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Neurons from mouse models of Huntington’s disease (HD) exhibit altered electro-
physiological properties, potentially contributing to neuronal dysfunction and neu-
rodegeneration. The renin–angiotensin system (RAS) is a potential contributor to the 
pathophysiology of neurodegenerative diseases. However, the role of angiotensin II (Ang II)  
and angiotensin (1-7) has not been characterized in HD. We investigated the influence 
of Ang II and angiotensin (1-7) on total potassium current using immortalized progenitor 
mutant huntingtin-expressing (Q111) and wild-type (Q7) cell lines. Measurements of 
potassium current were performed using the whole cell configuration of pCLAMP. The 
results showed that (1) the effect of Ang II administered to the bath caused a negligible 
effect on potassium current in mutant Q111 cells compared with wild-type Q7 cells 
and that intracellular administration of Ang II reduced the potassium current in wild 
type but not in mutant cells; (2) the small effect of Ang II was abolished by losartan; (3) 
intracellular administration of Ang II performed in mutant huntingtin-expressing Q111 
cells revealed a negligible effect of the peptide on potassium current; (4) flow cytometer 
analysis indicated a low expression of Ang II AT1 receptors in mutant Q111 cells; (5) 
mutant huntingtin-expressing striatal cells are highly sensitive to Ang (1-7) and that the 
effect of Ang (1-7) is related to the activation of Mas receptors. In conclusion, mutant 
huntingtin-expressing cells showed a negligible effect of Ang II on potassium current, 
a result probably due to the reduced expression of AT1 receptors at the surface cell 
membrane. In contrast, administration of Ang (1-7) to the bath showed a significant 
decline of the potassium current in mutant cells, an effect dependent on the activation of 
Mas receptors. Ang II had an intracrine effect in wild-type cells and Ang (1-7) exerted a 
significant effect in mutant huntingtin-expressing striatal cells.

Keywords: angiotensin ii, angiotensin (1-7), huntington’s disease, aT1 receptor, potassium currents, mouse 
striatal cell lines

inTrODUcTiOn

Huntington’s disease (HD) is a devastating, progressive neurodegenerative disease with autosomal 
dominant inheritance, characterized by involuntary movements, motor dysfunction, cognitive 
decline, and behavioral irregularities (1). HD is caused by an expanded CAG repeat (≥39) in the 
gene encoding the protein huntingtin. The expanded allele expresses a mutant form of huntingtin 
with acquired toxic properties (2). Expression of mutant huntingtin in the brain causes neuronal 
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loss mainly in the striatum and cerebral cortex (3, 4). The mecha-
nisms by which mutant huntingtin leads to pathology remain 
unclear. In neurons, potassium currents affect many functions 
including action potential frequency and neurotransmitter 
release, cell proliferation, and apoptosis (5). Interestingly, the 
electrophysiological properties of neurons are altered in HD 
mouse models, potentially contributing to neuronal dysfunction 
and neurodegeneration (6–8).

Evidence from studies in HD animal models links the 
renin–angiotensin system (RAS) to the pathophysiology of 
neurodegenerative diseases (9, 10). The brain RAS is a potential 
contributor to neurodegeneration and has been suggested to play 
a role in the etiology and progression of Alzheimer’s disease (AD) 
(11) and Parkinson’s disease (PD) (12). Decreased angiotensin II 
(Ang II) receptor binding in the substantia nigra and striatum in 
the brain of patients with PD has been described, and evidence is 
available that neurons are able to synthesize angiotensinogen in 
ventrolateral medulla (13), thalamus, hypothalamus, and brain 
stem (13–15) and that Ang II is found in supraoptic nuclei and 
hypothalamus (16). Of particular interest is the observation that 
Ang II has been localized in nerve terminals (17) raising the 
possibility that the peptide is a neurotransmitter. Other studies 
revealed the presence of renin protein and mRNA in astrocytes 
(18), but the precise meaning of these findings is not known. 
Moreover, angiotensin converting enzyme (ACE) inhibitors 
and AngII antagonists prevent cognitive decline in a chemically 
induced mouse model of HD (19) and in models of AD (20).

