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The urotensinergic system was previously considered as being linked to numerous 
physiopathological states, including atherosclerosis, heart failure, hypertension, pre- 
eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out 
that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal 
models are currently not predictive enough in regard to their effects in human clinical 
trials and that UII analogs, established to target UT, were not as beneficial as expected 
in pathological situations. Thus, many questions remain regarding the overall signal-
ing profiles of UT leading to complex involvement in cardiovascular and inflammatory 
responses as well as cancer. We address the potential UT chemotactic structural and 
functional definition under an evolutionary angle, by the existence of a common con-
served structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., 
a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible 
for a kink helical structure that would play a key role in chemokine functions. Even if 
the last decade was devoted to the elucidation of the cardiovascular control by the 
urotensinergic system, we also attempt here to discuss the role of UII on inflammation 
and migration, likely providing a peptide chemokine status for UII. Indeed, our recent 
work established that activation of UT by a gradient concentration of UII recruits Gαi/o 
and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading 
to chemotaxis. We think that this new vision of the urotensinergic system should help 
considering UT as a chemotactic therapeutic target in pathological situations involving 
cell chemoattraction.
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iNTRODUCTiON

The urotensinergic system was previously considered as being linked to numerous pathophysi-
ological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal 
disease, as well as brain vascular lesions. Based on this expectation, validation of urotensin II (UII) 
receptor (UT) antagonism in cell lines expressing rat or human UT, observations in animal models, 
and even clinical results were not as beneficial as expected, probably because of the complex effects 
of the urotensinergic system depending on the vascular bed, the studied animal species, and/or 
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Table 1 | Comparison of the sequences of urotensin ii (Uii) and urotensin ii-related peptide (URP) in different species of tetrapods.

Family Species Peptide sequences

Scientific names Common names Uii URP

Tetrapods Pelophylax ridibundus Frog AGNLSECFWKYCV(2)
Hyla arborea Tree frog AGNLSECFWKYCV(2)
Xenopus laevis Xenope GNLSECFWKYCV ACFWKYCV
Gallus gallus Chicken GNLSECFWKYCV ACFWKYCI
Taeniopygia guttata Zebra finch GNLSECFWKYCV ACFWKYCI
Felis catus Cat GSPSECFWKYCV
Sus scrofa Pig GPPSECFWKYCV (8)
Ovis aries Sheep GPSSECFWKYCV
Bos taurus Cattle GPSSECFWKYCV ACFWKYCV
Rattus norvegicus Rat QHGTAPECFWKYCI (5) ACFWKYCV (9)
Mus musculus Mouse QHKQHGAAPECFWKYCI (10) ACFWKYCV (9)
Otolemur garmettii Galago GTPSECFWKYCV ACFWKYCV
Callithrix jacchus Marmoset ETPDCFWKYCV
Papio anubis Baboon ETPDCFWKYCV ACFWKYCV
Macaca mulatta Rhesus monkey ETPDCFWKYCV ACFWKYCV
Macaca fascicularis Macaque ETPDCFWKYCV
Nomascus leucogenys Gibbon ETPDCFWKYCV
Pongo abelii Orangutan ETPDCFWKYCV ACFWKYCV
Gorilla gorilla Gorilla ETPDCFWKYCV ACFWKYCV
Homo sapiens Human ETPDCFWKYCV (5) ACFWKYCV
Pan paniscus Bonobo ETPDCFWKYCV ACFWKYCV
Pan troglodytes Chimpanzee ETPDCFWKYCV (11) ACFWKYCV

The biologically active sequence of the peptides, highlighted in red, is conserved in all tetrapods.
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the administration route. Thus, it turns out that the actions of 
the UII/UT system in animal models are currently not predictive 
enough in regard to their effects in human clinical trials, thus 
many questions remain regarding the overall signaling profiles of 
UT leading to complex involvement in cardiovascular, inflamma-
tory responses, and cancer. We, here, propose that UII may rather 
play chemokine functions leading to long-term tissue remodeling 
and tumorigenesis, at least in part due to the pleiotropic functions 
of UT oriented toward chemoattractant activities.

THe Uii PePTiDe SYSTeM

endogenous Urotensinergic Peptide 
ligands, from Gene to Sequence
At the end of the 1960s, Drs. Bern and Lederis attributed the name 
“urotensins” to a series of biologically active peptides isolated from 
the urophysis neurosecretory system of the teleost fish Gillichthys 
mirabilis. Among those, UII was characterized through its abil-
ity to stimulate smooth muscle cells (1). Then, the amino acid 
sequence of UII was subsequently identified in a number of other 
fish species, and the presence of the UII peptide was discovered in 
the brain of a tetrapod, the frog Rana ridibunda (2, 3) two decades 
later (Table 1). Based on these observations, the gene encoding 
UII has been the subject of more research and was successfully 
identified in various mammalian species including in monkey 
and human (Table 1) (4, 5). The neuropeptide UII is composed 
of 11 amino acids in primates (including Homo sapiens) to 17 
amino acids in the mouse and shows remarkable conservation 
of the C-terminal CFWKYC hexapeptide portion formed by the 

covalent disulfide bridge (Table 1) during evolution, suggesting 
a crucial importance of the cycle in biological activity. To date, 
UII has been characterized in a single species of invertebrates, 
the Aplysia californica (6), in a form composed of 20 amino acids 
and whose cyclic hexapeptide differs from vertebrates by only two 
residues (F→L and Y→V) (7).

All the amino acid sequences of UII identified so far are mostly 
deduced from cDNAs and correspond to the C-terminal part of 
its precursor. In human, the deduced sequence of prepro-UII, 
cloned from colon tumor or placental library, evolved from alter-
native splicing of the human UTS2 gene, yielding a 124 (isoform b,  
NP_006777) and 139 (isoform a, NP_068835.1) amino acid vari-
ants. The two encoded isoforms are identical for the last 97 amino 
acids but differ at their N-terminal end exhibiting the signal 
peptide. The mature peptide UII results from the proteolysis of 
preproprotein UII at the tribasic site KKR by a specific urotensin 
converting enzyme (UCE), which is not still identified (4, 5). 
Study on the conversion of a 25 amino acid C-terminal fragment 
of preproprotein to mature peptide revealed that the endoprotease 
Furin and the serine protease trypsin, may act, respectively, as 
intracellular and extracellular UCE (12). This enzymatic cleavage 
appears necessary to confer biological activity (13).

