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Cholecystokinin—From Local Gut 
Hormone to Ubiquitous Messenger
Jens F. Rehfeld*

Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Cholecystokinin (CCK) was discovered in 1928 in jejunal extracts as a gallbladder con-
traction factor. It was later shown to be member of a peptide family, which are all ligands 
for the CCK1 and CCK2 receptors. CCK peptides are known to be synthetized in small 
intestinal endocrine I-cells and cerebral neurons. But in addition, CCK is expressed in 
several endocrine glands (pituitary cells, thyroid C-cells, pancreatic islets, the adrenals, 
and the testes); in peripheral nerves; in cortical and medullary kidney cells; in cardial 
myocytes; and in cells of the immune system. CCK peptides stimulate pancreatic enzyme 
secretion and growth, gallbladder contraction, and gut motility, satiety and inhibit acid 
secretion from the stomach. Moreover, they are major neurotransmitters in the brain and 
the periphery. CCK peptides also stimulate calcitonin, insulin, and glucagon secretion, 
and they may act as natriuretic peptides in the kidneys. CCK peptides are derived from 
proCCK with a C-terminal bioactive YMGWMDFamide sequence, in which the Y-residue 
is partly O-sulfated. The plasma forms are CCK-58, -33, -22, and -8, whereas the small 
CCK-8 and -5 are potent neurotransmitters. Over the last decades, CCK expression 
has also been encountered in tumors (neuroendocrine tumors, cerebral astrocytomas, 
gliomas, acoustic neuromas, and specific pediatric tumors). Recently, a metastastic islet 
cell tumor was found to cause a specific CCKoma syndrome, suggesting that circulating 
CCK may be a useful tumor marker.
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inTRODUCTiOn

Cholecystokinin (CCK) is member of a family of regulatory peptides with a remarkably well 
preserved C-terminal sequence (1–3). The family also includes frog skin peptides (caerulein and 
phyllocaerulein) and the protochordean neuropeptide cionin, but in mammals, CCK and gastrin 
are the only family members (Figure 1).

After the discovery in 1928 (6), CCK became part of the classical troika of gut hormones together 
with secretin and gastrin. The last decades, however, have shown that CCK, in addition to its local 
acute functions in digestion (gallbladder emptying and pancreatic enzyme secretion), is also a growth 
factor, a neurotransmitter in the brain and peripheral neurons [for reviews, see Ref. (7–9)], and 
besides, it may be a spermatozoan fertility factor, a natriuretic kidney peptide, an anti-inflammatory 
cytokine in the immune system, and a cardiac marker of heart failure. The long history has made 
the CCK literature comprehensive and at some points also confusing because impure CCK prepara-
tions with little attention paid to species differences and to physiological levels were used initially. 
In addition, most assays for measurement of CCK in plasma and elsewhere lacked specificity and 
sensitivity (10–12).
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FiGURe 1 | The homologous bioactive sequences of peptide systems belonging to the cholecystokinin (CCK) family (upper panel). CCK and the antral 
hormone, gastrin, are the only mammalian members of the family. Caerulein and phyllocaerulein are identified from frogskin extracts. Cionin is a neuropeptide 
isolated from the central ganglion of the protochord, ciona intestinalis. Note the unique disulfated sequence, which might suggest that cionin may resemble a 
common ancestor of CCK and gastrin. The core of the bioactive sequences, the common C-terminal tetrapeptide amide, is boxed. The lower panel shows the 
bioactive sequences of the insect peptides, the sulfakinins, which display some homology with vertebrate and protochordian members of the CCK family (4, 5). Also 
their C-terminal tetrapeptide amide sequence is boxed.
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The biochemical concept of CCK as a single hormonal peptide 
from the small intestine has also changed considerably. Now CCK 
is known to be synthetized and released in multiple molecular 
forms. And the CCK gene is expressed at peptide level in a cell-
specific manner in neurons, endocrine cells, and epithelial cells 
outside the gastrointestinal tract (Table 1). All known biological 
effects of CCK peptides reside in the conserved C-terminal hep-
tapeptide sequence (Figure  1). Modification of this sequence 
grossly reduces or abolishes receptor binding and biological effects 
(13–15). The N-terminal extensions of the common C-terminus 
increase the biological potency and the specificity for receptor 
binding. Of particular importance is the tyrosyl residue in position 
seven [as counted from the C-terminus (Figure 1)]. The tyrosyl 
residue is rarely completely sulfated (16–20). The CCK2 receptor 
binds sulfated and unsulfated ligands equally well, whereas the 
CCK1 receptor is exclusive and requires Y-sulfation of the ligand.

