
System and estrogens
Insulin is a major mediator of important metabolic functions. 
However, it is widely accepted that it may exert mitogenic functions 
through the activation of different signaling pathways. Notably, 
cancer cells usually overexpress molecules that are typical of fetal 
life, as they confer them a survival advantage compared to normal 
cells (14). Specifically, the IR-A, which is predominantly expressed 
by fetal and cancer cells, exerts proliferative and protumoral 
effects in response to insulin, proinsulin, and IGF-II. In contrast, 
the second isoform, IR-B, is mainly involved in metabolic func-
tions (9, 15, 16). IR-A also binds IGF-I with a lower affinity than 
IGF-II. Both IGFs circulate in the bloodstream but they are also 
secreted at high levels by cancer cells and/or tumor stroma (17) 
thus activating IR-A in cancer cells (5, 18). Moreover, while in 
normoinsulinemic individuals the principal pathway activated by 
insulin to control whole-body metabolism is the PI3K cascade, in 
insulin resistant, hyperinsulinemic subjects this metabolic branch 
is blunted while the more mitogenic MAPK/mTOR cascade is 
overactivated. This unbalance between the MAPK and the PI3K 
cascades is associated with impaired glucose/lipid homeostasis 
in typical target tissues like liver, muscle, and adipose tissue and 
with increased cell proliferation in other tissues (12, 19). In brief, 
insulin resistance and hyperinsulinemia are considered the main 
determinants of cancer initiation/progression in diabetic/obese 
patients, and therefore the major preventable cancer risk factor 
in these subjects.

Moreover, hyperinsulinemia may increase the bioavailability 
of IGF-I and IGF-II through two mechanisms: (1) by inhibiting 
the synthesis of certain IGF-binding proteins, such as IGF-binding 

overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, 
the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks 
promising but requires future developments.

Keywords: insulin/iGF signaling pathway, insulin resistance, hyperinsulinemia, PPAR-γ, cancer, thiazolidinediones
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FiGURe 1 | Schematic representation of the links between obesity, insulin resistance, and cancer. Insulin resistance is associated with protumoral actions, 
such as insulin-like growth factors (IGFs) axis hyperactivation, adiposity-related low-grade inflammation, and modulation of cell metabolism, endoplasmic reticulum 
(ER) stress, and altered autophagy.
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protein 1 (IGF-BP1) and IGF-binding protein 2 (IGF-BP2), (2) by 
increasing IGF-I hepatic production.

The increased bioavailability of IGFs may contribute to tumor 
progression through the stimulation of IGF-IR, IR/IGF-IR hybrids, 
and IR-A itself (8). Partner molecules can be further recruited by 
these activated receptors contributing to increase cancer prolif-
eration and migration (20, 21). Finally, a cross talk between the 
insulin/IGF axis and estrogens has been extensively reported in 
tumors where both signaling pathways are involved in controlling 
cell survival and proliferation. The functional interactions between 
these signaling cascades may occur at multiple levels. For instance, 
increased circulating insulin reduces the sex hormone-binding 
globulin thus increasing bioavailable sex steroids (22), which are 
associated with a higher risk for estrogen-dependent cancers such 
as breast and endometrial cancers (23). Moreover, ligand-depend-
ent and independent activation of estrogen receptors increases 
insulin/IGF-mediated growth effects in several tumors, such as 
neuroblastoma, pituitary adenomas, and cancers from breast and 
prostate (24–26). Additionally, in prostate cancer cells, activation of 
classical ERs (and of androgen receptors) located at the level of cell 
membrane induces IGF-IR upregulation via membrane-initiated 
steroid signaling and enhances IGF-mediated biological effects 
(27, 28). Yet, in breast cancer cells, ligand-activated IGF-IR and 
IR upregulate the non-classical estrogen receptor (GPER), which 
potentiates the protumoral actions of insulin/IGFs and estrogens 
(29). Overall, all these functional interactions between insulin/
IGFs and estrogens may concur to cancer growth and progression 
(30, 31).

Mechanisms involving Adipose Tissue and 
Chronic Low-Grade inflammation
A second mechanism by which obesity is associated with 
cancer (32) is related to the adipose tissue expansion. As indi-
viduals become obese and their adipocytes enlarge, adipose tissue 
undergoes molecular and cellular alterations affecting the local 
and systemic metabolism. Adipocyte function dysregulation 
and the associated chronic inflammation may also contribute 
to adiposity-induced tumorigenesis (33, 34) (Figure  1). Yet, 
the insufficient vascularization of the enlarged adipose tissue 
results in hypoxia, and infiltration by macrophages, T cells, and 
natural killer cells. These cells generate large amounts of pro-
inflammatory cytokines, including tumor necrosis factor α and 
interleukin-6, which act as paracrine signaling molecules. Each of 
these factors might play an etiologic role in regulating malignant 
transformation and/or cancer progression. Moreover, adipose 
tissue within the tumor microenvironment actively contributes 
to tumor growth and metastasis by secreting leptin, adiponectin, 
free fatty acid (FFA), pro-angiogenic factors, and extracellular 
matrix constituents (35). Indeed, cancer-associated adipocytes 
(CAAs), in concert with cancer-associated fibroblasts and tumor-
associated macrophages, may influence cancer cell survival (35).