In comparison with primate prepro-UII, precursors of rat 
and mouse UII markedly diverge by the amino acid composi-
tion of the N-flanking domain of the cyclic hexapeptide and by 
the absence of a typical cleavage site (KKR) for pro-hormone 
converting enzymes in the upstream region of UII sequence  
(10). These observations led Sugo and collaborators to characterize 
UII immunoreactivity detected in the brain of the two rodent 
species and to isolate, in 2003, a peptide similar to UII, the 
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urotensin II-related peptide (URP) (9). Later on, the cloning of 
the prepro-URP cDNAs, in human, mouse, and rat revealed 54% 
homology between human and rat vs 47% homology between 
human and mouse (14). However, the URP sequence is identical 
in all mammals and corresponds to human Ala1–UII4–11. Finally, 
although URP was initially thought to exist only in tetrapods, its 
gene has been identified in the genome of several teleost fishes 
(15, 16). Together, the sequences of UII, URP, and somastostatin 
display high homology in particular at the level of the cyclic 
hexapeptide sequence and it was established that URP is a pep-
tide paralog of UII (17).

General Distribution of Uii and Urotensin 
ii-Related Peptide
Urotensin II and URP are widely distributed in the cardiovas-
cular, renal, and endocrine systems. In humans, high expression 
levels of UII are found in the myocardium (18), the atria, and the 
ventricles (19–21). UII has also been detected in the heart of rats 
(4, 9, 20) and mice (11, 22). At the vascular level, the presence 
of mRNA for prepro-UII has been demonstrated in the arterial 
network, primarily in the thoracic aorta, pulmonary arteries, and 
arterioles. In contrast, it is almost absent in the venous network, 
with the exception of the saphenous and umbilical veins (19–21).

Several studies show that kidney is a major site of production 
of circulating UII in humans (9, 20, 21, 23, 24). The peptide is 
particularly abundant in glomerular epithelial cells, convoluted 
tubules, and collecting ducts (20, 25). Surprisingly, the level of 
expression of UII in the kidney of monkey and mice is weak (11), 
stressing some important differences between species. UII is also 
expressed in endocrine glands, such as pancreas or adrenal gland, 
in humans and rats (5, 23, 26). Nevertheless, the mRNA for UII is 
undetectable in these tissues in monkey and mice (11, 22), again 
raising the question of the occurrence of a conserved cardiovas-
cular and/or endocrine role of UII among the different species.

Even though the identification of URP has been done more 
than 10 years ago, data concerning this peptide are considerably 
much more incomplete. Nevertheless, it is worth noting that the 
expression of prepro-URP is predominant in the gonads and pla-
centa of humans and in the testis of rats (9). URP and its mRNA 
are also expressed in kidney (8, 9) and in the ventricles and 
myocardium of the rat heart (27, 28). The expression of the two  
peptides extends to the spleen, thymus, liver, stomach, and intes-
tines (5, 9, 11, 20, 22, 23, 29, 30).

Within the central nervous system (CNS), UII immunoreac-
tivity is mainly associated with motoneurons of the hypoglossal 
nucleus of the brainstem and the ventral horn of the spinal cord. 
This neuronal subpopulation also strongly expresses UII in the 
nuclei of the abducens, facial, trigeminal, and hypoglossal cranial 
nerves in rats (10, 31) and those of the caudal part of the spinal 
cord in mice (10, 32), rats (10, 31), and humans (4, 5). Surprisingly, 
UII is apparently absent from the brainstem of monkey (4, 11). 
URP mRNAs are localized in the spinal cord of humans and rats, 
at expression levels considerably lower than those of UII (9). In 
mice, URP mRNA is found in the brainstem and in motoneurons 
of the anterior horn of the spinal cord (22). Finally, URP is present 
in neuronal cell bodies of the preoptic region and in fibers of the 

median eminence and the organum vasculosum of the lamina 
terminalis, which is involved in thermoregulation (33).

Thus, UII and URP are not ubiquitously expressed within 
the peripheral and central nervous systems and likely show key 
expression levels in heart, arterial networks, and kidney with 
discrepancies between species, suggesting a non-conserved role 
in the vasomotor tone regulation.

Uii ReCePTOR UT ReCONSiDeReD iN 
liGHT OF CONSeRveD STRUCTURal 
PROPeRTieS

The UT receptor was initially discovered and cloned in 1995 
from rat sensory tissue extracts (34) and a rat genomic library 
(35). At this stage, this G protein-coupled receptor (GPCR) was 
named sensory epithelium neuropeptide-like by Tal et  al. (34) 
and GPR14 (according to the current nomenclature) by Marchese 
et al. (35). Whereas Ames et al. identified the UII peptide as the 
endogenous ligand of the human receptor homologous to GPR14 
by reverse pharmacology (4), other research teams in the same 
year corroborate the existence of the UII/GPR14 system in vari-
ous species (8, 36, 37). It is on the basis of these studies that the 
receptor was renamed UII receptor or UT, by the International 
Union of Basic and Clinical Pharmacology (IUPHAR).

Distribution of UT varies Depending  
on Species and Systems
The presence of substantial amounts of UII in the cardiovascular 
system has led several groups to investigate the expression of UT 
mRNA in different component tissues in rat (37–39) and mouse 
(36). In human and monkey, high levels of mRNA-encoding UT 
have been detected in the myocardium (18), the atria (4, 11, 21, 23), 
and the ventricles (4, 20, 23). At the vascular level, the presence of 
UT has been detected in the thoracic aorta (4, 21, 40) as well in the 
pulmonary and coronary arteries (41). In addition, UT, like UII, is 
strongly expressed in kidney from rat (27, 38, 42–46) and human 
(21, 23, 24, 41, 47), although it is only moderately expressed in 
monkey (44). UT is also present in the endocrine system, notably 
in the pituitary, pancreas, and adrenal gland in human (4, 23), 
monkey, and mice (11). Other peripheral tissues show significant 
levels of UT expression, which varies according to the species 
studied. The CNS shows widespread expression of UT mRNA, 
which is particularly abundant in the brainstem and spinal cord 
(23, 24, 36, 38, 48).

Other regions of the CNS, e.g., the cortex, hypothalamus, 
and thalamus, display relatively weak expression levels that vary  
between species. UT is also associated with cerebral blood vessels 
and is expressed mainly in the endothelial cells of microvessels 
(49). Finally, the expression of the receptor has been detected 
both in neurons (48) and in a subpopulation of astrocytes in 
the brainstem and hypothalamus (50) and in cultured cortical 
astrocytes (51).

