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Skeletal muscle represents the largest organ in the body, comprises 36–42% of body 
weight, and has recently been recognized as having an endocrine function. Proteins 
expressed and released by muscle that have autocrine, paracrine, and endocrine bio-
activities have been termed myokines. It is likely that muscle contraction represents the 
primary stimulus for the synthesis and secretion of myokines to enable communication 
with other organs such as the liver, adipose tissue, brain, and auto-regulation of muscle 
metabolism. To date, several hundred myokines in the muscle secretome have been 
identified, a sub-population of which are specifically induced by skeletal muscle contrac-
tion. However, the bioactivity of many of these myokines and the mechanism through 
which they act has either not yet been characterized or remains poorly understood. 
Physical activity and exercise are recognized as a central tenet in both the prevention 
and treatment of type 2 diabetes (T2D). Recent data suggest humoral factors such as 
muscle-derived secretory proteins may mediate the beneficial effects of exercise in the 
treatment of metabolic diseases. This mini-review aims to summarize our current knowl-
edge on the role of contraction-induced myokines in mediating the beneficial effects of 
physical activity and exercise in the prevention and treatment of T2D, specifically glucose 
and lipid metabolism. Future directions as to how we can optimize contraction-induced 
myokine secretion to inform exercise protocols for the prevention and treatment of T2D 
will also be discussed.

Keywords: exercise, myokines, muscle, endocrine, diabetes

inTRODUCTiOn

Skeletal muscle has recently been identified as an endocrine organ that synthesizes and secretes 
proteins known as myokines (1). These myokines are involved in autocrine regulation of metabolism 
in the muscle itself and paracrine/endocrine regulation of other tissues and organs such as the liver, 
adipose, and brain.

As skeletal muscle represents the largest organ in the body, the influence of myokines on 
whole-body metabolism is potentially significant (2, 3). As skeletal muscle contraction is likely the 
primary stimulus for myokine synthesis and secretion, it is plausible that myokines mediate, in part 
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at least, beneficial adaptations to tissues in response to exercise. 
Recent research has identified several hundred myokines, a large 
sub-population of which are specifically induced by contrac-
tion (4). However, the specific bioactivity of a vast number of 
myokines remains largely undescribed and poorly understood. 
Furthermore, little is known about the role of type, intensity, or 
frequency of contraction in regulating myokine production and 
release.

Exercise has long been established as a central tenet to 
both the prevention and treatment of type 2 diabetes (T2D) 
(5). Though a number of mechanisms through which exercise 
confers these metabolic benefits have been well characterized 
(5), the pluripotency of exercise is not yet fully understood. One 
such mechanism is via cross-talk between tissues stimulated by 
contraction and release of myokines regulating tissue function. 
This creates a clear link between exercise and the regulation of 
whole-body metabolism. There have been several examples of 
this in recent research, most notably, the role of the contraction-
induced myokine IL-6 in mediating skeletal muscle glucose 
uptake (6–8). These findings generated excitement as to the 
potential roles of contraction-induced myokines in the preven-
tion of insulin resistance and metabolic diseases such as obesity 
and T2D. To date, a number of contraction-induced myokines 
have been identified which play a role in regulating glucose 
uptake, insulin sensitivity, and fat metabolism, leading factors in 
the development of T2D (9).

The purpose of this mini-review is to discuss known metabolic 
roles for contraction-induced myokines that aid in the preven-
tion/treatment of T2D. Future directions in optimizing exercise 
protocols to maximize the potential of contraction-induced 
myokines by the type and intensity of exercise and how this 
informs exercise prescription will also be discussed.

MYOKineS AnD MeTABOLiSM

Contraction-induced myokines have been shown to have auto-
crine, paracrine, and endocrine effects on numerous tissues. In 
this section, the evidence of contraction as a stimulus for myokine 
secretion, based on electrical pulse stimulation (EPS) models 
and/or an increase in circulating concentrations immediately 
post-exercise, and their effect on metabolic functions affecting 
the development of T2D in muscle, adipose, and liver will be 
discussed.