Mechanisms involving Modulation of 
Tumor Metabolism
Emerging data suggest that obesity may stimulate cancer progres-
sion by affecting tumor metabolism (36–38). This mechanism has 
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been particularly studied in tumors arising in close proximity 
to adipose tissue (39). Indeed, Nieman et al. demonstrated that 
adipocytes act as mediators of ovarian cancer metastases provid-
ing fatty acids to the cancer cells (39). This mechanism is not 
limited to ovarian cancer but can be extended to other cancers. 
According to a recent view, tumor cells grow in a complex micro-
environment characterized by a dynamic exchange of metabolites 
between stromal cells (fibroblasts and adipocytes) and epithelial 
cancer cells. Stromal cells provide metabolites (lactate, ketones, 
glutamines, and fatty acids) that are used by cancer cells to 
generate energy by oxidative phosphorylation and β-oxidation 
(reverse Warburg effect) (40). Adipocytes localized in proximity 
to cancer cells undergo dedifferentiation into pre-adipocytes, and 
some of them are reprogrammed into CAAs. Fatty acids derived 
from lipolysis are released by CAAs and utilized by cancer cells to 
obtain energy from mitochondrial β-oxidation. This availability 
of energetic substrates in the tumor microenvironment promotes 
uncontrolled cancer cell growth and tumor progression (35) 
(Figure 1). Lipid metabolism is, therefore, a new target for the 
treatment of cancers where adipocytes are a major component of 
the microenvironment.

Mechanisms involving endoplasmic 
Reticulum (eR) Stress
In obesity, ER stress is due to the increased protein synthesis 
caused by nutrient excess and elevated levels of saturated FFA.

Cancer cells have developed a capacity to survive under these 
extreme conditions through the modulation of the unfolded 
protein response (UPR) pathway. The components of the UPR 
pathway have also been implicated in cancer (41) and appear to be 
affected by glucose homeostasis (42, 43). In fact, in many cancers, 
glucose-regulated protein 78 (GPR78, an ER protein chaperone 
involved in adaptive response to ER stress) is overexpressed and 
correlates with cancer recurrence, therapeutic resistance, and 
stemness phenotype (44–48). Glucose and leptin can induce 
expression of GPR78 (49, 50), suggesting a link between diabetes 
and ER stress-related cancer features (Figure 1).

Mechanisms involving Autophagy
Autophagy is a natural and regulated, destructive process that is 
activated upon starvation in order to disassemble, unnecessary 
or dysfunctional cellular components (51) that are broken down 
and recycled through lysosomes (52). This process is regulated 
in a biphasic way through short- and long-term responses. 
Posttranslational protein modifications and protein–protein 
interactions mediate the rapid response, while nuclear tran-
scriptional mechanisms are induced after a sustained stimulus 
(53). Autophagy was initially considered a survival strategy 
during starvation, but it has been recently demonstrated that it 
can lead to apoptosis if prolonged (autophagic cell death) (54, 
55). Autophagy has opposite roles in tumorigenesis and tumor 
progression. Decreased baseline levels of autophagy are observed 
in many cancer cells compared to non-cancerous cells from 
the same tissue. Indeed, inhibition of autophagy can promote 
carcinogenesis by decreasing protein degradation thus increas-
ing unrepaired and accumulated mutations (Figure 1). On the 

contrary, in response to hypoxia, acidosis, or nutrient deprivation, 
autophagic process is enhanced in cancer cells in the later stages 
of tumor progression. The cells in the inner part of the tumor 
increase autophagy in order to survive to the low nutrient and 
hypoxic microenvironment (56). For this reason, in the last years 
many cancer therapies have been aimed to modulate autophagy.

Multiple signaling pathways, including mTOR, AMPK, B-cell 
lymphoma 2 (Bcl-2)/Beclin 1 complex, and p53, play important 
roles in regulating autophagy (57). Insulin inhibits autophagy in 
several ways: first by activating mTOR in synergy with amino 
acids (58), which results in the phosphorylation and inhibition 
of unc-51-like autophagy activating kinase 1 (59); second by 
inducing Akt-mediated phosphorylation and inhibition of the 
transcription factor FoxO3, which controls the transcription of 
autophagy-related genes, including LC3 and Bnip3 (60); third 
by inhibiting the expression of autophagy-related genes, such as 
VPS34 and Atg12 in a FoxO1-dependent manner (61).

During insulin resistance, various dysfunctional/damaged 
components are retained leading to cellular stresses and/or 
inflammation. At the same time, hyperinsulinemia may inhibit 
autophagy (60) and favor tumorigenesis and tumor progression. 
In insulin-resistant mice, autophagy is suppressed in many  
tissues (61).

PPAR-γ AGONiSTS: HiSTORY, 
MeCHANiSMS OF ACTiON, AND 
CLiNiCAL USe

History
Peroxisome proliferator activated receptor-γ is a nuclear hor-
mone receptor that is activated by multiple agonists. The name 
derives from the first identified member that belongs to a group 
of hepatocarcinogens that upregulate the proliferation of peroxi-
somes (62). The γ variant was first cloned from a Xenopus cDNA 
library, along with the α and β variants (63). In the same study, 
all three receptors were observed to have a role in the regula-
tion of β-oxidation. PPARs perform many activities, mainly via 
endogenous ligands generated from fatty acids. For this reason, 
they are called lipid sensors. PPAR agonists have different affini-
ties for PPARs, various pharmacokinetic profiles, and specific 
gene expression profiles (64, 65). Shortly after the role of PPAR-γ 
in adipocyte differentiation was characterized, potent synthetic 
ligands of PPAR-γ (TZDs) were discovered (66) and subsequently 
used in the therapy of T2DM patients to improve insulin sensitiv-
ity (67).