Together, this UT distribution highly resembles the UII/URP 
distribution in cardiovascular endocrine and also nervous tis-
sues, naturally leading several groups to investigate the effects 
of UT on the cardiovascular system, even if the data remain 
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multiple and complex. In human, circulating levels of UII and/or 
URP (“UII-like”) are higher in patients with heart failure (52, 53), 
systemic (54) or portal hypertension (55, 56), or atherosclerosis 
(57), than in plasma of healthy volunteers. In fact, the UT-related 
mechanisms appear associated with tissue remodeling processes 
during the course of the disease (58), including cardiac hyper-
trophy and fibrosis (59). Thus, we here question whether UT may 
play an alternative chemokine-like function in primates than 
vasomotor regulatory activities as previously proposed in rats.

The UT Positioning Depends on the 
Different GPCR Classifications
Although GPCRs share a common structure, certain charac-
teristics make it possible to distinguish and to classify them in 
different families. However, based on the homology of sequence, 
structure, ligand binding mode, or phylogenetic relationships, 
the large number of GPCRs makes it difficult to develop a global 
classification system. The human UT receptor was shown to 
belong to the class A (Rhodopsin) GPCR family (60) according to  
the widely used structural classification in the past, based on the 
identification, by analysis of protein sequences of the TMs of the 
GPCRs listed in vertebrates and invertebrates, of fingerprints pre-
served within certain GPCR groups (61). GPCR members of class 
A (the largest family of GPCRs with 80% of GPCRs listed) share 
homologies of sequence, structure, and ligand-binding mode. 
The homologies of sequence between the receptors of class A can 
be very low since they rely on the conservation of a few residues 
mainly located in the TMs, which would play a primordial role 
in their structure and functionality. Within this classification, UT 
displays sequence homology not only with certain somatostatin 
receptors (SST), in particular with SST4 (27%), but also opioï-
dergic receptors (MOR: 26%, DOR: 26%, and KOR: 25%) (35), 
which are now crystallized (62, 63) and would constitute the best 
prototypes for UT modeling.

More recently, Fredriksson et  al. (64) proposed from the 
GPCR sequences a yet commonly used systematic classification 
system named GRAFS formed by the five distinct families of 
Glutamate (G), Rhodopsin-like (R), Adhesion (A), Frizzled/Taste 
(F), and Secretin (S). The Rhodopsin-like family showed a clear 
evolutionary success since containing around 90% of the GPCRs 
and is divided into four (α, β, γ, and δ) subclasses in Fredriksson’s 
classification. The crystallographic structures of Rhodopsin-like 
family indicate a common firm core corresponding to high con-
served sequence motifs, i.e., E/DRY in TM3, NPXXY on TM7, 
WXP on TM6, D2.50 in TM2 (X.50, according to the Ballesteros 
classification: X, numbering of TM; 50, the most conserved 
residue in the concerned TM) (65), and a water network that can 
be seen in the binding pocket mediating ligand interactions with 
the receptor (66). It can be noticed that the γ group includes 59 
GPCRs, divided into three different clusters, i.e., SOG (15 GPCRs 
like SST, OR or GPR54 receptor also named KISS1R), melanin-
concentrating hormone receptors (MCHR) (2 GPCRs), and 
CHEM (42 GPCRs) including chemokine receptors, such as the 
CXCR4, angiotensin (ANG), and bradykinin (BK) receptors, as 
well as a large number of orphan receptors. However, the neigh-
bor-joining and maximum parsimony method used in sequence 

analysis failed to affect 23 receptors into one family/group/
cluster, and this is the case for UT (named GPR14 in this study). 
These difficulties were due to an unusual part of the GPCR gene 
sequence in question [usually coding for intra- (i) or extracellular 
(e) loops] that would result from a chimeric origin of the receptor 
and/or progressive pressure not shared by neighboring receptors 
(64). However, UT shares the sequence pattern characteristic of 
Rhodopsin-like GPCRs. When comparing different sub-families 
of GPCRs from the conserved ligand binding pocket or from con-
served endogenous agonist ligands (67), UT can be found near 
GPR109A or purinergic P2Y receptors listed in orphan recep-
tors from the SOG or PUR cluster group by Fredriksson et  al.  
(64, 67). In light of these results, we suggest that UT possesses 
specific structures and functions related to the chemokine recep-
tors of the SOG and PUR families.

Thus, as members of the Rhodopsin SOG and PUR family, UT 
has a relatively short N-terminal domain with two N-glycosylation 
sites (N29 and N33), a NLxxxD2.50 motif within its TM2, a 
disulfide bridge between cysteine residues in the extracellular 
end of TM3 and the e2 loop, a ER3.50Y motif at the cytoplasmic 
end of the TM3, a CFxP6.50 motif within the TM6, the highly 
conserved NP7.50xxY motif at the TM7 level, and a palmitoyla-
tion site at the C-terminal tail (C334) (68). Other specific motifs 
are observed, namely (i) a KRARR nuclear localization motif at 
the i3 loop (69), (ii) potential sites of phosphorylation by protein 
kinases A and C, kinase I, and glycogen synthase kinase 3 at i2 
and i3 loops (35, 68, 70), (iii) serine potential phosphorylation 
sites at the C-terminal end involved in β-arrestin interaction and 
internalization of the receptor (71, 72), and (iv) polyproline type 
I and II motifs within the C-terminal tail potentially allowing  
the interaction with proteins harboring src homology 3 type 
domains (Figure 1).