The following is a short review about the biology of CCK 
with emphasis on the recently recognized widespread expression 
(Table  1) and besides an update on the classic gastrointestinal 
effects of CCK peptides.

BiOGeneSiS

As described earlier (9), “the exomal unit of the CCK gene is seven 
kilobases interrupted by two introns (23). The first of the three exons 
is small and non-coding. Several conserved regulatory elements 
have been identified in first 100 bp of the promoter, including an 
E-box element, a combined cAMP response element (CRE)/12-O-
tetradeconoylphorbol-13-acetate response element (TRE), and a 
GC-rich region (24, 25). Whereas the function of the E-box and the 
GC-rich region is not fully clarified (26, 27), the combined CRE/
TRE sequence plays an important role in the regulation of CCK 
transcription. The CRE/TRE binds the transcription factor CREB, 
which is activated by phosphorylation by several signaling path-
ways, including cAMP, fibroblast growth factor, pituitary adenylate 
cyclase-activating polypeptide, calcium, hydrolyzates, and peptones 
to ultimately induce CCK transcription (28–32). Only one CCK 
mRNA molecule has been found, and the CCK peptides are thus 
fragments of the same proCCK protein. The mRNA has 750 bases, 
of which 345 are protein coding (33, 34). The concentrations of CCK 
mRNA in cerebrocortical tissue are similar to that of the duodenal 
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TaBLe 1 | The widespread expression of cholecystokinin (CCK) peptides 
in normal adult mammalian tissue.

Tissue Tissue contenta 
(pmol/g)

Precursor 
percentagec

intestinal tract
Duodenal mucosa 200 5
Jejunal mucosa 150 20
Ileal mucosa 20 50
Colonic mucosa 5 50
Central nervous system
Cerebral cortex 400 2
Hippocampus 350 2
Hypothalamus 200 2
Cerebellum 2 90
Spinal cord 40 10
Peripheral nervous system
Vagal nerve 25 5
Sciatic nerve 15 5
Nerveplexes in colonic wall 5 20
extraintestinal endocrine glands
Adenohypophysis 25 100
Neurohypophysis 20 10
Thyroid gland 2 20
Adrenal medulla 1 50
Urogenital tract
Renal cortexb +++ −
Renal medullab +++ −
Testicles 5 80
Spermatozoas 1 50
Cardiovascular system:
Atrial myocytes 10 95
Ventricular myocytes 2 95
Mononuclear immune cellsb ++ −

aOrders of magnitude based on measurement of tissue extracts from different 
mammalian species.
bExpression determined only by immunocytochemistry.
cThe precursor percentage was estimated by subtraction of the sum of bioactive, 
α-amidated CCK peptides (11, 12) from the total procholecystokinin product using the 
principle of processing-independent analysis (21, 22).

3

Rehfeld Cholecystokinin—A Ubiquitous Messenger

Frontiers in Endocrinology | www.frontiersin.org April 2017 | Volume 8 | Article 47

mucosa (34), and in the brain, there is a rapid synthesis of CCK 
peptides (35).

The primary translational product, preproCCK, has 115 amino 
acid residues. The first part is the signal peptide. The second part 
with considerable species variation is a spacer peptide. The bioac-
tive CCK peptides are derived from the subsequent 58 amino acid 
residues (16, 18, 36–38), and the species variation is small in this 
sequence. The processing of proCCK is cell-specific: endocrine cells 
contain a mixture of the medium-sized CCK-58, -33, -22, and -8, 
whereas neurons mainly release CCK-8 and to some extent CCK-5 
(16, 39). The endoproteolysis of proCCK occurs mainly at monoba-
sic sites. Y-77 is mostly O-sulfated (16–20, 40), which is decisive for 
CCK1 receptor binding.

In the small intestine, CCK peptides are synthesized in endocrine 
I-cells (41), whose apical membrane is in contact with the intestinal 
lumen and whose basal region contains secretory granules with 
CCK peptides. CCK is also synthesized in pituitary corticotrophs 
and melanotrophs, in thyroid C-cells (17), and in adrenal medullary 
cells (42, 43). In the pituitary cells, CCK constitutes a small fraction 
of the hormones. Tumors originating from pituitary corticotrophs, 
however, produce larger amounts of CCK (44).”

It is the brain that expresses most CCK (16, 39, 42). Moreover, 
cerebral CCK neurons are more abundant than neurons of other 
neuropeptides (42, 45, 46). While most peptidergic neurons 
occur in subcortical regions, CCK is expressed in the highest 
concentrations in neocortical neurons (39, 42, 47). The perikarya 
of the cortical CCK nerves are distributed in layers II–VI, with 
the highest frequency in layers II and III (42, 48). CCK in mesen-
cephalic dopamine neurons projecting to the limbic area of the 
forebrain (45) has aroused clinical interest because these neurons 
are supposed to be involved in schizophrenia.