Mechanisms of Action
Peroxisome proliferator activated receptor-γ forms a heterodimer 
with retinoid X receptor (RXR) and then binds to specific DNA 
sequences, named PPAR-responsive elements, in the promoter 
region of target genes. Binding of agonist ligands to the PPAR:RXR 
heterodimer activates the complex and initiates gene transcrip-
tion. Alternatively, PPAR-γ can recruit transcriptional corepres-
sor proteins to silence gene expression. PPAR-γ is activated by 
natural ligands such as polyunsaturated fatty acids, eicosanoids, 
oxidized low-density lipoproteins, J2 type prostaglandins, and 
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FiGURe 2 | Genomic and non-genomics actions of peroxisome proliferator activated receptor (PPAR)-γ. PPAR-γ belongs to the class of nuclear 
receptors, containing a transactivation domain and a DNA-binding domain. Upon ligand binding, at the nuclear level, a conformational change leads to the release of 
corepressors, recruitment of coactivators, heterodimerization, and transactivation of PPAR-responsive element-related promoters (genomic actions). Cytoplasmic 
PPAR-γ, by interacting with proteins and activating transmembrane proteinases, elicits rapid and transient non-genomic effects that modulate EGF-R/insulin-like 
growth factor (IGF)-insulin receptor (IR) transactivation, calcium influx, PI3K/Akt, IKK/NFKB, and MAPKs signaling pathways.
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by a panel of potent drug agonists that include the TZDs (68). 
Although PPAR-γ acts mainly as transcription factor (genomic 
action), it may also exert its function via the activation of cytosolic 
non-genomic signaling pathways (Figure 2). The latter comprises 
activation of transmembrane proteinases, EGF-R transactivation, 
calcium influx, changes in protein biosynthesis, modulation 
of mitochondrial functions, stress response, interaction with 
Wnt/β-catenin, induction of signaling pathways involved in 
proliferation and survival, such as IGF-I/PI3K/AKT/mTOR and 
MAPK (69). The cross talk with these cascades plays an important 
role in the regulation and signal transmission of PPAR-γ and its 
ligands (see Role of PPAR-γ Agonists in Cell Proliferation and 
Growth: In Vitro Evidences). Overall, the PPAR-γ non-genomic 
actions, the PPAR-γ genomic functions, and the modulation of 
the cross talk between PPAR-γ and other key survival pathways 
support the pleiotropic functions of PPAR-γ that include fat 
cell formation and differentiation (4, 70–73), glucose and lipid 
homeostasis (74–77), atherosclerosis regulation (78), and anti-
inflammatory effects (79, 80). In addition, PPAR-γ and its ligands 
exert antiproliferative and anti-tumorigenic functions or induce 
pro-tumorigenic and antiapoptotic responses on the basis of the 
cell context (69).

Clinical Use
Thiazolidinediones are potent insulin sensitizers that efficiently 
and sustainably improve glycemic control in patients with T2DM 
(81). Although both metformin and TZDs decrease hepatic 
glucose production (82, 83), only TZDs reduce liver fat content 

(82, 84). They also diminish fasting FFA concentrations (85). This 
effect probably accounts for the indirect improvement in skeletal-
muscle insulin sensitivity and the reduction in liver steatosis.

However, the use of TZDs in clinical practice is currently 
limited because of side effects, such as weight gain and fluid 
retention that can precipitate cardiac failure and bone fractures. 
Troglitazone and RGZ were withdrawn because of hepatotoxic-
ity (86) and suspected to increase cardiovascular risk (87), 
respectively. In addition, the benefit–risk ratio of PIO has been 
reassessed recently in light of a putatively increased risk of blad-
der cancer (see Role of PPAR-γ Agonists in Chemoprevention). 
A novel synthetic third-generation TZD highly selective for 
PPAR-γ, i.e., efatutazone (RS5444 and CS-7017) has been recently 
synthesized. So far, efatutazone is the most potent TZDs in terms 
of transcriptional response and cell proliferation inhibition (88).

PPAR-γ AGONiSTS AS ANTiTUMOR 
DRUGS: CROSS TALK wiTH THe iGF 
SYSTeM

As mentioned earlier, PPAR-γ and its ligands may exert pleiotropic 
effects (pro- vs. antineoplastic functions). However, PPAR-γ is 
often considered a tumor suppressor by the virtue of promoting 
growth inhibition, apoptosis, cell cycle arrest, and redifferentiation 
in several malignancies (Figure 3). In vitro and in vivo evidences 
suggest that many of these antineoplastic functions are explained 
by the interference with the IGF system activity at various levels 
and by the well-established metabolic actions, i.e., reduction 
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FiGURe 3 | Mechanisms underlying anti-tumorigenic actions of peroxisome proliferator activated receptor (PPAR)-γ agonists. PPAR-γ activation by 
thiazolidinediones or other ligands may trigger anti-tumorigenic effects through different mechanisms including cell cycle arrest, induction of apoptosis, inhibition of 
angiogenesis, modulation of differentiation and stemness processes, and cross talk with other signaling pathways involved in proliferation and survival. All of these 
events may be exerted by PPAR-γ genomic or non-genomic actions. Abbreviations: CDKs, cyclin-dependent kinases; RhoB, rho-related GTP-binding protein; Rb 
protein, retinoblastoma-associated protein; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra large; Cox-2, cyclooxygenase-2; VEGF, vascular endothelial 
growth factor; EMT, epithelial to mesenchymal transition; CSCs, cancer stem cells; TERT, telomerase reverse transcriptase; ENAH, enabled homolog; ETS, 
E26-transformation specific family; STAT, signal transducer and activator of transcription; AP1, activator protein-1.
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of circulating insulin levels and improvement of tissue insulin 
sensitivity. These findings provide new insights for the potential 
clinical use of PPAR-γ agonists as anticancer agents especially in 
tumors characterized by IGFs’ overactivation and/or occurring in 
patients with insulin resistance and hyperinsulinemia.

