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The gut plays a central role in energy homeostasis. Food intake regulation strongly relies 
on the gut–brain axis, and numerous studies have pointed out the significant role played 
by gut hormones released from enteroendocrine cells. It is well known that digestive 
products of dietary protein possess a high satiating effect compared to carbohydrates 
and fat. Nevertheless, the processes occurring in the gut during protein digestion 
involved in the short-term regulation of food intake are still not totally unraveled. This 
review provides a concise overview of the current data concerning the implication of 
food-derived peptides in the peripheral regulation of food intake with a focus on the gut 
hormones cholecystokinin and glucagon-like peptide 1 regulation and the relationship 
with some aspects of glucose homeostasis.

Keywords: protein digestion, bioactive peptides, food intake regulation, gut hormones, dipeptidyl peptidase iv, 
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iNTRODUCTiON

Food intake regulation strongly relies on the gut–brain axis, and numerous studies have pointed out 
the significant role played by gut hormones in response to food digestion (1, 2). These hormones 
are involved in appetite regulation as short-term peripheral satiety signals. They promote satiety, 
i.e., diminish appetite and reduce food intake by endocrine and nervous paths activating different 
signaling pathways (3–5).

The increasing expansion of obesity-related diseases has led the scientific community to explore 
new therapeutic approaches. They need to promote long-term body weight decrease and stabiliza-
tion, especially fat loss, as well as satiety while reducing caloric intake (6). Dietary proteins have a 
greater satiety effect than carbohydrates and fat when equally consumed (7). However, this effect may 
rely on the protein source (8). Satiating properties of dietary proteins come from various physiologi-
cal effects such as gut hormone secretion stimulation, energy expenditure and amino acid circulating 
level increase, and gluconeogenesis stimulation (9). Nevertheless, the mechanisms occurring in the 
gut and leading to the release of peripheral signals (e.g., gut hormones) implicated in the short-term 
regulation of food intake are still unclear. In the context of obesity and type 2 diabetes mellitus 
(T2DM) management, protein intake has revealed interesting positive effects on glycemia decrease, 
insulin secretion, and body fat loss (10). So far, the beneficial effects of protein intake on energy 
homeostasis remain partially elucidated but have been mainly attributed to amino acid composition 
(6). Bioactive peptides have emerged as potential molecules accounting for the positive effects of 
protein intake on weight loss and glycemia management. The process of gastrointestinal (GI) diges-
tion is able to release bioactive peptides at circulating levels that might exert significant physiological 
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effects on energy homeostasis. Unfortunately, their quantification 
in vivo still remains challenging. Some food protein-derived pep-
tides, especially from dairy proteins, have demonstrated several 
biological activities, and these have been well characterized in 
relation to glycemia management (11). Nevertheless, the many 
bioactivities of food-derived peptides described so far still need 
to be better defined and integrated in a context of physiological 
function. Here, we review the involvement of protein-derived 
bioactive peptides in the short-term regulation of food intake and 
the mechanisms of protein-induced satiety, with a special focus 
on the gut hormones, cholecystokinin (CCK), and glucagon-like 
peptide 1 (GLP-1) on the one hand, and some aspects of glucose 
homeostasis on the other hand.

CCK SeCReTiON AND BiOACTive 
PePTiDeS

Cholecystokinin, mainly secreted by enteroendocrine I cells 
located in the upper intestinal tract, acts at different levels on food 
intake regulation. It retards gastric emptying, stimulates pancre-
atic secretion and decreases food intake. Several studies in rats or 
humans have proved that protein or protein hydrolyzate intake 
could stimulate CCK secretion correlated with a gastric emptying 
decrease (12, 13), inhibit intraluminal protease activity (14) or 
decrease food intake (15). The GI digestion process appears as 
a key step which emphasizes the satiating properties of dietary 
proteins. Several in vivo and in vitro studies with intact proteins, 
their hydrolyzates or corresponding amino acid mixtures illus-
trate this phenomenon. Indeed, peptides are sequentially released 
throughout GI digestion and are, with fatty acids, the main 
stimuli of CCK release. Sharara et al. have shown that a protein 
intake stimulated postprandial secretion of CCK in rats, though 
indirectly, whereas free amino acid intake had no effect (16). 
Soy protein or casein intake in rats caused a delay in food intake 
decrease compared to the one induced by the respective protein 
hydrolyzates. This might be due to a slower release of peptides 
occurring during intact protein GI digestion (17). In vitro, the 
STC-1 murine enteroendocrine cell (EEC) line is widely used 
for intestinal hormones synthesis and secretion studies. Using 
this model, the greater CCK stimulating potential of various 
peptones or protein hydrolyzates than the equivalent mixtures of 
free amino acids has been shown and further investigated. Amino 
acid mixtures representing the composition of various protein 
hydrolyzates such as soy protein (18), blue whiting or shrimp 
(19, 20) or various animal peptones (21) displayed lower CCK 
enhancing effects than their associated hydrolyzates. A beneficial 
effect of a longer pepsin hydrolysis time has been observed on the 
CCK enhancing potential of a soy protein hydrolyzate (18). The 
peptide structure thus seems a key determinant in the stimulation 
of CCK secretion, although this is still questionable (22). This 
brings light to the central role played by the GI digestion process 
in generating bioactive peptides from ingested dietary proteins. 
Proteins preloads studies have proved to decrease food intake 
during meals and to faster induce satiety. Interestingly, a preload 
of whey proteins administrated to healthy subjects significantly 
decreased food intake and stimulated satiety compared to a 