Myokines Regulating Glucose Metabolism
IL-6
Evidence exists for a number of contraction-induced myokines 
with roles for glucose uptake and insulin sensitivity. IL-6 is most 
prominent in the literature and has been the focus since the early 
2000s of those trying to identify the “exercise factor” through 
which skeletal muscles communicate to central and peripheral 
organs (10). IL-6 transcription in skeletal muscle and release to 
circulation in large volumes in response to contraction was first 
characterized in 2002 (11). Increased circulating concentrations 
of IL-6 are known to be affected by both the intensity and dura-
tion of contraction in humans (8, 12). Higher intensity and longer 

duration exercise result in increased circulating concentrations 
of IL-6 in humans (8, 12). IL-6 release in response to exercise 
is also dependent on the energy status of the cell, determined 
by pre-exercise glycogen content, whereby low glycogen content 
results in a greater release of IL-6 to the energy crisis in the muscle 
cell during contraction (6). In vitro studies demonstrate that IL-6 
treatment increases glucose uptake through AMP-activated 
protein kinase [adenosine monophosphate kinase (AMPK)] and 
phosphatidylinosotol 3-kinase (PI3K) pathways (13). Carey et al. 
(7) reported increased insulin-dependent glucose uptake in vivo 
in response to IL-6 infusion. By contrast, Harder-Lauridsen et al. 
(14) found no increase in glucose uptake during euglycemic 
hyperinsulinemic clamp with IL-6 infusion in T2D individuals, 
though there was a reduction in the plasma insulin suggesting 
increased insulin sensitivity (14). Jiang et al. (15) found a differ-
ential effect of IL-6 treatment on primary myotubes from normal 
glucose tolerant and T2D, suggesting a blunted role of IL-6 on T2D 
muscle. IL-6 treatment upregulated both insulin-dependent and 
-independent glucose uptake and glycogen synthesis in healthy 
myotubes, but this effect was lost in T2D myotubes. This suggests 
that from a glucose control perspective, the contraction-induced 
myokine IL-6 is effective in the prevention of T2D but may be 
ineffective for glucose uptake in patients with existing T2D.

IL-13
IL-13 is released from human primary myotubes in vitro and has 
been demonstrated to have an “insulin-like” effect on glucose 
metabolism in human muscle by increasing glucose uptake, 
glycogen synthesis, and glucose oxidation in normal and T2D 
primary myotubes (15). This “insulin-like” effect is mediated 
through activation of Akt and PI3K pathways. IL-13 expression 
is increased in response to strength training in human skeletal 
muscle (16), but no evidence exists for an increase in plasma 
IL-13. This suggests the influence of IL-13 on glucose metabolism 
is localized to the muscle in an autocrine/paracrine manner.

Follistatin-Like-1 (FSTL-1)
Follistatin-like-1 is a secretory myokine of the follistatin family, 
known to be secreted in vitro by C2C12s (murine cell line) (17). 
Furthermore, Görgens et al. (17) demonstrated FSTL-1 expres-
sion and release from human primary myotubes. Interestingly, 
contraction of primary myotubes by EPS did not induce the 
secretion of FSTL-1; however, an increase in circulating plasma 
FSTL-1 in humans is observed following an acute bout of aerobic 
exercise. In vitro incubation of L6 myotubes (rat cell line) in 
FSTL-1 has been shown to increase glucose uptake in an AMPK- 
and calcium–calmodulin kinase-dependent manner (18), result-
ing in increased GLUT4 mRNA expression and translocation to 
the plasma membrane mediating enhanced glucose control.

Chitinase-3-Like-1 Protein (CHI3L1)
Electrical pulse stimulation of primary human skeletal muscle 
cells increases CHI3L1 expression and secretion (19). Acute aero-
bic and resistance exercise increase circulating CHI3L1; however, 
combined training had no effect, suggesting a transient exercise 
response. Evidence indicates that CHI3L1 regulates myoblast 
proliferation, suggesting a role in muscle growth thus affecting 
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the size and volume of this organ as a “sink” for blood glucose 
(19). Furthermore, though CHI3L1 is induced by inflammation as 
well as contraction, it improves glucose uptake and insulin action 
under pro-inflammatory conditions in human primary skeletal 
muscle cells through activation of its receptor protease-activated 
receptor 2 (19). This suggests that CHI3L1 could regulate skel-
etal muscle glucose uptake under pro-inflammatory conditions 
observed in obesity and T2D.

IL-15
IL-15 is a known contraction-induced myokine secreted in 
humans post both aerobic and resistance exercise (20, 21) with 
similar responses between lean and obese participants (22). IL-15 
has an effect on glucose uptake in C2C12 skeletal muscle cells 
(murine cell line) via activation of AMPK (23). Krolopp et al. (24) 
found a similar increase in glucose uptake with IL-15 treatment, 
mediated by an enhanced GLUT4 translocation to the plasma 
membrane. However, in contrast to the findings of Gray and 
colleagues, GLUT4 translocation was not initiated by activation 
of AMPK, but rather through the Janus kinase–signal transducer 
and activation of transcription protein 3 (STAT3) pathway. It is 
not entirely clear why there is no increase in phosphorylation of 
AMPK in this study, when using a higher dose of IL-15 (100 vs 
1 ng/ml).