UT Shares a Structural Feature with 
Chemotactic GPCRs: an evolutionary 
lighting
These human GPCR classifications were proposed from construc-
tions of phylogenetic trees, which require the use of several meth-
ods to assess the robustness of the obtained results. However, other 
strategies should be used when a position dependency hypothesis 
is questioned, the size of the dataset becomes large, and/or the 
relationships between proteins of the same family but of different 
genomes must be compared. Thus, to address some ambiguities 
concerning GPCRs classification, as highlighted for UT, analy-
ses of gene sequences by the metric multidimensional scaling  
(MDS) were conducted. MDS is also called “principal coordinates 
analysis” and corresponds to an exploratory multivariate proce-
dure designed to identify patterns, within proteins for example, 
in a distance matrix (73, 74). With MDS, protein sequences can 
be considered all at once, and individually represented in a low-
dimensional space whose respective distances best approximate 
the original distances. In addition, MDS allows the projection of 
supplementary information allowing a straightforward compari-
son of the active and supplementary data. Therefore, MDS was 
used to explore the sequence space of GPCR families and to inter-
pret patterns in relation with evolution, with projection of GPCR 
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FiGURe 1 | Schematic representation of the structure of human UT. The amino acids represented in yellow represent highly conserved residues within class 
A/Rhodopsin G protein-coupled receptor of which the UT is belonging. It concerns two N-glycosylation sites in the N-terminal part (Nterm), a NLxxxD motif in TM2, 
a ERY motif at the cytoplasmic end of the TM3, the CFxP motif in TM6, and NPxxY within the TM7. The key proline in position 2.58 appears in red within the TM2. 
The two cysteine residues involved in the disulfide bridge between the extracellular end of the TM3 and the e2 loop appear in blue. A nuclear localization motif (NLM) 
sequence (in pink) was also identified in i3 loop. In addition to these consensus motifs, the C-terminal tail of UT exhibits Serine phosphorylation sites (in green) 
potentially involved in β-arrestin 1 and 2 anchoring, cysteine, palmitoylation site and plasma membrane anchor (black) sites, as well as two polyproline type I and II 
motifs (in violet) extracted from analysis by Scansite (http://scansite3.mit.edu#home). Inset, the alignment of the UT C-terminal (C-term) sequence shows that the 
prolyproline motif allowing interaction with SH3 protein domain, is specifically conserved in hominoids.
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sequences from distant species onto the active space of human 
GPCRs (75, 76), based on the assumption that GPCR evolution 
could follow a radial rather than bifurcated path (represented by 
the classical phylogenetic tree system). The phylogenetic links 
between GPCRs of the same species were represented in three 
dimensions, and the results were shown superimposed between 
several species (75). By means of this evolutionary-based classifi-
cation, the work of the Chabbert’s group succeeded in identifying 
GPCRs of the Rhodopsin class in the same clusters as those found 
by Fredriksson et  al. (76), but some differences at the margin 
were also identified and likely stressed the way how some GPCRs 
may be activated and function. The differences are as follows: 
galanin receptors and Kiss1R belonging to the SOG cluster in the 
Fredriksson et al. classification, are likely rather connected to the 
PEP cluster according to Chabbert et al., and then SOG becomes 
SO cluster. In addition, the MCHR and UT appeared in this new 
classification, grouped in this SO cluster (76).

This is probably the evolutionary point of view that gives the  
best indications about UT membership and structural character-
istics. Indeed, MDS analysis of GPCRs of the Rhodopsin family 

allowed the receptors to be sorted into four groups (G0–G3) com-
prising different clusters (76). The group G0 represents the central 
group and includes the clusters PEP, OPN, and MRN, the group 
G1 includes the cluster SO (SST, OR, and UT), CHEM, and PUR 
(Table 2), the group G2 contained AMIN and AD clusters and 
finally G3 involves LGR, MEC, PTG, and MRG clusters (Table 2). 
It is interesting to note that in C. intestinalis, the CHEM cluster 
only slightly differs from the SO cluster, thus suggesting that this 
SO/CHEM group gave rise, in vertebrates, to SO, CHEM, and PUR 
clusters, suggesting a common origin. Moreover, the cluster SO  
and PEP are close in the most distant ancestral species from 
human and their distance increases during evolution (75). These 
observations argue in favor of a common origin between PEP and 
SO, CHEM, and PUR clusters (76) and allow the repositioning  
of UT from a “peptide family (PEP)” group to a chemokine recep-
tor family.

Sequence comparison of the different groups (G0–G3) shows 
that the main characteristic of the G1 group receptors, including 
UT is a proline within the TM2 in position 2.58 (P2.58), often pre-
ceded by an aliphatic residue whereas G0 group mainly comprises 
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Table 2 | assignment of the 13 non-olfactory human G protein-coupled receptor clusters from the rhodopsin class into four groups,  
G0, G1, G2, and G3, in addition to an UC.

Group Family Pattern Homo sapiens

G0 PEP
Peptide

P2.58 MTLR, GHSR
P2.59 NMUR1, NMUR2, NTR1, NTR2, GPR39, EDNRA, EDNRB, ETBR2, GPR37, PKR1, PKR2, NPY1R, NPY2R, 

NPY4R, NPY5R, BRS3, GRPR, NMBR, CCKAR, GASR, QRFPR, OX1R, OX2R, NPFF1, NPFF2, PRLHR, GNRR2, 
GNRHR, GPR83, GALR1, GALR2, GALR3, KISSR, GP151, GP173, GPR19, GPR27, GPR84, GPR85

P2.60 V1AR, V1BR, V2R, OXYR, TRFR

NoP NK1R, NK2R, NK3R, GP150

OPN P2.59 OPN4, OPSX

Opsin P2.60 OPSB

NoP OPN3, OPN5, RGR, OPSR, OPSD

MTN P2.59 MTR1A, MTR1B, MTR1L
Melatonin

G1 SO P2.58 OPRM, OPRD, OPRK, OPRX, SSR1, SSR2, SSR3, SSR4, SSR5, NPBW1, NPBW2, UT, MCHR1, MCHR2
Somatostatinergic  
opioïdergic

CHeM
Chemokine

P2.58 CCR5, CCR2, CCR3, CCR1, CCR4, CCR8, CX3C1, CCRL2, CCBP2, XCR1, CCR9, CCR7, CCR6, CCRL1, 
CXCR4, CXCR2, CXCR1, CXCR5, CCR10, CXCR3, CXCR6, CXCR7, RL3R1, RL3R2, ADMR, AGTR1, AGTR2, 
BKRB1, BKRB2, APJ, GPR25, GPR15, C5ARL, C5AR, C3AR, GPR44, FPRL1, FPRL2, FPR1, LT4R1, LT4R2, 
CML1, GPR32, GPR33, GPR1

NoP GP152

PUR
Purinergic

P2.58 P2RY1, P2RY2, P2RY4, P2RY5, P2RY6, P2RY8, P2RY9, P2Y10, P2Y12, P2Y13, P2Y14, PTAFR, SUCR1, 
OXER1, OXGR1, G109A, PSYR, SPR1, CLTR1, CLTR2, PAR1, PAR2, PAR3, EBI2, FFAR1, FFAR2, FFAR3, GPR4, 
GPR17, GPR18, GPR20, GPR31, GPR34, GPR35, GPR55, GPR81, GPR87, GPR92, GP132, GP141, GP174, 
GP171, Q5KU21, GPR82