preload of caseins, and this has been partially linked to a higher 
plasmatic CCK level (8). Thus, the type of protein source seems 
to influence the CCK enhancing potential, but this still needs to 
be clearly demonstrated.

Once released into the lumen, peptides come in contact with 
the brush border barrier where they can stimulate gut hormone 
secretion. All the known different pathways have been summa-
rized in Figure 1.

Nishi et al. have isolated a peptide fragment of soy β-conglycinin 
(β 51–63) able to induce food intake decrease in rats correlated to 
enhanced CCK levels. This fragment showed in vivo to have the 
strongest ligand affinity for a rat intestinal membrane (estimated 
by surface plasmon resonance) compared to other β-conglycinin 
fragments whose CCK enhancing potentials were lower (23). The 
high occurrence of arginine residues in this particular bioactive 
fragment could partially account for the CCK enhancing effects 
(13). Concomitantly, a pork hydrolyzate showed a very high 
ligand affinity with rat brush border membrane correlated to a 
dose-dependent CCK enhancing effect on the murine STC-1 cell 
line. Moreover, an orogastric preload of this pork hydrolyzate 
significantly reduced food intake in rats (24). Dietary peptides 
could directly stimulate CCK secretion in I cells, or indirectly 
in the mucosa involving intermediate factors such as luminal 
CCK-releasing factor (LCRF) (25). Originally purified as a 70–75 
amino-acid residue peptide from rat jejunum secretion (26), 
LCRF was found at the highest levels in the small intestine but 
is present in different parts throughout the GI tract (27). LCRF 
was identified after several studies showing that CCK release and 
pancreatic secretions were inhibited by trypsin, chymotrypsin, 
and elastases implying an intraluminal factor, sensitive to pro-
teases, that elicits CCK secretion (28). Early studies tested the 
bioactivity of different LCRF fragments and highlighted the 
activity of fragment 11–25 but not 1–6 for instance, in accord-
ance with the susceptibility of LCRF bioactivity to intestinal 
and pancreatic enzymes degradation (29). Further, it has been 
shown that LCRF acts directly on CCK-secreting cells also via an 
increase in intracellular calcium at least involving the L-type cal-
cium channel (25). The intestinal mucosa possesses a wide variety 
of cells in addition to the EECs, which might be stimulated by 
peptides and be involved in CCK secretion. Receptors and signal-
ing pathways involved have only been partially characterized so 
far. Intracellular calcium mobilization has been first pointed out 
using in vitro cell lines. Némoz-Gaillard et al. have demonstrated 
that egg white albumin peptones stimulated CCK secretion via 
a toxin pertussis sensitive G protein inducing a Ca2+ cytosolic 
input through voltage-dependent Ca2+ channels in STC-1 cells 
(30). Activation of Ca2+ channels can be the first step of the 
signaling pathway leading to CCK secretion: L-type channels are 
activated by diazepam-binding inhibitor (DBI), which has been 
isolated from rat intestinal mucosa, inducing CCK secretion (31). 
GPR93, also known as GPR92, is part of the G protein-coupled 
receptors (GPCR) investigated for their possible link between 
nutrient sensing and the transduction to GI cell functions. It is 
highly expressed in the intestine and has been found to respond 
to a protein hydrolyzate in rat enterocytes and non-tumorigenous 
rat enterocytes cell line (hBRIE380) (32). GPR93 is also endog-
enously expressed by STC-1 cells where its overexpression and 
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FigURe 1 | Signaling pathways activated by peptides and amino acids involved in cholecystokinin (CCK) secretion and synthesis in enteroendocrine 
cells. Peptides from protein gastrointestinal digestion released in the lumen stimulate CCK secretion via (1) calcium-sensing receptor (CaSR) or GPR93 activation 
causing an intracellular Ca2+ increase. Voltage-dependent Ca2+ channels enable an extracellular Ca2+ uptake when activated by CaSR and GPR93 or by membrane 
depolarization following dipeptide transport by PepT1. GPR93 activation by peptides may initiate CCK gene transcription (2) by ERK 1/2 or phosphokinase A 
signaling pathway activation. Other pathways are still investigated (3) and might indirectly imply PepT1 or luminal CCK-releasing factor in CCK secretion.
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activation by peptones lead to increases in CCK transcription and 
release (33). Further investigation of the transduction pathway 
revealed the involvement of Gα proteins, a dose-dependent 
intracellular Ca2+ increase and the ERK 1/2. The calcium-sensing 
receptor (CaSR) is the other receptor involved in luminal peptide 
detection linked to CCK secretion stimulation. Part of the C fam-
ily of GPCR, CaSR possesses an N-terminal Venus fly trap (VFT) 
domain located in the extracellular side rich in cysteine residues 
(34). CaSR is activated by various metabolites, extracellular Ca2+, 
and basic l-amino acids for which the VFT domain is required. 
CaSR is expressed in numerous tissues including the GI tract and 
is involved in calcium metabolism (35). CaSR is implicated in the 
stimulation of CCK secretion in the presence of l-phenylalanine, 
a well-known CCK secretion stimulator, in STC-1 cells (36). 
CaSR phenylalanine activation induces an intracellular Ca2+ 
mobilization ending up with CCK secretion (37). Peptide β 51–63 
from β-conglycinin, a CCK-enhancing stimulator in STC-1 cells, 
provokes an intracellular Ca2+increase mediated by CaSR (38). 
The authors later demonstrated that CaSR was also involved in 
protein hydrolyzate detection and CCK secretion stimulation. 
Treating cells with a specific CaSR antagonist significantly 
affected the CCK response in the presence of protein hydrolyzates 
(39). Even though protein hydrolyzates contain a significant part 
of free amino acids, low molecular weight peptides (>1,000 Da) 