Role of PPAR-γ Agonists in Cell 
Proliferation and Growth: In Vitro 
evidences
In vitro studies conducted in cancer cell lines derived from many 
tumors including breast cancer (89), lung cancer (90), colon 
(91), liposarcoma (92), hematopoietic cancer (93), glioma (94), 
hepatocarcinoma (95, 96), pancreatic cancer (97), thyroid cancer 
(98), and prostate cancer (99) have shown that PPAR-γ is often 
expressed in these cancer cells and that PPAR-γ activation exerts 
a growth inhibitory effect. Well-known molecular mechanisms 
implicated in the suppression of tumor growth and progression 
after PPAR-γ activation by TZDs or other PPAR-γ agonists involve 
cell cycle arrest, apoptosis, inhibition of angiogenesis, and redif-
ferentiation. For instance, in cancer cells from different organs 
and tissues including the thyroid gland (98, 100, 101), lung (102, 
103), esophagus (104), prostate (105), breast (106), kidney, and 
urothelium (107, 108), TZDs decrease cyclin-dependent kinase 

levels (CDKs) such as Cdk4, increase CDKs inhibitors such as 
p19, p21, p27, and rho-related GTP-binding protein, and acti-
vate retinoblastoma-associated protein. In some tumors, TZDs 
modulate proteins involved in apoptosis process. For example, in 
lung cancer cells, TGZ reduces the antiapoptotic protein Bcl-2; in 
anaplastic thyroid cancer, RGZ-induced apoptosis is associated 
with decrease of B-cell lymphoma-extra large expression and 
caspase-3 and caspase-7 activation; in many hepatoma cell lines, 
RGZ induces apoptosis by promoting the expression of PTEN, 
caspase-3, and caspase-9 (95, 96). In addition to apoptosis, PPAR-γ 
activation inhibits angiogenesis-associated proteins expression 
such as cyclooxygenase-2 and vascular endothelial growth fac-
tor (VEGF) as well as tumor microenvironment inflammatory 
mediators (79, 80, 97). Another mechanism by which PPAR-γ 
activation may act as tumor suppressor is the promotion of cel-
lular differentiation (see next paragraph). Many of these PPAR-γ-
mediated anticancer effects may be linked to a direct or indirect 
cross talk with the IGF axis. In particular, in  vitro evidences 
indicate that PPAR-γ cooperates with the IGF axis downstream 
signaling pathways such as MAPK, PI3K, and mTOR. These 
interactions may occur in a synergistic or antagonistic way and in 
a context-specific manner, supporting the multifacet features of 
PPAR-γ effects. In accordance with the antitumor role of PPAR-γ 
and the antiapoptotic role of the IGF system and its downstream 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


7

Vella et al. PPAR-γ in IGF-Related Cancer

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 31

signaling pathways, MAPK activation by different growth stimuli 
(i.e., insulin, IGF-I, EGF, and PDGF) may induce PPAR-γ serine 
phosphorylation and consequently inactivation of its genomic 
activity (109–112). Indeed, poorly differentiated cancers typically 
show constitutive activation of mitogenic pathways downstream 
tyrosine-kinase receptors that are involved in chemoresistance 
(113). Yet, MEK1 interacting with PPAR-γ induces its nuclear 
export and inhibition of its genomic functions (114). On the other 
hand, PPAR-γ activation reduces MEK1 protein expression and 
ERK phosphorylation, causing cell growth arrest and apoptosis. 
Beyond the inhibition of MAPK pathway, PPAR-γ agonists may 
also inhibit other cascades downstream the insulin/IGF signal-
ing, such as the PI3K/mTOR pathway. In particular, in several 
cancer cells from thyroid (98), liver (95, 111), colon (115), breast 
(115), lung (116, 117), and pancreas (118), PPAR-γ agonists 
inhibit IGF-I mediated biological effects through the reduction 
in Akt phosphorylation, increased PTEN expression levels (115), 
and inhibition of mTOR and p70S6K activity (116–120). Taken 
together, these data support the possibility that PPAR-γ agonists 
may have a potential role as antineoplastic agents in tumors char-
acterized by overactivation of the insulin/IGF-I axis (121, 122).

At variance with these data, in some tumor cell models, a posi-
tive cross talk between PPAR-γ and MAPK/PI3K/mTOR signaling 
components may also occur. For example, in breast and colon 
cancer cells, TZDs have been described to induce rapid MAPK 
and PI3K/mTOR activation that may affect the antitumor PPAR-γ 
genomic action (115, 123, 124). These latter mechanisms add com-
plexity to the actions of PPAR-γ agonists and may contribute to the 
absence of therapeutic efficacy of TZDs in some cancer patients.