IL-8
IL-8 is secreted by primary human myotubes following EPS (25) 
and circulating IL-8 increases in response to endurance exercise 
in humans (26, 27). IL-8 is primarily associated with inflam-
mation and angiogenesis; however, Gray and Kamolrat (23) 
demonstrated in vitro an increase in glucose uptake in C2C12s in 
response to treatment with IL-8 via phosphorylation of AMPK. 
A role for IL-8 in glucose uptake in vivo is less clear but may be 
mediated by increased vascularization, an effect which is lost in 
muscle from T2D (28).

Fibroblast Growth Factor-21 (FGF-21)
Fibroblast growth factor-21 treatment improves glucose toler-
ance and insulin sensitivity in the liver of obese Zucker rats (29). 
FGF-21 treatment has also been demonstrated to lower blood 
glucose and enhance insulin sensitivity in a diabetic mouse model 
(30). FGF-21, mediated by activation of Akt, improves glucose 
uptake in primary human adipocytes, which is enhanced when 
combined with insulin, reducing the required level of insulin to 
achieve the same glucose uptake (31). Muise et al. (32) confirmed 
reduced plasma glucose in WT, HFD, and diabetic mouse models 
treated with FGF-21 perfusion and identified upregulation of 
genes associated with several pathways such as glucose uptake, 
and insulin receptor signaling regulated by FGF-21 in brown and 
white adipose tissue (WAT) and adipocytes in vitro. FGF-21 also 
increased basal and insulin-stimulated glucose uptake in primary 
human myotubes by increasing GLUT1 mRNA and transloca-
tion to the plasma membrane (33). Circulating concentrations of 
FGF-21 are increased after an acute bout of endurance exercise 
in humans (34) and enhanced by higher intensity exercise (35). 
Short-term training also resulted in increased circulating FGF-21, 
which was associated with lower fasting glucose (36). Conversely, 

3 weeks of sprint interval training results in reduced circulating 
FGF-21 (37). Similarly, 3  months of combined resistance and 
aerobic training resulted in a modest decrease in serum FGF-21 
in obese women (38). This suggests that an acute bout of exercise 
leads to a transient increase in FGF-21 but the effect of chronic 
training is equivocal. Circulating FGF-21 is increased in T2Ds 
compared to normal glucose tolerant individuals and correlated 
with fasting insulin and BMI (33). Perhaps, the effect of chronic 
training is to decrease fasting insulin and adipose mass and 
thereby reduce circulating FGF-21. The acute increase in FGF-21 
post-exercise is likely from muscle with the action of sensitizing 
muscle, adipose, and liver to insulin to facilitate glucose uptake.

Irisin
Irisin is a controversial candidate, primarily thought to be 
secreted not only by muscle but also in small amounts by adipose 
tissue. The main point of contention has been the detection of this 
myokine in its glycosylated and deglycosylated forms [for review, 
see Ref. (39)]. Future research should focus on detection by mass 
spectrometry as per (40); however, the in vivo data reported here 
use the best validated ELISA technique (39). Circulating irisin 
increases in response to high-intensity interval exercise, resist-
ance exercise, and continuous moderate exercise in both healthy 
and metabolic syndrome patients (41). Some data suggest a 
greater increase following resistance compared with aerobic 
exercise (42). Serum irisin is regulated by exercise intensity, 
with greater increases following high-intensity exercise (43, 44). 
By contrast, other research reports an increase in the expres-
sion of FNDC5 in human skeletal muscle following 12  weeks 
of training but a paradoxical decrease in circulating irisin (45). 
Though synthesized in muscle, it is not clear if irisin is secreted 
from muscle directly either in vitro or in vivo. Incubation of L6 
myotubes in irisin in vitro results in increased glucose uptake in a 
dose-dependent manner and is mediated by activation of AMPK 
and ACC (46). Irisin treatment also upregulates expression of 
PGC-1α4, a specific isoform associated with muscle hypertrophy, 
in primary myocytes (47). This was accompanied by increased 
IGF-1 and decreased myostatin expression, suggesting it a role in 
regulation of muscle growth, thus providing a larger muscle mass 
to act as a sink for blood glucose. Irisin perfusion in HFD mice 
resulted in decreased fasting blood glucose and improved glucose 
and insulin tolerance (48). Furthermore, FNDC5 overexpression 
in obese and HFD mice led to increased serum irisin resulting in 
decreased serum fasting glucose and improved glucose tolerance 
and insulin sensitivity in HFD mice (48).