have been suggested to be the best stimuli of CCK secretion 
via CaSR activation. However, to the best of our knowledge, no 
peptide sequence has been characterized as CaSR specific.

Dietary peptides influence CCK secretion stimulation at 
different levels, but they also turn out to be influencing CCK 
gene transcription. Thus, Cordier-Bussat et al. showed that meat 
and egg albumin peptones had a dose-dependent effect on CCK 
secretion stimulation in STC-1 cells but also on the mRNA levels 
of the CCK gene (21). The authors later proved that peptones were 
able to stimulate cAMP release and to promote phosphokinase 
A (PKA) activation that induces CREB transcription factor 
phosphorylation, activating the CCK gene promoter in STC-1 
cells (40). Choi et  al. also noticed in STC-1 cells that GPR93 
activation by peptones, or a specific agonist, led to an increase 
in CCK mRNA levels. Peptones were able to activate the PKA 
pathway that promoted the activation of the CCK gene promoter, 
and this has not been stated with the specific agonist. GPR93 acti-
vation by oligopeptides activates several signaling pathways that 
might influence both CCK synthesis and secretion (33). Indeed, 
Choi et  al. studies in the STC-1 model implicated the ERK1/2 
(MEK), PKA, and calcium/calmodulin-dependent protein 
kinase (CaMK) pathways in the mediation of CCK upregulation. 
Furthermore, Gevrey et al. work, also in STC-1 cells, had already 
shown peptone-induced involvement of the cAMP, PKA, and 
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CREB as the primary pathway, together with a Ca2+ dependent 
ERK1/2 (MEK) pathway and a minor involvement of CaMK on 
CCK gene promoter activity. They demonstrated a total inhibi-
tion of this promoter activity when all pathways were blocked, 
suggesting crosstalk between them. Previous evidence of possible 
interactions between the cAMP and ERK pathways in different 
cell types also exists (41–43).