Outside the brain, the colon contains numerous CCK neurons, 
whereas jejunum and ileum are less innervated (42). Colonic 
CCK fibers occur in the circular muscle layer, which they pen-
etrate to form a plexus in the submucosa (42). In accordance with 
these locations, CCK peptides excite colonic smooth muscles and 
release acetylcholine from neurons in both plexus myentericus 
and submucosa (49). Ganglionic cell somas in pancreatic islets 
are also surrounded by CCK nerves (50). Moreover, CCK nerve 
terminals also surround pancreatic islets (51). Finally, afferent 
vagal nerve fibers also contain CCK (52, 53).

enDOCRine anD neUROnaL ReLeaSe

Also mentioned before (9), “CCK in circulation originates mainly 
from intestinal endocrine cells. The release to blood was not pos-
sible to examine until specific assays were developed (10–12, 54). 
The assays have confirmed that protein- and fat-rich food is the 
most important stimulus (11, 54). Of the constituents, protein and 
l-amino acids as well as digested fat cause significant CCK release 
(54, 55). Carbohydrates only release small amounts of CCK (54), 
but hydrochloric acid also stimulates release (55).

The release from neurons has been examined directly in brain 
slices and synaptosomes (56, 57). Potassium-induced depolariza-
tion caused a calcium-dependent release of CCK-8. Similarly, depo-
larization releases CCK peptides from the hypothalamic dopamine 
neurons that innervate the intermediate lobe of the pituitary (58). 
By analogy with other neuropeptides, it is possible that overflow 
from peripheral CCK neurons may contribute slightly to CCK in 
plasma.

By comparison with identified CCK peptides, it has been possible 
to deduce the molecular pattern of CCK in plasma. The picture has 
varied (12) due to species differences and because the molecular 
pattern along the gut varies (59, 60). Furthermore, the distribution 
may vary during stimulation. In man, CCK-33 predominates in 
plasma, but CCK-58, -22, and -8 are also present (11, 61).

In the basal state, the concentration of CCK in plasma is around 
1 pmol/l, but often less. The concentration increases within 20 min 
to 3–5 pmol/l during meal stimulation, and then declines gradu-
ally only to reach a second peak after 1.5–2 hours. In comparison 
with most other pancreatic and gastrointestinal hormones (62), 
the concentrations of CCK in plasma are low. When food-induced 
CCK in plasma is mimicked by infusion of exogenous CCK, the 
same degree of gallbladder contraction and release of enzymes as 
seen during meals occurs (54, 62–64). Therefore, the low circulating 
concentrations of CCK are sufficient to account for the gallbladder 
contraction and pancreatic enzyme secretion during meals.
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Because the cholecystokinetic and pancreozymic potency of 
CCK-33 and CCK-8 on a molar base are identical (65), it may 
seem less important what I-cells release during digestion.” On the 
other hand, CCK-58, -33, and -22 are cleared from blood at a 
significantly slower rate than CCK-8.

ReCePTORS

The cellular effects of CCK peptides are mediated via two recep-
tors (66, 67). The “alimentary” CCK-A or CCK1 receptor (66) 
mediates gallbladder contraction, relaxation of the sphincter of 
Oddi, pancreatic growth and enzyme secretion, delay of gastric 
emptying, and inhibition of gastric acid secretion via fundic 
somatostatin (68). CCK1 receptors have been found also in the 
anterior pituitary, the myenteric plexus, and areas of the mid-
brain (69, 70). The CCK1 receptor binds with high affinity CCK 
peptides that are amidated and sulfated, whereas the affinity for 
non-sulfated CCK peptides and gastrins is negligible.

The CCK-B or CCK2 receptor (the “brain” receptor) is the 
predominant CCK receptor in the brain (67, 71). It is less spe-
cific than the CCK1 receptor and binds also non-sulfated CCK, 
gastrins, and C-terminal fragments such as CCK-5. It has been 
shown that the gastrin receptor cloned from the stomach (67) and 
CCK2 receptors are identical (71, 72). The gastrin/CCK2 receptor 
is expressed also in substantial amounts in pancreatic islet cells 
in man (73).

GaSTROinTeSTinaL eFFeCTS

The defining functions of CCKs in digestion have been detailed 
regularly [for instance, see Ref. (6, 7)].