Brain-Derived Neurotrophic Factor (BDNF)
The effect of resistance training on circulating BDNF remains 
equivocal. Several studies report no change in BDNF after either 
acute or chronic resistance training (49–53). By contrast, Yarrow 
et al. (54) and Coelho et al. (55) report increased plasma BDNF 
after acute and chronic resistance training. Circulating BDNF 
increases after both acute and chronic aerobic exercise in healthy 
participants [for review, see Ref. (56)]. Though a dose response 
is not apparent, there is evidence to support a greater increase 
in circulating BDNF following high-intensity exercise (57, 58), 
although whether muscle was the direct source of BDNF remains 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TA
B

Le
 1

 | 
S

um
m

ar
y 

o
f 

kn
o

w
n 

m
yo

ki
ne

 r
es

p
o

ns
e 

to
 c

o
nt

ra
ct

io
n 

an
d

 m
et

ab
o

lic
 a

ct
io

n.

M
yo

ki
ne

S
ec

re
te

d
 

fr
o

m
 

m
us

cl
e

e
le

ct
ri

ca
l 

p
ul

se
 

st
im

ul
at

io
n

in
cr

ea
se

 
in

 p
la

sm
a/

se
ru

m

A
er

o
b

ic
 

ex
er

ci
se

R
es

is
ta

nc
e 

ex
er

ci
se

e
xe

rc
is

e 
d

ur
at

io
n 

ef
fe

ct

e
xe

rc
is

e 
in

te
ns

it
y 

ef
fe

ct

G
lu

co
se

 
up

ta
ke

G
lu

co
se

 
o

xi
d

at
io

n
Li

p
o

ly
si

s
Li

p
id

 
o

xi
d

at
io

n
P

at
hw

ay

IL
-6

✓
✓

✓
✓

✓
✓

✓
↑

↑
↑

↑
A

M
P

K
, P

I3
K

, S
TA

T3
IL

-8
✓

✓
✓

✓
✓

↑
A

M
P

K
IL

-1
3

✓
✓

✓
↑

↑
A

kt
, P

I3
K

IL
-1

5
✓

✓
✓

✓
↑

↕
↑

A
M

P
K

, J
A

K
–S

TA
T3

B
D

N
F

✓
✓

✓
✓

✓
↑

↑
↑

A
M

P
K

C
H

I3
L1

✓
✓

✓
✓

✓
↑

C
H

I3
L1

/P
A

R
-2

, p
44

/4
2,

 p
38

 M
A

P
K

, A
kt

FG
F-

21
✓

✓
✓

✓
↑

↑
↕

↑
A

kt
, p

44
/4

2 
M

A
P

K
FS

TL
-1

✓
✓

✓
✓

↑
A

M
P

K
, C

aM
K

Iri
si

n
✓

✓
✓

✓
✓

↑
A

M
P

K
M

yo
ne

ct
in

✓
✓

✓
↑

FA
 tr

an
sp

or
t

✓
, p

os
iti

ve
 e

vi
de

nc
e;

 ↑
, e

vi
de

nc
e 

fo
r 

an
 in

cr
ea

se
 in

 m
et

ab
ol

ic
 a

ct
io

n;
 ↕

, e
vi

de
nc

e 
fo

r 
bo

th
 a

n 
in

cr
ea

se
 a

nd
 d

ec
re

as
e 

of
 m

et
ab

ol
ic

 a
ct

io
n;

 B
D

N
F,

 b
ra

in
-d

er
iv

ed
 n

eu
ro

tr
op

hi
c 

fa
ct

or
; C

H
I3

L1
, c

hi
tin

as
e-

3-
lik

e-
1;

 F
G

F-
21

, fi
br

ob
la

st
 g

ro
w

th
 

fa
ct

or
 2

1;
 F

S
TL

-1
, f

ol
lis

ta
tin

-li
ke

-1
; A

M
P

K
, a

de
no

si
ne

 m
on

op
ho

sp
ha

te
 k

in
as

e;
 P

I3
K

, p
ho

sp
ha

tid
yl

in
os

ito
l 3

-k
in

as
e;