Anorexigenic effects of dietary peptides are also mediated by 
peripheral CCK-1R (13, 17, 44). Raybould et al. have proved that 
luminal nutrients stimulated CCK secretion that activates vagal 
afferents and inhibits gastric emptying (45). Later, Darcel et al. 
have pointed out that the di/tripeptides transporter PepT1 was 
also implied in the CCK secretion signaling pathway. The authors 
demonstrated that a duodenal infusion of meat peptones led to 
a vagal afferent discharge inhibited by a PepT1 inhibitor infused 
in the duodenal mucosa (46). The indirect role of PepT1 in CCK 
secretion induced by protein hydrolyzates was clearly pointed out 
in STC-1 cells as well as in native human intestinal I cells. Indeed, 
these cells were activated by PepT1 agonists, but this effect was 
not associated with CCK secretion alteration and was not affected 
by PepT1 antagonist treatment (47). These authors thus excluded 
a direct role of PepT1 in mediating the effect of peptone on 
CCK secretion. To account for an indirect role of PepT1, it was 
suggested that this transporter on enterocytes could promote 
a signaling factor release like the DBI that would trigger CCK 
release by I-cells. Moreover, although these authors found PepT1 
transcripts in these cells, STC-1 expression of PepT1 could not be 
confirmed by another group (48). Remarkably, dietary peptides 
can also behave as CCK-1R agonists: soy or potato protein hydro-
lyzates known as CCK secretion stimuli in STC-1 cells, addition-
ally act as partial agonists of CCK-1R in CCK-1R-overexpressing 
CHO cells. In the case of soy protein hydrolyzate, Staljanssens 
et  al. demonstrated that the β-conglycinin hydrolyzates gener-
ated by GI digestion partially activate CCK-1R in CHO-CCK-1R 
cells but also probably other receptors involving an intracellular 
calcium response. Indeed, elevation of intracellular calcium was 
also noted in the native CHO cells, and more puzzling, this effect 
was decreased in the presence of a CCK-1R antagonist in both 
cell types (49). As the intestinal mucosa is densely innervated, 
vagal afferents expressing CCK-1R could be accessible to luminal 
content and be directly activated by dietary peptides (50). Lately, a 
study in vagotomized pigs has questioned the predominant role of 
the vagus nerve. CCK-1R blockade in abdominal vagal afferents 
did not abolish plasmatic CCK level increase and satiety after a 
liquid meal (51). This highlights that other peripheral CCK-1R 
could be involved and might have a greater role than the ones 
located in vagal afferent neurons.

To summarize, dietary peptides activate distinct signaling 
pathways involved in CCK secretion that promotes satiety and 
decrease food intake. They act in EECs by activating specific 
receptors (GPR93, CaSR) that, in response, induce CCK secre-
tion stimulation via intracellular calcium mobilization. Peptides 
may indirectly act on the intestinal mucosa and stimulate the 
secretion of intermediate factors (LCRF) inducing CCK secre-
tion in EECs. Another pathway stimulated by dietary peptides 
might involve PepT1 but has not been fully characterized yet. 
Peptides may also interact with CCK-1R either as partial agonist 

in vagal afferents located in the intestinal mucosa or indirectly by 
activating a PepT1 involving signaling pathway. Finally, peptides 
regulate CCK synthesis at the CCK gene transcription level, but 
the pathways involved have to be further elucidated.

gLP-1 SeCReTiON AND BiOACTive 
PePTiDeS

Glucagon-like peptide 1 plays a significant role in energy 
homeostasis: it regulates blood glucose via its incretin action 
and promotes satiety and food intake decrease via its anorexi-
genic properties. That is why GLP-1 has recently emerged as an 
interesting therapeutic target in T2DM and obesity treatment 
approaches. Positive results from bariatric surgery on T2DM and 
obese subjects (sustainable weight loss, blood glucose regulation 
improvement) were partially attributed to elevated plasmatic 
GLP-1 levels, but these still remain partially unresolved (52). 
Dietary protein intake is one of the stimuli of GLP-1 secretion 
in EECs of the L-type, more abundant in the distal intestine, and 
activates several signaling pathways (Figure  2). GLP-1 effects 
were described after dietary protein intake from either animal 
sources, especially milk-derived proteins (53) or plant sources 
(54). A whey protein load before a meal led to a faster food intake 
decrease and satiety stimulation correlated to higher circulating 
GLP-1 levels in healthy subjects (55). A high-protein diet signifi-
cantly increased postprandial GLP-1 levels compared to a conven-
tional protein diet in healthy subjects, and extended satiety was 
partially attributed to these elevated GLP-1 levels (56). A preload 
of blue whiting administered to rats induced a short-term food 
intake decrease correlated to a plasmatic CCK and GLP-1 level 
increase (20). Beyond their satiating properties, dietary proteins 
can also improve blood glucose via GLP-1 secretion stimulation 
and plasmatic dipeptidyl peptidase IV (DPP-IV) activity inhibi-
tion (57–60). Whey proteins are a well-known source of bioactive 
peptides stimulating GLP-1 secretion, inhibiting plasma DPP-IV 
activity, and stimulating insulin secretion in pancreatic cells (61). 
However, the GLP-1-enhancing potential of proteins was found 
weaker than other macronutrients since lipid- or carbohydrate-
based meals led to higher GLP-1 levels than after a high-protein 
diet (62). Moreover, an increase of the plasma GLP-1 level is not 
always associated with satiating effects (63). The reproducibility 
of GLP-1 satiating effects seems to strongly rely on several param-
eters such as the physiological state of the patient or experimental 
conditions of the study like the presence of other macronutrients, 
the protein source, and the delay duration after preload admin-
istration. This tends to make the comparison between different 
studies delicate (64). Regarding the secretion trigger mechanisms 
of GLP-1, two ways have been uncovered that explain the biphasic 
secretion of GLP-1. First, the activation of vagal afferents located 
in the duodenum, which indirectly stimulates GLP-1 secretion 
in distal EECs, then a direct contact with the EECs located in the 
ileum (65, 66). In vitro cell models have been widely developed 
to better understand the mechanisms of nutrient chemosensing. 
Animal (meat, egg white albumin) or plant protein (zein, rice) 
hydrolyzates have demonstrated GLP-1 enhancing properties in 
murine EEC lines such as STC-1 (67) and GLUTag (60, 66) or 
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FigURe 2 | Signaling pathways activated by peptides and amino acids involved in glucagon-like peptide 1 (gLP-1) secretion and synthesis in 
enteroendocrine cells. Peptides from protein gastrointestinal digestion released in the lumen stimulate GLP-1 secretion via calcium-sensing receptor (CaSR) or 
GPRC6A activation (1). In return, they activate a Gαq subunit that activates PLC- and IP3-dependent signaling pathways and provokes an intracellular Ca2+ increase. 
Activation of Ca2+ channels by CaSR or transient receptor potential channels enables Ca2+ uptake. Peptides may also activate proglucagon gene transcription via a 
cAMP-dependant pathway leading to CREB phosphorylation (2). Unknown pathways involved in GLP-1 secretion might involve ERK 1/2 phosphorylation or proton 
uptake coupled to peptide transport in PepT1 (3).