P2.58P2.59 P2Y11, PAR4

G2 AMIN
Aminergic

P2.59 5HT1B, 5HT1D, 5HT1E, 5HT1F, 5HT1A, 5HT7R, 5HT4R, 5HT2A, 5HT2C, 5HT2B, 5HT5A, HRH1, HRH2, HRH3, 
HRH4, DRD1, DRD2, DRD3, DRD4, DRD5, ADA1A, ADA1B, ADA1D, ADA2A, ADA2B, ADA2C, ADRB1, ADRB2, 
TAAR1, TAAR2, TAAR3, TAAR5, TAAR6, TAAR9

P2.59P2.60 5HT6R, ADRB3

NoP TAAR8, ACM1, ACM2, ACM3, ACM4, ACM5

AD
Adrenergic

P2.59 AA2AR, AA2BR, AA1R, AA3R

G3 LGR NoP LGR4, LGR5, LGR6, RXFP1, RXFP2, TSHR, LSHR, FSHR
Glycoproteins

MEC NoP ACTHR, MSHR, MC3R, MC4R, MC5R, CNR1, CNR2, EDG1, EDG2, EDG3, EDG4, EDG5, EDG6, EDG7, EDG8, 
GPR3, GPR6, GPR12Melanocortin

Cannabinoid

PTGR P2.59 PE2R2, PE2R3, PE2R4, PD2R, PI2R
Prostaglandin NoP TA2R, PF2R, PE2R1

MRG NoP MAS, MAS1L, MRGRF, MRGX1, MRGX2, MRGX3, MRGX4, MRGRD, MRGRE
Mas-related

UC UC P2.58 GPBAR, GP120, Q5KU14, GP146

P2.59 GPR22, GPR26, GPR45, GPR61, GPR62, GPR63, GPR75, GPR78, GPR88, GP101, GP135, GP161, GP176

P2.60 GPR21, GPR52

Abbreviations of the SO, CHEM, and PUR clusters of the G1 group displaying a P2.58 are in bold. The SO family containing UT is shown in red. The receptors with their most 
common abbreviations belonging to each of the clusters in the G0–4 and unclassified group (UC) groups are listed [from Pelé et al. (76)].
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receptors harboring a proline in position 2.59. Together, only the 
G1 group, which includes the SO containing UT, CHEM, and 
PUR clusters, is therefore characterized by a proline P2.58 (75, 
76) (Figure 2A). Given the phylogenetic links between the PEP, 
SO, CHEM, and PUR clusters, it is proposed that the position of 
the proline in 2.58 for the SO, CHEM, and PUR clusters results 

from a codon deletion in the TM2 of receptors of the PEP family. 
This proline in TM2 either on P2.58 or P2.59 induces a typical 
elbow observable by modeling (77, 78) and confirmed by crystal-
lographic studies (79–81), yielding bulge and kink structures, in 
P2.59 and P2.58 receptors, respectively (Figures 2A,B). In fact, 
by plotting the curvature and flexibility of the TM2, the position 
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FiGURe 2 | Classification of the different G protein-coupled receptor (GPCR) sub-families according to the multidimensional scaling (MDS) analysis 
and focus on the proline position in TM2 of receptors from the G0 and G1 groups. (a) In the MDS representation of Rhodopsin-like GPCRs, receptors are 
visualized as points, with the distances between points as close as possible to the distance in the identity matrix [from Ref. (76)]. The points cluster into four groups, 
highlighted by ellipses. The color code indicates receptor sub-families and is given in the Figure along with the group the sub-family belongs to. Examples of 
receptors with the position of the TM2 proline are shown for the G0 and G1 groups. The arrow indicates the position of UT [modified from Ref. (76)]. (b) Cartoon 
view of the PEP receptor OX2 (P2.59, PDB access number: 4S0V, left panel) and of the CHEM receptor CXCR4 (P2.58, PDB access number: 3ODU, right panel). 
TM2 is slate. The TM2 proline (green) and the preceding oxygen (red) are shown as spheres. In CXCR4, P2.58 is close to the carbonyl groups at positions −3  
and −4 (proline kink). In OX2, P2.59 is close to the carbonyl groups at positions −4 and −5 (proline bulge). Thus, according to the position 2.58 or 2.59 of the  
TM2 proline, the structure of TM2 presents a kink or a bulge.
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of the proline could affect the degree of opening of the GPCR-
binding pocket and their activation mechanisms (82). Thus, the 
change in conformation of the TM2, following the deletion of a 
residue within the TM2 helix, would contribute to the emergence 
of activation mechanisms specific to SO, CHEM, and PUR cluster 
receptors.

As many CHEM and PUR receptors are widely recognized as 
mediating chemotaxis and chemoattractant behaviors, we pro-
pose that the P2.58 and kink feature the TM2 of UT, has allowed 
the capacity of UII gradient sensitivity and chemotactic behavior, 
leading to cell migration and invasion.

Uii/UT SYSTeM, FROM 
CaRDiOvaSCUlaR FUNCTiONS  
TO CHeMOKiNe PROPeRTieS

Physiological and Pathophysiological 
effects of the Urotensinergic System  
on the Cardiovascular Functions
The distribution of UT and its endogenous ligands has naturally led 
several groups to investigate the effects of UT on the cardiovascu-
lar system. When applied to de-endothelialized aortic rings from 
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rats (4, 36, 83, 84), rabbits (85), macaques (4), or humans (20, 41, 
42, 86–88), UII induces dose-dependent constriction. This effect 
is observed at doses so low that this neuropeptide was consid-
ered the most potent naturally occurring vasoactive compound  
(4, 20). For example, in a murine model, UII is 660 and 16 times 
as powerful as serotonin and endothelin, respectively (4). This 
vasoconstrictive activity is primarily relayed by the mobilization 
of cytosolic calcium (4, 36). Calcium recruited by UT is derived 
partly from an intracellular pool via the activation of channel 
receptors sensitive to inositol triphosphate (IP3) and partly from 
the extracellular pool via L-type calcium channels (89–92). 
Calcium activates calmodulin, whose blockade inhibits the effects 
of UII on the contraction of rat aortic rings (89). Calmodulin 
in turn activates myosine light-chain kinase, responsible for the 
phosphorylation of MLC-2 and the contraction of actomyosin 
(93, 94). In the sidelines of this principal intracellular signaling 
pathway, other pathways involved in the contractile activity of 
UII, such as the PKC/ERK and the RhoA/ROCK pathways, have 
also been identified (92–95).