 A
kt

, p
ro

te
in

 k
in

as
e 

B
; J

A
K

, J
an

us
 k

in
as

e;
 S

TA
T3

, s
ig

na
l t

ra
ns

du
ce

r 
an

d 
ac

tiv
at

io
n 

of
 tr

an
sc

rip
tio

n 
pr

ot
ei

n 
3;

 P
A

R
-2

, 
pr

ot
ea

se
-a

ct
iv

at
ed

 r
ec

ep
to

r 
2;

 M
A

P
K

, m
ito

ge
n-

ac
tiv

at
ed

 p
ro

te
in

 k
in

as
e;

 C
aM

K
, c

al
ci

um
–c

al
m

od
ul

in
 k

in
as

e;
 F

A
, f

at
ty

 a
ci

d.

4

Carson Contraction-Induced Myokines, Metabolism, and T2D

Frontiers in Endocrinology | www.frontiersin.org May 2017 | Volume 8 | Article 97

unclear. BDNF mRNA expression is increased by contraction of 
skeletal muscle cells; however, there is no evidence to show BDNF 
is secreted by muscle cells following contraction (59). BDNF 
treatment reduces blood glucose in a diabetic rodent model (60). 
Yamanaka et  al. (61) also found that chronic BDNF infusion 
improved glucose uptake and metabolism in BAT and muscle of 
rodents.

Myokines Regulating Fat Metabolism
IL-6
IL-6 infusion stimulates lipolysis and whole-body fatty acid (FA) 
oxidation in healthy males (62). Similarly, IL-6 treatment in 
humans results in elevated FA oxidation measured by palmitate 
oxidation and disappearance rates and a decreased respiratory 
quotient, peaking 60 min post-infusion (63). Increased whole-
body lipolysis is mediated by STAT3 signaling to upregulate skel-
etal muscle but not adipose tissue lipolysis. Similarly, Petersen 
et al.(64) found that IL-6 infusion resulted in an increased rate 
of palmitate appearance and disappearance in human serum 
of both normal glucose tolerant and T2D patients. In vitro 
experiments confirmed increased lipolysis in adipocytes and 
FA oxidation in L6 myotubes (60). These data suggest IL-6 plays 
a beneficial role in fat metabolism through the upregulation of 
lipolysis in skeletal muscle and an increase in FA oxidation that 
is maintained in T2D.

IL-15
IL-15 administration to rodents resulted in a 35% decrease in 
WAT and a 20% decrease in circulating triglycerides, suggesting 
a role for IL-15 in lipid metabolism (65). Overexpression and 
oversecretion of IL-15 in a transgenic mouse model resulted in 
decreased total body and visceral fat (66). Treatment of adipocytes 
with IL-15 resulted in decreased deposition of lipids (67). Pierce 
et  al. (68) perfused human subcutaneous adipose tissue with 
IL-15 via a microdialysis probe and observed an increase in adi-
pose tissue lipolysis of lean participants. However, this effect was 
lost in obese participants, whereby, IL-15 perfusion suppressed 
lipolysis. Interestingly, muscle-derived IL-15, induced by exercise 
did not have an effect on adipose tissue lipolysis in either lean 
or obese (68). Therefore, the role of IL-15 in regulating lipolysis 
in humans remains equivocal and requires further investigation. 
Little information exists on a role for IL-15 in lipid oxidation; 
however, Almendro et al. (69) demonstrated an effect of chronic 
IL-15 administration to rodents on the fate of an exogenous 
lipid bolus. IL-15 reduced de novo lipogenesis in adipose tissue 
in response to an exogenous lipid load and favored oxidation 
in muscle and liver via the upregulation of FA transport genes. 
Further evidence for IL-15 and lipid oxidation in both healthy 
and T2Ds is required.