5

Caron et al. Peptides and Food Intake Regulation

Frontiers in Endocrinology | www.frontiersin.org April 2017 | Volume 8 | Article 85

human cell lines such as NCI-H716 (68). Free amino acids also 
have GLP-1 enhancing properties, but the resulting effect appears 
lower than for peptides (20, 67). Mechanisms of GLP-1 secretion 
triggered by free amino acids have been deeper investigated. 
l-Glutamine induces membrane depolarization and activation of 
a metabolic pathway involving intracellular calcium mobilization 
in GLUTag cells (69). This pathway has later been confirmed in 
primary intestinal cells where l-glutamine-induced membrane 
depolarization was associated to cAMP and intracellular cal-
cium increases, probably mediated by a GPCR (70). However, 
in both healthy and T2DM patients, encapsulated l-glutamine 
ingestion did not influence GLP-1 levels to significantly induce 
beneficial metabolic effects. Surprisingly, l-glutamine intake 
was even followed by food intake increase and suggested that 
l-glutamine might interact with orexigenic pathways (71). CaSR, 
preferentially activated by aromatic amino acids and expressed 
in EECs, is one of the receptors involved in the GLP-1 secretion 
pathway. Indeed, amino acids such as phenylalanine, tryptophan, 
glutamine, or asparagine have shown a GLP-1 enhancing effect in 
isolated rat intestines, and this was strongly altered by a specific 
CaSR antagonist (72). Another GPCR, of the class C, named 
GPRC6A has been characterized as an amino acid chemodetector 

more sensitive to basic amino acids exhibiting hydroxyl or sulfu-
ryl groups. Extracellular binding of l-ornithine with GPRC6A 
triggered GLP-1 exocytosis by activating the intracellular calcium 
and inositol triphosphate related pathway in GLUTag cells (73).

Activation pathways triggered by peptides are under investiga-
tion but display certain similarities with those activated by amino 
acids such as intracellular calcium increase. One tetrapeptide of 
glycine residues stimulates GLP-1 secretion in NCI-H716 cells 
associated to intracellular calcium increase (74). Two distinct 
peptide sensing pathways have been highlighted in native L cells, 
one involving CaSR activation and intracellular calcium varia-
tion and the other peptide transport by PepT1 associated with 
membrane depolarization (75). Other transporters are involved 
in calcium regulation, such as voltage-dependent Q type channels 
or transient receptor potential channels and might be activated by 
protein hydrolyzates. Thus, they might participate in the GLP-1 
secretion as suggested in a study realized in murine native EECs 
(76). Another intracellular signaling pathway has been character-
ized in NCI-H716 cells and involves MAP kinase metabolites: 
ERK1/2 phosphorylation activated by meat peptones triggers 
GLP-1 secretion (77). Finally, dietary peptides in the form of pro-
tein hydrolyzates are also able to positively influence proglucagon 
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gene transcription in both STC-1 and GLUTag cells (67, 78) by 
cAMP increase and CREB transcription factor phosphorylation 
(79). To the best of our knowledge, the tetra-glycine peptide was 
the only peptide sequence known for its GLP-1enhancing proper-
ties until recently; our group identified three peptides, obtained 
from the GI digestion of bovine hemoglobin, able to highly 
stimulate GLP-1 secretion in STC-1 cells: ANVST, TKAVEH, and 
KAAVT (80).