PPAR-γ Agonists and Autophagy
Peroxisome proliferator activated receptor-γ activation may 
revert the effect of hyperinsulinemia by favoring the autophagic 
process at multiple levels. For example, in breast cancer cells, 
PPAR-γ agonists induced autophagy through HIF-1α and 
BNIP3 upregulation (125), while in adrenocortical cancer 
cells, RGZ triggered autophagy by increasing the expression of 
AMPKα and beclin 1, through both PPAR-γ-dependent and 
PPAR-γ-independent mechanisms (126). In bladder cancer cells, 
TGZ treatment enhanced autophagy, and then apoptosis (127). 
Moreover, RGZ-induced autophagy depends on the cellular 
context since this effect was not observed in all cell lines. In some 
in vitro models, PPAR-γ ligands induce autophagy by increased 
ROS production in mitochondria thus altering the mitochondrial 
membrane potential (126).

Role of PPAR-γ Agonists in Cell 
Differentiation and Stemness: In Vitro 
evidences
As previously mentioned, PPAR-γ agonists may favor cancer cell 
differentiation (128). This notion is supported by experiments 
conducted in lung, breast, and thyroid cancer cells showing a 
change in epithelial expression profile and a reversion of epithe-
lial–mesenchymal transition (EMT) process after TZD treatment 
(4, 98, 101, 111). Furthermore, several studies have demonstrated 
the efficacy of PPAR-γ agonists in inhibiting the survival of 

cancer stem cells (CSCs) derived from human cell lines or 
specimens from breast, prostate, colon, bladder, and blood tis-
sues (129–134) supporting a role of PPAR-γ in regulating CSC 
biology. For example, PIO, in combination with a RXR ligand, 
was able to reduce the formation of mammospheres from human 
breast tumors and MCF7 cells (132). Yet, in bladder cancer cells, 
the combination of a natural ligand of PPAR-γ (i.e., 15d-PGJ2) 
together with a survivin inhibitor was associated with down-
regulation of stemness-related genes and reduction of spheres 
formation (134). The molecular mechanisms through which 
TZDs regulate differentiation and stemness programs have been 
studied in adipocytes and normal cells, while in cancer cells and 
in CSC they remain still incompletely elucidated. In adipocytes, 
PPAR-γ amplifies differentiation signals and inhibits proliferation 
by affecting the Wnt/GSK3-β/β-catenin pathway. In particular, 
PPAR-γ interacts with GSK3-β inducing the differentiation factor 
C/EBPα and leading to the production of adiponectin (70, 71); 
yet, PPAR-γ activation reduces β-catenin at both mRNA and 
protein levels promoting differentiation (135). Similar mecha-
nisms involving the Wnt/β-catenin cascade may also occur in 
cancer cells and in CSC, as this pathway has also emerged to be 
essential not only for the differentiation process but also for self-
renewal and stemness programs. In human kidney embryonic 
HEK293 cells and in human metastatic prostate cancer LnCaP 
cells, PPAR-γ suppresses Wnt signaling by targeting phosphoryl-
ated β-catenin to proteasome (136–138). In gastric and colon 
cancer cells, PPAR-γ inhibits β-catenin expression, subcellular 
localization, and downstream effectors. All of these events lead 
to the modulation of a subset of genes, such as telomerase reverse 
transcriptase, enabled homolog, and Sox9, involved in cell 
development, differentiation, and survival processes (139–141). 
Another mechanism through which PPAR-γ could modulate 
CSC biology is the cross talk with IGF signaling. Indeed, recent 
studies have provided increasing evidence that the IGF pathway 
is essential for the growth/expansion of cancer stem-like cells by 
contributing to regulate pluripotency, EMT, and self-renewal. 
We have recently found that IR and IGF-IR are overexpressed 
in human thyroid progenitor/stem cells where they regulate 
self-renewal ability and stem cell expansion (142–144). Similar 
findings have been demonstrated in cancer progenitor/stem cells 
from solid and hematopoietic cancers reinforcing the important 
role of the IGF system in regulating stem cell biology and the 
early steps of the carcinogenesis process (145, 146). Furthermore, 
to control cell reprogramming, the IGF system, in turn, inter-
acts with effectors present in the stem cell niche belonging to  
GSK3-β/Wnt/β-catenin, Notch, and Shh pathways.

In this paragraph, we will focus only on Wnt/β-catenin 
signaling cascade, because there are more data regarding pos-
sible interactions between this pathway and both the IGF- and 
PPAR-γ-dependent signals. In particular, in human colon and 
hepatocellular cancer cells (147–149), IGF-I stimulates tyrosine 
phosphorylation of β-catenin, IRS-1, and E-cadherin as well as 
cellular relocation and stabilization of β-catenin. These events 
result in the disruption of β-catenin/E-cadherin interaction and 
inhibition of GSK3-β activity (148, 149). Furthermore, IRS-1, 
in turn, contributes to β-catenin stability, GSK3-β inactivation, 
IGF-IR/PI3K signaling pathway amplification, and T cell factor/
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lymphoid enhancer-binding factor-dependent transcription of 
genes controlling stem cell fate, long-term renewal, and differen-
tiation programs (147). On the other hand, IRS-1 is a downstream 
target of β-catenin, which regulates IRS-1 expression and locali-
zation controlling cancer initiation, self-renewal, and differen-
tiation processes (150–152). Overall, these interactions between 
GSK3-β/Wnt/β-catenin and the IGF system may contribute to 
enhance mitogenesis and stemness characteristics. In light of 
these considerations, PPAR-γ agonists, by inhibiting the activa-
tion of IGF axis as well as the GSK3-β/Wnt/β-catenin pathway, 
could be used in combination with other drugs such as inhibitors 
of tyrosine kinases (133), PI3K/AKT (153), and MAPK cascades 
to reach the maximum antitumor and pro-differentiating effect.