However, when injected as an intravenous bolus in anes-
thetized or conscious rats, UII and URP provoke a slow and 
prolonged decrease in arterial pressure due to vasodilatation 
(9, 96–98). In contrast, chronic administration of UII to these 
animals has no effect (99). In primates, intravenous admin-
istration of UII exerts a strong vasodilatation, responsible 
for cardiovascular collapse and cardiac arrest at high doses 
(4, 100). However, results in humans are more controversial, 
since the intravenous injection of UII leads to local vasocon-
striction (101) or has no apparent effect (102–104). Studies 
investigating skin microcirculation even showed that UII 
infusion through iontophoresis induces a dose-dependent 
vasodilatation in healthy volunteers but a dose-dependent 
vasoconstriction in patients with chronic heart failure, systemic 
hypertension, cirrhosis, or diabetes without cardiovascular 
pathology (54, 105–107). Finally, endothelium alterations 
observed in these pathologies could alter vasodilator properties  
of UII and explain, at least in part, the differences between 
patients and healthy volunteers.

Overexpression of UII, URP, and UT in the heart of rats and 
humans with heart failure has also been demonstrated (13, 28) 
with a correlation between UII plasma level and the cardiac 
dysfunction (108). A strong “UII-like” immunoreactivity was 
seen in coronary artery endothelial cells from patients with ath-
erosclerosis (20, 109), associated with a significant effect of UII on 
the proliferation of vascular smooth muscle cells (95, 110) or the 
formation of foam cells (111, 112). Moreover, in rat models, treat-
ment by a UT antagonist reduces mortality and improves cardiac 
function after myocardial infarction (113), decreases coronary 
angioplasty restenosis (114), pulmonary arterial hypertension 
(115) and aortic inflammation, and atherosclerosis (116).

Taken together, these data suggest that this peptide could par-
ticipate rather in tissue remodeling processes during the course  
of the vascular disease (58) than in tonic vasculo-motor func-
tions. This hypothesis is reinforced by the absence of modification 
of the vascular tone, and the appearance of a reduced metabolic 
syndrome and atherosclerotic lesions in UII knockout in com-
parison with wild-type mice (117).

effects of Uii on Cell Proliferation, 
Survival, and Hypertrophy
More related to tissue remodeling, the urotensinergic system 
exerts promitogenic effects on a number of native and recom-
binant cell types and hypertrophic functions only on cardio-
myocytes (Table 3). The activation of ERK is a central element of 
these effects, either in cell lines transfected with cDNA encoding 
human UT (118) or in native cells expressing the receptor, i.e., 
pig renal epithelial cells (119) or rat smooth muscle cells (120). 
Several signaling pathways leading to the activation of ERK  
and cell proliferation, survival, or hypertrophy have been 
described in the literature. One of these pathways involves the 
transactivation of the epidermal growth factor receptor (EGFR) 
(121–123). This is often dependent on the production of reactive 
oxygen species (ROS) by an NADPH oxidase activated by UT 
(124). The ROS relieve the inhibition exerted by src homology 
2-containing tyrosine phosphatase (SHP-2) on EGFR, allowing 
the transduction of the mitogenic signal (123, 125). This phenom-
enon of transactivation can also be underpinned by the activation 
of a disintegrin and metalloproteinase (ADAM) which cleaves 
the precursor of EGF, the heparin-binding EGF-like growth fac-
tor, and releases the active ligand EGFR accordingly (122, 126) 
(Table 3). The promising effects of UT are also relayed by other 
second messengers than previously described (PLC and PI3K), 
via receptor coupling to a pertussis toxin-sensitive Gi/o proteins 
in native (45, 118, 127, 128), tumoral human rhabdomyosarcoma 
(129), or recombinant cell lines (130). These last observations 
suggest that the ability of UT to coupled Gi/o in addition to Gq, 
may have provided acquisition of specific skills important for 
other activities than cardiovascular tone regulation.

effects of Uii on the immune System, 
Relevant to Chemokine-like activity
There are few data concerning the link between urotensinergic 
and immune systems. Some studies have demonstrated the pres-
ence of UT on the surface of selected immune cells, i.e., B and 
NK lymphocytes, monocytes, and macrophages (145, 156), which 
infiltrate zones displaying high levels of immunoreactivity for UII 
(20). UII acts as a chemoattractant for human monocytes (145) 
and induces the extravasation of plasma in mice (157) and rats 
(158) (Table 3). Pro-inflammatory signals, such as tumor necro-
sis factor-α (TNF-α), lipopolysaccharide (LPS), or interferon-γ 
(IFN-γ), promote the expression of UT (145), while UII induces 
the secretion of cytokines, such as interleukine-6 (IL-6), in UT 
transfected human cardiomyocytes and lung adenocarcinoma 
cells (159, 160). Moreover, UII favors acetyl-coenzyme A acetyl-
transferase 1 activity in human monocyte (112). On coronary 
smooth muscle cells or endothelial cells in culture, UII increases 
the synthesis of inflammatory and pro-thrombotic markers like 
the plasminogen activator inhibitor-1, the inter-cellular adhesion 
molecule-1, and the tissue factor through activation of the necro-
sis factor NF-κB, a pro-inflammatory transcription factor (124, 
161). Finally, expression of UT in human leukocytes, especially 
monocytes and NK cells, is strongly stimulated after exposure to 
LPS and requires NF-κB (145). In addition, in a mouse model 
of inflammatory acute liver failure, the expression of UII and 
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Table 3 | Transduction pathways associated with UT receptor activation and involved mitogenic and chemokine functions other than cardiovascular 
tone regulation.

effect Cell type Species Transduction pathways Reference

Proliferation Arterial SMC Rabbit PKC, src, MAPK (110)
Rat RhoA, ROCK (95)

CHO-UT Hamster Gi/o, PI3K, PLC, calmodulin, MEK, extracellular Ca2+ (118)
Renal epithelial cells Pig Ca2+ (voltage-dependent channels), PKC, MAPK, ERK, c-myc (119)
Airway SMC Rat PKC, MAPK, Ca2+, calcineurin (131)
Cardiac fibroblasts EGFR transactivation, ERK, ROS (121)
Renal tubular cell line ROS, inhibition of SHP-2, EGFP transactivation via HB-EGF (122)
SMC Ca2+, CaMK, ERK, PKD (132)
Endothelial precursors ERK, p38MAPK (133)
Airway SMC ERK, TGFβ (120)
Airway SMC Human NOX, ROS, ERK, p38MAPK, c-Jun, Akt, expression of PAI-1 (124)