BiOACTive PePTiDeS AND DPP-iv 
ACTiviTY: gLP-1 ACTiviTY RegULATiON 
AND iNDiReCT eFFeCT ON gLUCOSe 
HOMeOSTASiS

Dipeptidyl peptidase IV is a serine exopeptidase that removes 
dipeptides from the N-terminal side of substrates, including 
GLP-1 and GIP, by cleaving post-proline or -alanine residues 
(81). It cleaves and de facto quickly inactivates GLP-1 follow-
ing its secretion and therefore appears as a strong inhibitor of 
its activities (82). DPP-IV exists in transmembrane and soluble 
active forms and is expressed in various tissues and fluids. It 
has also been implicated in many other regulatory processes by 
its interaction with neuropeptides or chemokines (83). Today, 
DPP-IV inhibitors are thus considered an advanced class of 
agents for T2DM management due to their effects on the GLP-1 
availability and recovery of the incretin effect. In this way, the oral 
administration of DPP-IV inhibitors (gliptins) is the most recent 
alternative treatment of T2DM (84). However, numerous works 
have pointed out the advantage to identify “natural” as in food-
derived peptide inhibitors of DPP-IV activity as an alternative 
for synthetic inhibitors to reinstate the incretin effect in T2DM. 
GI dietary protein digestion is a natural enzymatic hydrolysis 
release of bioactive peptides that could exhibit DPP-IV inhibitory 
potentials close to those of peptides released under controlled 
enzymatic hydrolysis. IC50 values of various digests generally 
range from 1 to 5 mg·mL−1 like numerous protein hydrolyzates. 
As an example, several milk protein digests, generated under 
in  vitro conditions, reached similar IC50 values compared to 
protein hydrolyzates obtained with microbial enzymes such 
as Alcalase® or Flavourzyme® (85). Gruyere GI digestion has 
shown to be an interesting source of Ile–Pro–Ala, and Val–Ala–
Pro–Phe–Pro–Glu–Val, two DPP-IV inhibitory peptides (86). 
Alaska pollock (Theragra chalcogramma) skin collagen, digested 
under in vitro GI conditions, has IC50 values ranging from 1 to 
2  mg·mL−1 (87), and similar values have been measured with 
salmon collagen hydrolyzates obtained with a controlled enzy-
matic hydrolysis (88). A tetrapeptide Val–Ala–Ala–Ala has been 
recently isolated from an in vitro GI digest of bovine hemoglobin 
with an IC50 of 0.141 ± 0.014 mM (80). A similar trend has been 
observed with plant protein GI digests. Amaranth (Amaranthus 
hypochondriacus) seed digests obtained by GI digestion have IC50 
values close to 1 mg·mL−1 (89). Cowpea bean GI digestion (Vigna 
unguiculata), germinated or non-germinated, has produced 
digests with DPP-IV inhibitory properties at 0.58 mg·mL−1 solu-
ble protein. Two peptides Thr–Thr–Ala–Gly–Leu–Leu–Gln and 
Lys–Val–Ser–Val–Val–Ala–Leu, characterized by LC-MS-MS in 