Role of PPAR-γ Agonists As Antitumor 
Drugs and in Chemoprevention: Animal 
Models
Several in vivo studies conducted in mice and rats support the 
anticancer PPAR-γ properties (89, 99, 105, 154–159). In general, 
TZDs have shown univocal effects in impairing progression and 
metastatic spread in animals injected with human cancer cells. 
Less clear-cut results have been obtained when looking at the 
effect of PPAR-γ agonists in cancer prevention. The discrepancy 
between the anticancer and the tumor-promoting effects of 
PPAR-γ agonists shown in the different studies reflects, as seen 
in  vitro, the complexity of signaling interactions involved in 
tumor formation in vivo. In some of these studies, the molecu-
lar mechanisms responsible for the antitumor vs. protumour 
PPAR-γ actions have been identified in the regulation of cell 
cycle, apoptosis, and signals involved in differentiation and cell 
fate such as the Wnt/β-catenin cascade and the Notch/Hes1 and 
NFKB pathways (105, 157, 159). However, so far, no studies in 
animals have explored the interactions between PPAR-γ and the 
IGF system or the correlation between PPAR-γ actions and the 
presence of insulin resistance in animals.

PPAR-γ Agonists As Antitumor Drugs: 
Clinical Trials
Taken together, data from in vitro studies and from animal mod-
els strongly support the concept that PPAR-γ has antineoplastic 
effects. However, clinical trials, using TZDs as antineoplastic 
agents, are few and have reached conflicting results. Overall, the 
ambivalent findings in clinical trials may be due to the inclusion 
of pretreated refractory cancers or cancers in far advanced stages, 
or to the activation of PPAR-γ independent pathways.

Furthermore, most of these studies lack clinical information 
regarding the presence of insulin resistance (diabetes mellitus 
condition was a criterion of exclusion) as well as data regarding 
the alterations of IGF axis in the tumors studied. Few studies 
using PPAR-γ agonists and in combination with other drugs 
have been conducted. Encouraging results have been obtained in 
patients affected by chronic myeloid leukemia treated with TZDs 
and imatinib. Leukemia quiescent cells have been eliminated 
through a mechanism involving TZD-related inhibition of STAT5 
expression responsible of stemness maintenance (129–131, 133). 
One relevant ongoing clinical phase II trial using PIO (15 mg) as 

add-on therapy to imatinib has started in July 2009 in patients 
affected by chronic myelogenous leukemia with residual molecu-
lar disease after imatinib monotherapy for more than 2  years 
(ACTIM EudraCT 2009-011675-79). Although the interim results 
from this trial are promising, the study was non-randomized. Yet, 
in hepatocellular carcinoma (HCC) in vitro and in vivo models, 
the use of RGZ in combination with either AKT pharmaco-
logical inhibitors or AKT siRNA significantly enhanced PPAR-γ 
agonist-mediated inhibition of cell proliferation, stem cell-like 
properties, and tumor growth (153). Although promising, further 
investigations regarding the antitumor effects of PPAR-γ agonists 
in the clinical setting need to be conducted. More data have been 
collected in diabetic populations with regard to the role of PPAR-γ 
agonists in chemoprevention (see next paragraph).

Role of PPAR-γ Agonists in 
Chemoprevention: Lessons from Diabetic 
Patients Treated with TZDs
Thiazolidinediones are widely used as antidiabetic agents in 
T2DM patients. According to in vivo studies in diabetic hyperin-
sulinemic mice showing that TGZ has potent glucose and insulin-
reducing effects (160), several reports have demonstrated that 
both TGZ and PIO reduce hyperglycemia, hyperinsulinemia, and 
hypertriglyceridemia and improve insulin sensitivity in T2DM 
patients (161–163). However, studies demonstrating efficacy of 
TZDs in cancer chemoprevention are difficult to perform because 
they should ideally be prospective and involving large cohorts of 
T2DM patients followed up for several years. Moreover, many 
confounders may affect such studies because T2DM patients 
are heterogeneous and often subjected to multiple therapies. 
Therefore, it is not surprising that only few retrospective studies 
are available and that their results are largely inconclusive.

A recent retrospective study has assessed the influence of TZDs 
on the risk of lung, prostate, and colon cancers in patients with 
diabetes. The study population was derived from the Veterans 
Integrated services Network 16 data warehouse (164). A total of 
87,678 male patients met the study inclusion criteria, and 11,289 
were treated with TZDs for a median duration of 1 year. After 
adjusting for covariates (age, ethnicity, body mass index, HbA1c, 
use of insulin, or other agents), the use of RGZ or PIO was found 
to significantly (P = 0.0033) reduce the incidence of lung cancer 
by 33%, as compared with TZDs non-users. A trend for a reduced 
risk for prostate and colorectal cancer was also observed when 
the population was analyzed as a whole. However, when results 
were subjected to subgroup analysis by ethnicity, prostate cancer 
resulted significantly increased by 15% in white patients while 
colorectal cancer was significantly reduced in African-Americans. 
These differences may be explained by possible differences in 
the metabolism of TZDs between white and African-American 
populations as well as to the low statistical power of the study 
(164). Although this study included a large number of patients 
and had several strengths, it showed several limitations. First, this 
is a retrospective study, thus some relevant information, such as 
smoking history and duration of TZD exposure were missing, 
and other information, such as ethnicity, were not available for 
all patients.
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A different conclusion was reached by a similar retrospec-
tive study performed in 1,003 subjects enrolled in the Vermont 
Diabetes Information System (165). In this community-based 
diabetic population, the use of TZDs was found significantly and 
positively associated with the diagnosis of cancer (OR  =  1.59, 
P = 0.04). This association was stronger in women (OR = 2.07, 
P =  0.01) and in RGZ users than in PIO users. This study has 
also several limitations, including the relatively small number of 
patients, the uncertain duration of TZDs treatment, the lack of 
diagnosis and tumor stage confirmation, and of rigorous controls 
for genetic and environmental confounders (165).