NOX4, ROS, FoxO3, JNK, MMP-2 (134)
Astrocytes Rat PLC, intra- and extracellular Ca2+ (T-type channel), IP3, Gi/o (128)
Fibroblastes MAPK, VEGF expression, collagen production (135)
Aortic SMC ROS, SHP-2 inhibition, EGFR transactivation (123)
HUVEC Human p38MAPK, ERK (136)
Cardiac precursors Mouse JNK, LRP6 (137)

Survival Vascular SMC Rat N. D. (138)
Cardiomyocytes PI3K, ERK (139)

Hypertrophy Cardiomyocytes-UT Rat Gq, Ras (59)
EGFR transactivation via HB-EGF, ERK, p38MAPK (126)

Cardiomyocytes ROS, SHP-2 inhibition, EGFR transactivation (125)
PI3K, Akt, GSK-3β (140)
ROS, NADPH oxydase, Akt, GSK-3β, PTEN (141)

Angiogenesis HUVEC Human PLC, Ca2+, PKC, PI3K, ERK1/2, FAK (142)
VEGF, endothelin-1 and adrenomedullin expression (143)
HIF-1, ROS, NOX-2 (144)

Neuromicrovascular endothelial cells Rat N.D. (49)
Chick embryo chorioallantoic membrane Chicken N.D. (49)

Migration, motility, adhesion HEK293 Human N.D. (130)
Monocytes Human RhoA, ROCK (145)
Endothelial progenitors Rat RhoA/ROCK, MLC (146)
Prostatic adenocarcinoma (LNCaP) Human RhoA, FAK (147)
Vascular SMC MEK (148)
Vascular fibroblasts Rat PKC, ROCK, calcineurin, MAPK (149)

(150)
Endothelial progenitors N.D. (151)
Colorectal carcinoma Human N.D. (152)
Bladder cancer N.D. (153)
Glioblastoma cell line G13/Rho/ROCK, Gi/o/PI3K (154)

Inhibition of pre-autophagic endosomes (155)

Akt, protein kinase B; CaMK, calmodulin kinase; CHO-UT, Chinese hamster ovary line transfected with the human form of the UT receptor; EGFR, epidermal growth factor 
receptor; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; FoxO3, forkhead box O3; Gi/o, Gq, G13, G proteins type i/o, q and 13; GSK-3β, glycogen synthase 
kinase 3β; HB-EGF, heparin-binding EGF-like growth factor; HIF-1, hypoxia inducible factor-1; HUVEC, human umbilical vein endothelial cells; IP3, inositol triphosphate; LRP6, low 
density lipoprotein receptor-related protein 6; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, extracellular signal-regulated kinase; MLC, myosin 
light chain; MMP-2, matrix metalloprotease type 2; NOX, NADPH oxidase; p38MAPK, p38 mitogen-activated protein kinase; PAI-1, plasminogen activator inhibitor-1; PI3K, 
phosphatidylinositol-3 kinase; PKC, protein kinase C; PKD, protein kinase D; PLC, phospholipase C; PTEN, phosphatase and tensin homolog; Ras, small GTPases; RhoA, Ras 
homolog gene family, member A; ROCK, rho-associated protein kinase; ROS, reactive oxygen species; SHP-2, src-homology 2-containing tyrosine phosphatase; SMC, smooth 
muscle cells; TGFβ, transforming growth factor-β; VEGF, vascular endothelial growth factor; N.D., not determined.
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UT was significantly increased in liver endothelial cells, and a 
pretreatment by the UT biased ligand (130) urantide decreased 
NF-κB activation and inflammatory cytokine (TNF-α, IL-1β, 
IFN-γ) expression (162).

These data indicate that UII is involved in the immune 
response and, notably, participates in the production of cytokines 
and the promotion of immune cell infiltration, suggestive of a 
chemokine functional activity relayed by the peptide UII, raising 
a more conserved role in chemotactic attraction of immune cells 
in pathological situations.

Chemokine activity of Uii in the Context  
of Tissue Remodeling and Cancer
Chemotaxis is currently known as the fundamental phenomenon 
highly conserved from bacteria to eukaryotic cells, implying cell 
directed migration along an extracellular chemical gradient 
(163–165), a mechanism essential for a number of physiological 
and pathological processes including embryogenesis and wiring 
of the CNS (166, 167), the immune system inflammatory response 
(168), angiogenesis and cancer cell metastasis, and invasion  
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FiGURe 3 | a hypothetical outline of chemokine signaling cascade relayed by the urotensinergic system inducing cell migration. Illustration of a 
pathophysiological situation involving directional migration/invasion of cells expressing UT in response to a urotensin II (UII) gradient concentration. It is proposed 
that mobile high-affinity UT coupled to both Gαi/o and Gα13 is activated by a low concentration of UII, would promote the formation of protrusions and adhesions at 
the front of the cell through PI3K/PIP3/GEF/Rac/Cdc42 signaling cascade. At the back of the migrating cell, concomitant activation of G13, likely allows actomyosin 
contraction via the Rho/ROCK/MLCK pathway. To favor cell progression toward the emission source of UII, mobile or engaged UT coupled to Gi/o in lipid rafts may 
activate proteins responsible for the formation and maturation of focal adhesions composed of αv integrins and vinculin. Together, this pleiotropic UT associated 
signaling events represents a prototypic chemokine-mediated mechanism shared by P2.58 GPCRs allowing chemotactic migration. Cdc42, cell division control 
protein 42; GEF, guanine nucleotide exchange factor; MAP1A, microtubule-associated protein 1A; MLCK, myosin light-chain kinase; PI3K, phosphatidylinositol-3 
kinase; PIP3, phosphatidylinositol 4,5-trisphosphate; ROCK, rho-associated protein kinase [from Ref. (154)].
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(165, 169). The “professional” players of chemotaxis, chemokines, 
are subdivided into C, CC, CXC, and CX3C families, based on 
the number and spacing of the conserved cysteine residues in 
their amino termini. Members of the CXC, containing CXCL12  
(stromal derived factor-1 or SDF-1) and CC including CCl2 
(monocyte chemoattractant protein-1, MCP-1) or CCl5 (regu-
lated upon activation normal T cell, RANTES) chemokine fami-
lies are known to chemoattract neutrophils, T/B lymphocytes, 
or natural killer cells and monocytes, macrophages, or T  lym-
phocytes, respectively (170). Through activation of chemotaxis, 
CXCL12, CCL2, CCL5, or CXCL1 chemokines were shown 
to stimulate growth, migration/invasion/metastasis as well as 
angiogenesis and tube formation (171, 172). The CXCL12 and 
its CXCR4 have long been shown to constitute a promising thera-
peutic based-system in pre-clinical models and in early clinical 
trials, but other prototypic chemokines emerge as new potential 
players in cancer. CCl2 together with its cognate CCR2 play key 