these isolated digests, could have interesting DPP-IV inhibitory 
properties. A docking study has revealed that these two peptides 
could strongly interact with the catalytic site of the DPP-IV (90). 
The process of GI digestion could be able to naturally generate 
bioactive peptides from dietary proteins with DPP-IV inhibitory 
properties. The inhibitory potential seems to increase along the 
progress of digestion: most of the intestinal digests of in vitro GI 
hemoglobin digestion exhibited lower IC50 values than those of 
gastric digests (78). However, most of the studies focus on inves-
tigating DPP-IV inhibitory properties of protein hydrolyzates 
during their GI digestion. When digested, protein hydrolyzates 
often exhibit better DPP-IV inhibitory potentials than those of 
native proteins. This has been noticed with cuttlefish (91, 92), 
rice, pea, soy, hemp protein (92), or whey protein hydrolyzates 
(93). A similar observation has been made when comparing the 
DPP-IV inhibitory potential of cow’s milk yogurt from microbial 
fermentation and its respective GI-derived digests. The DPP-IV 
inhibitory potential of this yogurt GI digests was significantly 
better than the yogurt one and was constantly progressing over 
digestion time (94). GI digestion extends protein degradation 
and, as a consequence, promotes the release of new potential 
bioactive peptides. In that sense, most of the studies first focus on 
optimizing hydrolysis conditions to generate bioactive peptides 
and then investigate peptide or hydrolyzate stability and their 
associated bioactivities in simulated GI conditions. Bioactive 
peptides may be released exogenously (enzymatic hydrolysis 
and fermentation) or endogenously (GI digestion of dietary or 
endogenous proteins), but they need to survive GI conditions 
and to be absorbed, implying crossing the intestinal barrier, 
to exert their inhibitory potentials on circulating DPP-IV that 
would impact the most GLP-1 activity. Indeed, GI conditions 
may compromise their bioavailability and bioactivity. Thus, 
simulating in vitro GI digestion is a crucial preliminary step to 
predict the in vivo stability of peptides or protein hydrolyzates 
in proteolytic conditions. Three peptides were isolated from 
macroalga hydrolyzates (Palmaria palmata) Ile–leu–Ala–Pro, 
Leu–Leu–Ala–pro, and Met–Ala–Gly–Val–Asp–His–Ile and 
proved to keep their DPP-IV inhibitory properties after simulat-
ing gastric and intestinal digestion conditions (95). One fraction 
isolated from an α-lactalbumin hydrolyzate was not affected in 
terms of DPP-IV inhibitory properties after simulating GI diges-
tion (1.20 ± 0.12 mg·mL−1). Nevertheless, characterizing peptide 
sequences from various bioactive fractions (digested or not) by 
LC-MS-MS led to the conclusion that the DPP-IV inhibitory 
effect observed did not necessarily involve the same sequences 
before and after simulating GI digestion of the fractions (96). The 
action of GI enzymes can generate new sequences that might also 
reveal greater DPP-IV inhibitory properties than the native pep-
tide. This was noticed for three peptides released from a cooked 
tuna juice hydrolyzate (Thunnus tonggol) obtained by enzymatic 
hydrolysis. Their DPP-IV inhibitory properties were enhanced 
after simulating GI digestion (97). Recently, a couple of studies 
have been investigating the potential bioactivity of endogenous 
peptides. Endogenous proteins represent a noticeable protein 
intake, and they are also degraded by GI digestion. Like dietary 
proteins, they can be regarded as a potential source of bioactive 
peptides. A human serum albumin hydrolyzate has exhibited 
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DPP-IV inhibitory effects that remained in enriched fractions and 
lysozyme GI digest of the same hydrolyzate (98). Two inhibitory 
peptides from endogenous proteins, predicted by in silico diges-
tion, have confirmed in vitro their potentials: Met–Ile–Met from 
human serum albumin (IC50 = 800.51 ± 4.90 µM) and Arg–Pro–
Cys–Phe from endoribonuclease (IC50 = 1,056.78 ± 61.11 µM). 
Although their IC50 values do not indicate a strong inhibitory 
potential compared to Ile–Pro–Ile, endogenous proteins are a 
complementary source of bioactive peptides (99).

Thus, dietary protein, protein hydrolyzate, or dietary peptide 
intake could be part of T2DM therapeutic approaches by spe-
cifically targeting DPP-IV activity. To date, few in  vivo studies 
have confirmed DPP-IV inhibitory potentials measured in vitro. 
Studies in streptozotocin-induced obese, Zucker diabetic fatty 
rat, or lean rats have pointed out that protein hydrolyzate or pep-
tide intake could improve blood glucose, circulating GLP-1 and 
insulin levels and also decrease plasma DPP-IV activity. This has 
been described with various hydrolyzates from zein (58), pork 
gelatin skin (100), salmon gelatin (59), and tilapia gelatin (101). 
The peptide Leu–Pro–Gln–Asp–Ile–Pro–Pro–Leu, a β-casein 
fragment isolated from Gouda cheese, exhibited a high DPP-IV 
inhibitory potential in  vitro (IC50  =  46  µM) and significantly 
improved blood glucose in diabetic rats after an oral glucose 
tolerance test. However, the authors did not specify whether this 
effect was related to DPP-IV activity inhibition (102). Indeed, 
protein and protein hydrolyzate intake may also improve blood 
glucose in diabetic rats without reducing plasma DPP-IV activity. 
In diabetic rats, plasma DPP-IV activity remained higher than in 
control rats after a protein rich 6-week diet made of either casein 
or white egg hydrolyzate, although fasting blood glucose and 
circulating insulin levels were significantly improved (103).

BiOACTive PePTiDeS AND  
OPiOiD ReCePTORS: iNTeSTiNAL 
gLUCONeOgeNeSiS (igN) AND 
PROTeiN-iNDUCeD SATieTY