Gallbladder and Pancreas
“CCK peptides stimulate hepatic secretion mainly as bicarbonate 
from hepatic ductular cells (74) and act on gallbladder muscles with 
a potency correlated to the low plasma concentrations of sulfated 
CCK. From the liver and gallbladder, bile is released into the duo-
denum via CCK-mediated rhythmic contraction and relaxation of 
muscles in the common bile duct and the sphincter of Oddi. CCK 
regulates the secretion of pancreatic enzymes so potently that it 
seems sufficient to account for all enzyme secretion (63–65). CCK 
is also capable of releasing several small intestinal enzymes such as 
alkaline phosphatase (75), disaccharidase (76), and enterokinase 
(77). In addition, CCK stimulates the biosynthesis of pancreatic 
amylase, chymotrypsinogen, and trypsinogen (78–80).

While the interest in the effect of CCK on the exocrine pan-
creas was for many years restricted to enzyme secretion, it is now 
well established that CCK also stimulates fluid and bicarbonate 
secretion. The effect on bicarbonate secretion is in itself weak, but 
because CCK potentiates the secretin-induced bicarbonate secre-
tion in the same way as secretin potentiates the CCK-induced 
enzyme release (81), the effect of CCK peptides on bicarbonate 
and fluid secretion is potent. There are species differences, so it 
is now assumed that CCK in man stimulates pancreatic enzyme 
secretion through a cholinergic pathway that is less significant in 
rodents (82–84).

There are also species differences regarding the endocrine pan-
creas. CCK peptides release insulin and glucagon more potently in 
man and pig than in dog and rat (51, 85–87). The difference is 
partly due to neurons in pancreatic islets that release CCK-8 and 
CCK-5 in man and pig (51), whereas rat and dog islets have no 
such innervation (50, 51). Moreover, islet cells in man and pig also 
express the CCK2 receptor abundantly (73), whereas rat islet cells 
express mainly the CCK1 receptor (88).

Already in 1967, Rothman and Wells (80) noted that CCK 
increased pancreatic weight and enzyme synthesis. Also the output 
of bicarbonate and protein from the hypertrophic pancreas was 
increased (89). Although secretin in itself is without trophic effects, 
the combination of secretin and CCK showed trophic effect on 
ductular cells with increased secretin-induced bicarbonate output 
(89).”

Gut Motility
Cholecystokinin contributes to control intestinal motility. The 
distal part of the gut is as mentioned abundantly innervated with 
CCK neurons (42, 90). It is therefore likely that an increase of 
intestinal motor activity by exogenous CCK (91) reflects neuronal 
control of intestinal muscles by CCK peptide transmission. 
Neuronal CCK acts both indirectly via acetylcholine release 
from postganglionic parasympathetic nerves and directly on 
muscle cells (49). The observation that CCK peptides stimulate 
intestinal blood flow is in harmony with the occurrence of CCK 
nerve terminals around blood vessels in the basal lamina propria 
and the submucosa (42).

Satiety
“In 1973, Gibbs et al. discovered that exogenous CCK inhibits food 
intake (92). The effect mimicked the satiety induced by food and 
was not seen with other gut peptides known then. The effect could 
be demonstrated in several mammals. Vagotomy studies indicate 
that peripheral CCK induces satiety via CCK1 receptors relaying the 
effect into afferent vagal fibers (93). The satiety signal then reaches 
the hypothalamus from the vagus via the nucleus tractus solitarius 
and area postrema.

Gastric Acid Secretion
The effect of CCK on gastric acid secretion has been uncertain. On 
one hand, it has been suggested that intestinal CCK was an acid 
inhibitor (an enterogastrone). On the other hand, the results of CCK 
infusions have been inconsistent. The gastrin/CCK double “knock-
out” mice have now shed further light on the problem showing that 
circulating CCK stimulates somatostatin release from fundic D-cells 
via CCK1 receptors, which then inhibits acid secretion from parietal 
cells (68).”

nOveL SiTeS OF eXPReSSiOn

The major sites of CCK expression are as mentioned endocrine 
cells in the gut, the brain, and in peripheral nerves. But the last 
decades have uncovered additional sites and cell types that also 
express the CCK gene at peptide level (Table  1). In some of 
these sites, proCCK is not processed to the known α-amidated 
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peptides. Their functions are therefore still unknown. But since 
CCK receptors also have such widespread expression (66, 67, 
70–73, 94, 95), there is both room and need for delineation of the 
roles of CCK released from the “new” sites.

extraintestinal endocrine Cells
Pituitary corticotrophs and melanotrophs express significant 
amounts of proCCK fragments, but the posttranslational pro-
cessing results in only trace amounts of conventional α-amidated 
CCK peptides (43, 96). Also, thyroid C-cells produce CCK, but 
mainly as non-sulfated but amidated CCK-8 (17). Since C-cells 
are well equipped with CCK2 receptors (97), thyroid CCK-8 is 
probably an autocrine stimulator of growth of normal and not 
least malignant C-cells. Adrenal medullary cells produce small 
amounts of CCK, although amidated and with a low degree of 
sulfation (98). The significance of adrenal CCK is unknown.