roles in cancer metastasis by sustaining cancer cell proliferation 
and survival, stimulating cancer cell migration and invasion, 
and inducing deleterious inflammation and angiogenesis (173, 
174). In addition, various cancer cells produced CCl5 but also 
expressed CCR1, CCR3, and CCR5, suggesting autocrine/parac-
rine mechanisms, associated with metalloproteinase activation 
and invasion (175, 176).

Consistent with this, a growing number of independent stud-
ies show that UII exerts a stimulatory effect on cell migration 
(Table 3). The Rho/ROCK signaling pathway appears to play a 
major role in the effects of UII on the migration of rat fibroblasts 
(149) and endothelial progenitor cells (146) as well as human 
monocytes (145). In the latter case, the authors consider UII to 
be a chemotactic factor that acts on the reorganization of the actin 
cytoskeleton (Figure 3).

The expression of UT at the endothelial level associated with 
the pro-migration- and mitotic effects of UII, suggested the 
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involvement of the urotensinergic system in angiogenesis. The 
first evidence for a proangiogenic effect of UII was obtained by 
Spinazzi et al., demonstrating that UII leads to the reorganiza-
tion or tubulogenesis of endothelial cells derived from rat brain 
microvessels, and stimulates in vitro angiogenesis (49). Application 
of UII in a gelatin implant to the chorioallantoic membrane of 
chick embryos evokes an increased number of blood vessels 
(49). Accordingly, studies on human umbilical vein endothelial 
cells confirmed these data (142, 144, 177) and converge toward 
chemoattraction of cultured endothelial cells by UII.

The major demonstration of the chemotactic role of the UII/
UT system comes from studies on cancer cell lines. The expression 
of UII and UT is observed in numerous cell lines and tumor sam-
ples (Table 3), notably in extracts of adrenal gland tumors, such 
as adrenocortical carcinomas or pheochromocytomas (178, 179),  
tumors of the CNS such as glioblastomas or neuroblastomas  
(44, 180, 181), or tumors of muscular tissue, such as rhab-
domyosarcomas (129, 182). To date, few isolated studies 
have investigated the role of the urotensinergic system in 
tumorigenesis. For example, UII has been shown to stimulate 
the proliferation of cells of a pulmonary adenocarcinoma cell 
line in vitro and in vivo in a xenograft model in immunodeficient 
nude mice (183). The same team has more recently shown that 
UII stimulates the release of pro-inflammatory cytokines, such 
as IL-6, TNF-α, or matrix metalloproteinase-9 and participates 
in macrophage infiltration of the tumor (160). In human cell 
lines derived from prostatic or colorectal tumors, application of 
urantide, Rho pathway inhibitor, or shRNA against UT leads to 
a decrease in their motility and invasiveness (147, 152). More 
recently, the expression of UII and UT was also observed in other 
solid tumors from colon, bladder, and breast (152, 153, 184). The 
activation of UT with the agonist UII4–11 in colon cancer cell lines 
resulted in stimulation of cell growth whereas the treatment with 
three biased ligand/antagonists (urantide, UPG83 and UPG85) 
induced growth inhibition (152). As macrophages have been 
associated with tumor progression, metastasis, and resistance to 
treatments (185), these results suggested an important role of 
UII in chemokine functions associated with tumor development 
(Table 3).

Definitely, the urotensinergic system appears to be involved 
in cancer cell motility and invasion. Indeed, our recent work  
demonstrated in glioma cell lines and in recombinant HEK293 
cells, that activation of UT by UII involves a signaling switch 
through the couplings to Gα13/Rho/ROCK kinases and Gαi/o/
PI3K pathways, involved in actin stress fibers, lamellipodia 
formation and vinculin-stained focal adhesions to initiate direc-
tional migration and cell adhesion, sequential mechanisms in 
tumor invasion (154). This type of mixed couplings were thus 
proposed for the CCl2/CCR2 system in human bone marrow 
stem cells in which activation of CCR2 regulates PI3K likely 
contributing to cell polarity and migration and Rho/ROCK 
leading to cell retraction (186). Moreover, we provide evidence 
that UT-induced inhibition of the autophagic process is also a 

key element in the migration of HEK293 cells expressing UT 
or CXCR4 as well as U87 glioblastoma cells. Autophagy inhibi-
tion after activation of UT or CXCR4 at the leading edge may 
also locally protect proteins involved in actin remodeling and 
adhesion assembly, whereas autophagy could remain active at 
distance from chemotactic GPCRs in order to participate in the 
disassembly of large focal adhesions (155). Together, the more 
recent pro-migratory, pro-inflammatory and invasiveness role 
of the urotensinergic system bring it closer to the chemokine 
systems, such as CXCL12/CXCR4 or the CCl2/CCR2 pair, 
widening the therapeutic field of pathologies characterized by 
cellular migratory events, such development, inflammation, 
invasion and metastasis.

CONClUSiON

In this review, we address the putative UT chemotactic struc-
tural and functional definition under an evolutionary angle. 
According to the postulated evolutionary mechanism, a deletion 
in TM2 of an ancestral PEP receptor with the P2.59 pattern led 
by divergence to receptors of the G1 groups with the P2.58 pat-
tern, including UT and chemokine receptors, such as CXCR4. 
In view of the evolutionary history and chemotaxic properties 
of UT, we propose that UII/UT may rather be considered as a 
new chemokine system. Indeed, even if the last decade was 
mainly devoted to the elucidation of the cardiovascular control 
by the urotensinergic system, interesting investigations on the 
pro-inflammatory and pro-migratory properties of UII lead us 
to stipulate that urotensinergic system must be now considered 
in a new chemokine therapeutic target in pathological situations 
involving cell chemoattraction.
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