Brain-Derived Neurotrophic Factor
Brain-derived neurotrophic factor treatment of L6 myotubes 
and intact ex vivo muscle results in increased FA oxidation via 
activation of AMPK (59). Chronic BDNF treatment reduces 
circulating FAs, total cholesterol, and phospholipids in a diabetic 
rodent model (60). Chronic intracerebroventricular BDNF 
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which exercise can protect against the onset or progression of 
T2D. To harness the actions of contraction-induced myokines, 
we must establish the types, intensity, and volume of contrac-
tion required to maximize these regulators to inform future 
exercise protocols for the prevention and treatment of T2D. 
Table  1 summarizes what we currently know with respect to 
the contraction-induced myokines discussed, in terms of how 
they are modulated by exercise and their actions in metabolic 
regulation. The role for aerobic exercise is clear, with evidence 
for an increase in circulating concentrations post-exercise for all 
myokines discussed, except IL-13, which appears to be acting in 
an auto/paracrine manner in response to resistance training only. 
This aligns with current recommendations that aerobic exercise 
is the primary component of any regimen in the prevention/
treatment of T2D (80). It is logical to expect a dose response 
to contraction; but so far, few studies have demonstrated an 
effect or a minimum duration of exercise (12, 27). Similarly, 
few studies have demonstrated an effect for intensity, with 
higher intensity exercise generally eliciting a greater increase 
in circulating myokines (8, 35, 41, 43, 44, 57, 58). Resistance 
exercise effectively enhances circulating concentrations of the 
majority of myokines discussed (Il-6, IL-15, BDNF, CHI3L1, 
irisin) confirming the rationale for inclusion in prevention/
treatment protocols.

In order to optimize future exercise prescription and policy to 
maximize the response and effect of myokines on metabolism, it 
is clear from this mini-review that there is a need to definitively 
characterize the following in both healthy and T2D participants: 
(i) the myokine response to an acute bout of aerobic exercise of 
varying durations (as low as 10 min); (ii) the myokine response 
to aerobic exercise of varying intensities; and (iii) the myokine 
response to resistance exercise of varying volume and intensities. 
To date, much of the evidence describing the mechanism through 
which recently identified myokines modulate metabolic function 
have been characterized using in vitro cell models which do not 
necessarily translate to the in vivo human situation. Though this is 
a necessary preliminary approach, it is important to acknowledge 
this as a significant limitation when interpreting the findings of 
the current literature.

Finally, this review has focused predominantly on tissue 
crosstalk by myokines released to the circulation; however, it is 
likely that more myokines are secreted post-exercise exclusively 
to the interstitium where they are exerting a local effect. More 
work is required to identify the entire in vivo contraction-induced 
secretome by techniques such as interstitial microdialysis. 
Furthermore, there is a need to establish the bioactivity of con-
traction-induced myokines for both local and systemic tissues.
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administration is also shown to decrease body weight, fat mass, 
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induced BDNF on fat metabolism in muscle, adipose, and liver.

Irisin
Irisin treatment of 3T3-L1 adipocytes in vitro induces increased 
gene expression of lipolysis-related genes including adipose 
triglyceride lipase, hormone-sensitive lipase (HSL), and protein 
expression of fatty acid-binding protein 4, suggesting irisin has 
potential to increase lipolysis (72). By contrast, Wang et al. (73) 
found no effect of irisin on HSL or ATGL protein expression or 
expression of lipolysis-related genes in 3T3L-1 adipocytes. Irisin 
perfusion in HFD mice resulted in decreased serum cholesterol, 
triglycerides, and free FAs (48). FNDC5 overexpression in 
obese and HFD mice led to increased serum irisin resulting in 
decreased serum triglycerides and free FAs in obese and HFD 
mice (48). Irisin treatment of adipocytes resulted in increased 
expression of UCP-1 and increased energy expenditure. Irisin 
also induced expression of metabolic genes (CPT-1, PPARα, 
HSL) and prevented lipid accumulation (74). Irisin treatment of 
myocytes also elevated FA oxidation suggesting a protective effect 
against progression of T2D (75).

Myonectin
Myonectin, a member of the C1q/TNF-related protein family, is 
expressed in skeletal muscle and released to the circulation in 
response to exercise in animal studies (76). In vivo myonectin 
administration reduced circulating levels of free FAs without 
altering adipose tissue lipolysis in mice. This reduction in circu-
lating free FAs is purported to occur by an increase in FA uptake 
upregulated by increased expression of FA transport genes such 
as CD36, FATP1, Fabp1, and Fabp4 (76).

Fibroblast Growth Factor-21
Fibroblast growth factor-21 treatment of 3T3L-1 adipocytes 
attenuates lipolysis and expression of perilipin (77) and has 
also been shown to increase hepatic FA oxidation (78). Chronic 
FGF21 treatment reduces serum and hepatic triglyceride levels in 
diet-induced obese mice (79). These data suggest an influential 
role for FGF-21 in regulation of lipid metabolism.

OPTiMiZinG THe MYOKine ReSPOnSe 
FOR THe PRevenTiOn AnD TReATMenT 
OF T2D

This review has outlined the role of myokines in regulating 
glucose and fat metabolism as potential mechanisms through 
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