A recent meta-analysis has been performed in diabetic patients 
using RGZ with a focus on cancer risk. This meta-analysis includes 
all trials that can be retrieved from the GSK (GlaxoSmithKline) 
web site or from Medline with results published up to February 
2008. The authors analyzed 80 trials involving 16,322 RGZ users 
and 12,522 patients using a different antidiabetic treatment. They 
found no evidence that RGZ was either positively or negatively 
associated with cancer risk (OR = 0.91, P = 0.44) (166). Case–
control studies for specific cancers have also reached discrepant 
results. In a hospital-based case–control study, carried out in 
420 patients (140 diabetics) with HCC and 1,104 controls (115 
diabetics), diabetes was found a significant risk factor for HCC, 
and the treatment with TZDs or biguanides was associated with 
70% HCC risk reduction as compared to other treatments. In a 
similar case–control study involving 973 patients (259 diabetics) 
with pancreatic adenocarcinoma and 863 controls (109 diabet-
ics), it was found that metformin users, but not TZDs users, were 
protected from pancreatic cancer as compared to diabetic patients 
subjected to other treatments (167). Moreover, the risk of breast, 
colon, and prostate cancers in TZDs users was evaluated in three-
nested case–control studies based on 26,971 diabetic patients 
included in the US Integrated Healthcare Information Services 
database (168). Data revealed no association between the risk 
of breast, colon, and prostate cancers and the use of TZDs. The 
latter study is in agreement with a case–control study performed 
in 195 diabetic patients and 195 controls, taking into account 
cancer risk in relation to the antidiabetic treatment used. Also 
in this study, no association was found between cancer risk and 
TZD use while a significantly reduced cancer risk was observed 
in metformin users (166). Yet, a large randomized prospective 
clinical trial focused on secondary cardiovascular disease pre-
vention in T2DM by PIO (169) has shown that the use of PIO 
was not associated with significant changes in the incidence of 
various cancers. The clinical significance of the small increase 
in bladder cancer (14 vs. 5) and the small decrease in breast 
cancer (3 vs. 11) remains uncertain. Regarding bladder cancer 
risk, in another study including a cohort of 193,099 patients with 
diabetes, the short-term use of PIO was not associated with an 
increase incidence of bladder cancer, but the use for more than 
2 years was weakly associated with increased risk (170). To date, 
a retrospective cohort study to evaluate the bladder cancer rate 
in male T2DM subjects aged more than 50 years who are on PIO 
(7.5–30  mg) therapy for 1  year or more as compared to never 
users of PIO (http://ClinicalTrials.gov Identifier: NCT01935466, 
PROBE-PIO) is still ongoing. Similarly, another randomized, 
double-blind placebo controlled clinical trial evaluating the use 

of PIO in the chemoprevention of lung cancer (NCT00780234) 
is also ongoing. In this study, non-diabetic subjects at risk for 
lung cancer (based on smoking history, lung function testing, 
and atypical cells in a sputum sample) are randomized to receive 
either placebo or PIO (30  mg/day). The primary outcome is 
endobronchial histology and evaluation of cancer progression. 
Secondary endpoints will include the activation of PPAR-γ 
dependent signaling pathways.

Taken together, these studies do not provide a definite answer 
to the question whether the use of TDZs has any association with 
cancer risk in diabetic population. However, they suggest that, 
overall, their use is neutral. These results are at odd with those 
obtained with metformin, which shares with TZDs’ insulin-
sensitizing activity, suggesting that the observed effects of these 
drugs on cancer risk are only partially dependent on their insulin 
sensitizing effect. It is also possible, that genetic factors, cancer 
histotype and/or molecular alterations could significantly modu-
late the clinical effects of TDZs.

PPAR-α AGONiSTS AS ANTiTUMOR 
DRUGS: CROSS TALK wiTH THe iGF 
SYSTeM

Peroxisome proliferator activated receptor-α is the first identified 
PPAR, and it has been found widely expressed in several tissues 
including skeletal muscle, liver, hearth, kidney, and intestine (171, 
172). PPAR-α can be activated by endogenous ligands such as 
fatty acids and derivatives (arachidonic acid, leukotriene B4, and 
non-esterified fatty acids) or by synthetic compounds such as 
fenofibrate, clofibrate, bezafibrate, and Wy-14,63.

Activated PPAR-α forms heterodimer with RXRα (PPARs/
RXRα) and binds to the consensus sequence in the promoter 
region of target genes (173). As PPAR-α agonists modulate the 
expression of genes regulating glucose and fatty acid metabolism, 
they have been widely sought after as therapeutic agents for sev-
eral metabolic disorders such as obesity, T2DM, hyperlipidemia, 
and cardiovascular diseases (174). However, PPAR-α has also a 
critical role in the regulation of cell proliferation, survival, motil-
ity, and metabolism in several cancer cells (175, 176). Activated 
PPAR-α may decrease or induce tumor progression depending 
on the specific tissue or the PPAR-α ligand. While few in  vivo 
studies regarding the effects of PPAR-α agonists in cancer are cur-
rently available, several in vitro studies indicate that PPAR-α has 
a remarkable antineoplastic potential. For instance, fenofibrate 
regulates colon inflammation and proliferation by inhibiting the 
production of pro-inflammatory cytokines such as IL-17, IFN-g, 
CXCL10, CCL2, and CCL20 (177). In breast and ovarian cancer 
cells, clofibrate induces HIF-1α degradation leading to decreased 
tumor-associated VEGF gene expression (178). Yet, in non-small 
cell lung cancer, activated PPAR-α increases p53 expression and 
inhibits PDK1 and NFKB/p65 dependent signaling, leading to 
inhibition of cell growth (179).