Besides their interaction with gut hormones synthesis and secre-
tion, food-derived peptides could interact with the peripheral 
opioid receptors and indirectly induce gluconeogenesis that 
participates in the maintenance of satiety and reduction of 
food intake. Peripheral opioid receptors are involved in gastric 
emptying inhibition and food intake-induced satiety by the 
release of endogenous opioid peptides that act in the CNS 
(104). Exogenous opioid peptides produced by the GI digestion 
of alimentary proteins could interact with these receptors and 
thus intervene in food intake regulation. Casein and soy protein 
ingestion induces food intake decrease mediated by two distinct 
signaling pathways, one involving CCK-1R receptors and the 
other, peripheral μ-opioid receptors (MOR). GI digestion seems 
to be the source of the release of peptides like β-casomorphin, 
derived from caseins and known for its opioid activities (17, 105).  
The name “nutropioids” has been coined for these opioid oli-
gopeptides originating from the diet. Besides, it is known that 
products of alimentary protein digestion can act as antagonists of 
MOR present on afferent nerve endings in the intestinal mucosa 

and portal vein. Detection of these oligopeptides is transmitted 
to the CNS and induces a decrease in food intake. This regula-
tory loop comes in complement to the action of the endogenous 
peptides released following food intake, like endorphins, and 
demonstrates the plurality of pathways engaged at the peripheral 
and central levels to promote satiety (106, 107). Mithieux et al. 
described a regulatory loop of food intake implicating portal 
vein MOR and IGN activated by alimentary protein GI diges-
tion. This theory rests on the anorexigenic properties of glucose: 
the antagonistic action of oligopeptides in the portal vein MOR 
activates IGN via a gut–brain axis increasing glycemia that in 
turn activates hypothalamic regions involved in food intake 
regulation (108–113). However, only selected dipeptides have 
been tested so far in these studies to validate the portal vein MOR 
implication and no food-derived peptide motif has to date, been 
identified for its anorexigenic properties through this regula-
tory loop. In contrast, it is noteworthy that the vast majority of 
proteins investigated as a source of bioactive peptides, of very 
different animal and plant origins, have been found to produce 
opioid sequences when hydrolyzed/digested. These food-derived 
opioid peptides have not been systematically tested for their 
effect on opioid receptors, but agonistic activity seems to be 
preponderant, with only few and exclusively from milk products, 
opioid peptides with antagonist activity. However, it is striking 
again that all these food-derived opioid peptides have been 
shown to have a preference for MOR (114). Albeit controversial 
(115), particularly regarding the importance and relevance of 
the IGN (high-protein diet context) in comparison to hepatic 
gluconeogenesis production (116) and species discrepancies 
(117), this model of protein-induced satiety based on the portal 
vein MOR and IGN elegantly brings together two critical actors 
in the regulation of food intake, the opioid system, and glucose 
homeostasis. It reinforces the central role of the gut–brain axis in 
energy homeostasis and especially in food intake regulation and 
highlights the role of the process of digestion in producing food 
protein-derived bioactive peptides.

CONCLUSiON

For decades, the process of GI digestion has been studied merely 
for its capacity to transform food into nutriments, the source of 
energy for our body. It is only recently that the GI tract has been 
considered a dynamic interface between the luminal environment 
and the internal environment. Interaction between nutriments 
and the intestinal barrier elicit the activation of multiple signal-
ing pathways, including some involved in energy homeostasis 
regulation. With the exponential increase of people affected by 
diseases linked to the metabolic syndrome, alimentary proteins 
become the subject of increasing interest since they reduce food 
intake, induce satiety and increase energy expenditure. Yet, the 
underlying mechanisms are still not completely elucidated. The 
in vitro study of some mechanisms, notably the production and 
secretion of the GI hormones, highlighted the primary role 
of bioactive peptides originating from protein GI digestion. 
Regarding the existing links between these peptides and the 
regulation of intestinal hormones, some signaling pathways have 
been unveiled implicating a role for the GPCR family of receptors. 
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Thus, the presence of these receptors on the apical side of the 
EECs constitutes the first level of integration of the information 
on the luminal content. These receptors act as chemodetectors 
and initiate the translation of the detected information into a 
hormonal response. Hence, GPCRs attract particular attention 
as novel targets for obesity and type 2 diabetes treatments. With 
regards to the peptides, very few structural criteria are known to 
date to favor these receptors activation.

It is nowadays admitted that the GI tract has the capacity to 
release bioactive peptides that participate in the regulation of 
energy homeostasis, from ingested alimentary proteins. While 
the effects of these peptides confirming a decrease in food intake 
and an increase in satiety have been demonstrated in vivo, the 
correlation with an increase in intestinal hormone release or 
DPP-IV inhibition has not often been established. The presence 
of the peptides in the intestinal lumen and their potential crossing 
of the intestinal barrier could be the trigger of other food intake 
decreasing signaling pathways activation, like the indirect activa-
tion of IGN by the portal vein MOR antagonism, or the stimula-
tion of not yet studied intestinal hormones release. Finally, in vivo 

identification of the peptides produced during GI digestion and 
responsible for the described effects is still difficult to realize. 
Therefore, analytical strategies have been implemented in  vitro 
in order to follow the release of peptides during GI digestion and 
meanwhile to reveal their bioactive potential.
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