Male Germ Cells
Spermatogenic cells express transiently the CCK gene in most 
mammals (99, 100). Less than 25% of the amidated CCK is 
sulfated. Interestingly, the CCK peptides in mature spermatozoes 
are concentrated in the acrosomal granule, which opens the 
possibility that CCK may play a role in fertilization due to the 
acrosomal reaction (100). The acrosomal expression is species-
specific, as human spermatozoes in addition to CCK also express 
its homolog, gastrin (101).

Kidney Cells
In rodent kidneys (rat, mice, and guinea pigs), CCK has recently 
been shown by immunohistochemistry to be expressed both 
in the renal cortex and in the medulla. The cortical expression 
occurs in distal tubular cells and glomeruli, and the medullar 
CCK expression is confined to collecting ducts (102, 103). The 
discovery of renal CCK expression may have been stimulated by 
earlier findings of significant CCK1 and CCK2 receptor expression 
also in human kidney tissue (104, 105). It has led to suggestions 
of local regulatory functions of natriuresis and inflammation in 
the kidneys. Remarkably, the expression in diabetic mice and rat 
kidneys is grossly increased. This increase has been suggested 
to protect the diabetic kidneys somewhat against inflammatory 
actions of macrophages (103).

immune Cells
Cholecystokinin immunoreactivity has consistently been found 
to be expressed in human and rat mononuclear cells in blood 
(106, 107). Moreover, CCK-8 (sulfated as well as non-sulfated) 
has been reported to exert a wide specter of stimulation and 
inhibition on lymphocytes, macrophages, and cytokine release, 
with ensuing anti-inflammatory effects (108–111). The field 
is complex due to the many players; but the clinical impact of 
CCK in inflammatory diseases and endotoxin shock may be 
significant.

Cardiac Myocytes
Fetal mice express high levels of CCK mRNA in cardiac myo-
cytes (112). Accordingly, adult cardiomyocytes in mice, rats, and 

pigs contain substantial amounts of proCCK protein (113). The 
processing, however, of cardiac proCCK is unique, as the result 
is a long triple-sulfated and N-terminally truncated fragment 
25–94 with only trace amounts of the conventionally amidated 
and sulfated CCK peptides (113). The tissue concentration of 
the long proCCK fragment is higher in atrial than ventricular 
myocytes. The long proCCK fragment is released to plasma and 
may find use as a marker of the risk of mortality in heart failure 
patients (113).

Tumor expression
Cholecystokinin is expressed at highly variable amounts in 
different neuroendocrine tumors, especially corticotrophic 
pituitary tumors (44), medullary thyroid carcinomas (17), 
phaeochromocytomas (98), and pancreatic islet cell tumors of 
which some may cause a specific CCKoma syndrome (114–117). 
CCK is also expressed in Ewing’s Sarcomas, where proCCK 
measurements may be used to monitor the treatment (118). 
Cerebral gliomas, astrocytomas, and acoustic neuromas also 
express CCK (119–121). The present knowledge about tumor 
expression of CCK was recently summarized in a review that 
also discussed measurements of CCK and proCCK in plasma as 
tumor markers (122).

COnCLUSiOn

Since the identification of CCK half a century ago as a single 
peptide with a sequence of 33 amino acid residues (CCK-33), the 
CCK story has been loaded with major revelations: first, it was 
shown that the C-terminus of CCK was similar to that of gastrin, 
and that CCK and gastrin peptides share the same receptor, the 
CCK2 receptor. Then, it was demonstrated that bioactive CCK 
occurs in multiple molecular forms—from CCK-58 to CCK-5 
with and without tyrosyl O-sulfations. At variable intervals, it 
has since been shown that CCK peptides are expressed all over 
the body: in central and peripheral neurons, in intestinal and 
extraintestinal endocrine cells, in germ cells, kidney epithelial 
cells, cardiac myocytes, and immune cells. Moreover, the proCCK 
maturation appears to be cell specific, and tumors expressing 
CCK release correspondingly varying multifaceted patterns of 
CCK peptides. Thus, today CCK should be seen as an almost 
ubiquitous system of intercellular messenger peptides. The 
complex biology is probably characteristic for many regulatory 
peptides, for which the CCK system may serve as a source of 
inspiration for further research.
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