Notably, similar to PPAR-γ, PPAR-α may be involved in tumo-
rigenesis by cross talking with the IGF system at different levels. 
For instance, in brain tumors, fenofibrate exerts anticancer effect 
by inhibiting IGF-I-mediated signaling and biological responses 
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(180, 181). In medulloblastoma cell lines, fenofibrate strongly 
inhibited IGF-I-mediated activation of IRS-1, AKT, ERK, and 
GSK3b phosphorylation (181) as well as IGF-I-mediated cell 
clonogenic growth, migration, and colony formation in soft agar. 
Accordingly, the combined treatment with fenofibrate and the 
IGF-IR inhibitor (NVP-AEW541) resulted in a complete sup-
pression of growth responses to IGF-I, cell cycle arrest, and apop-
tosis. Similarly, fenofibrate inhibited IGF-I and serum-induced 
motility of glioma cells and induced ROS accumulation, loss of 
mitochondrial membrane potential, and reduction in adenosine 
5′-triphosphate (ATP) production (180).

In mice bearing 4-nitroquinoline 1-oxide-induced lung 
hyperplasia, adenoma, and adenocarcinoma (182), fenofibrate 
downregulated the IGF axis by significantly reducing insulin and 
IGF-1 serum levels and the immunohistochemical expression of 
IGF-IR, pAkt, and pERK1/2, indicating a potential as chemopre-
vention agent. Fenofibrate-mediated inhibition of constitutively 
activated PI3K/AKT signaling has been reported in melanoma 
cell lines where this drug decreased both cell invasiveness and 
clonogenic cell growth (183).

So far, the molecular mechanisms involved in IGF-IR signal-
ing inhibition by fenofibrate are still under investigation and may 
be at least partially PPAR-α independent, involving changes in 
the fluidity of plasma membrane, which, in turn, affect ligand-
mediated IGF-IR partitioning and consequent initiation of 
growth-promoting downstream signaling. Indeed, fenofibrate 
may affect the activities of integral membrane proteins, leading 
to plasma membrane rigidity and alteration in the activity of 
membrane-spanning proteins such as IGF-IR (184).

In addition to the attenuation of IGF-IR signaling responses, 
another mechanism through which fenofibrate exerts antitumor 
role is the modulation of the energy metabolism of cancer cells, 
which strongly depend on glycolysis (185). As fenofibrate can 
switch energy metabolism from glucose to fatty acid oxidation 
and ketogenesis, as a main source of energy (186, 187), it can 
favor aberrant mitochondrial oxidative phosphorylation leading 
to ROS accumulation, oxidative damage, and reduction in ATP 
production with severe cell energy depletion. As seen in glial 
neoplasms (180), all of these events may impair growth and sur-
vival of cancer cells with defective mitochondrial function. The 
ability of fenofibrate to force mitochondrial oxidative respiration 
in tumor cells, without systemic toxicity, suggests that this drug 
may have clinical benefits in preventing tumorigenesis.

CONCLUSiON

It is now widely accepted that systemic diseases, such as obesity, 
T2DM, and metabolic syndrome, are not only cardiovascular 
risk factors but also cancer risk factors. Insulin resistance and 

hyperinsulinemia, common features of all these metabolic disor-
ders, contribute to the deregulation of the insulin/IGF axis that 
plays an important role in cancer progression as well as in CSCs. 
In light of these considerations, the pleiotropic effects of PPAR-γ 
agonists may have potential applications in cancer prevention 
and therapy. Indeed, PPAR-γ activation, by TZD or other ago-
nists, improves insulin resistance and reduces circulating levels 
of insulin and free IGF-I. Furthermore, PPAR-γ agonists down-
regulate key pathways of the insulin/IGF axis, such as PI3K/
mTOR, MAPK, and GSK3β/Wnt/β-catenin cascades, which 
regulate cancer cell growth, proliferation, cell reprogramming, 
and differentiation. Thus, PPAR-γ agonists have a great potential 
to be used as antineoplastic agents in combination therapies with 
a variety of other compounds. Although extensive in vitro evi-
dence supports the concept of pleiotropic antineoplastic actions 
of PPAR-γ agonists, unfortunately, the available clinical trials 
have reached conflicting results, possibly because they have not 
selected tumors characterized by overactivation of the insulin/
IGF-I axis or occurring in hyperinsulinemic patients. Hopefully, 
future clinical trials with PPAR-γ agonists will include patients 
with these characteristics. Similarly, studies aiming to show a 
role of PPAR-γ agonists in cancer prevention should ideally be 
prospective, randomized, and should involve large cohorts of 
patients followed up for several years.

Besides PPAR-γ, agonists, also PPAR-α agonists, such as 
fenofibrate can also inhibit IR/IGF-IR signaling responses and 
exert complex antineoplastic actions.

In conclusion, the use of PPAR-γ agonists alone or in combina-
tion with other agents in cancer prevention and therapy remains 
promising but still awaits future developments.
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