Over the last two decades, knowledge on the pathophysiology 
and molecular biology of HD has significantly extended, and the 
contribution of non-CNS tissues to the pathogenesis and clinical 
symptomatology is increasingly recognized. Interestingly, an 
important role of the immune system has been found in HD. 
High titers of T cell activating autoantibodies against Ang II type 
1 receptors (AT1R) are present in HD patients as compared to 
healthy controls (21). Higher anti-AT1R antibody titers associ-
ated with early onset of disease and significantly correlated 
with disease duration and disease burden score (21). Moreover, 
activation of the peripheral immune system and in particular an 
upregulation of innate immune responses including microglia 
activation has been repeatedly reported in HD patients (22–24). 
Interestingly, the activity of ACE is significantly reduced in the 
caudate putamen of HD patients (25). However, no information is 
available showing the effects of angiotensins in HD. In this study, 
we investigated the effects of Ang II and Ang (1-7) in HD using 
immortalized progenitor mutant huntingtin-expressing Q111 
and wild-type Q7 mouse striatal cell lines.

MaTerials anD MeThODs

cell culture
Immortalized progenitor cell lines STHdhQ111 mutant (Q111) 
and STHdhQ7 wild type (WT; Q7) were derived from striatal 
neurons from HdhQ111/Q111 and HdhQ7/Q7 mice (expressing 
111 and 7 glutamine repeats, respectively) and were kindly pro-
vided by Dr. Marcy McDonald, Massachusetts General Hospital. 
Cells were cultured in Dulbecco’s modified Eagle medium 

supplemented with10% FBS, 100  U/ml penicillin, 100  mg/ml 
streptomycin, 2mM l-glutamine, and 400  mg/ml G418. Cells 
were grown at 33°C in a 5% CO2 incubator. Cells with passages 
lower than 14 were used in all experiments.

electrophysiology
Electrophysiological recordings of total potassium current were 
made using whole cell patch-clamp procedures in the voltage-
clamp mode. Experiments were performed at room temperature 
with an Axopatch 200B amplifier and a Digidata 1400B interface 
(Molecular Devices, CA). Data acquisition and analyses were 
performed using pClamp 10. Cells were bathed in modified 
Tyrode’s solution containing (in millimolars) 137 NaCl, 5.4 KCl, 
1.35 CaCl2.MgSO4.7 H2O, 0.3 NaH2PO4, 10 HEPES, 5 dextrose, 
pH adjusted to 7.4. Neurons in the culture dish (volume 2 ml) 
were superfused at a rate of 1–2  ml/min. The patch electrodes 
had resistances of 2–4 MΩ when filled with an internal pipette 
solution containing (mM): 130 KCl, 2 MgCl2, 0.25 CaCl2, 3 ATP, 
5 dextrose, 5 EGTA, and 10 HEPES, pH adjusted to 7.2 with KOH. 
Series resistance was compensated (50%) with Axopatch 200B 
compensation circuitry. Standard recording conditions for total 
outward K current consisted in holding the membrane potential 
to −80 mV and applying depolarizing steps of 10 mV for 300 ms.

Membrane levels of aT1 receptor
Q7 (WT) and Q111 (mutant huntingtin-expressing) cells 
(1 × 106 cells) were incubated with an anti-AT1 receptor primary 
antibody (5 μg; EMD Millipore, MA, USA) for 1 h at 4°C. The 
cells were then washed two times with 1× PBS and then incubated 
with an FITC-secondary antibody (1:500) for an additional hour 
at 4°C. Samples were analyzed by flow cytometry. Unlabeled cells 
were used to determine the autofluorescence level.

Flow cytometry
All flow cytometric analyses were carried out using a four-color 
flow cytometer (FACSCalibur, BD Biosciences, San Jose, CA, 
USA) equipped with a 488  nm argon-ion laser and a 635  nm 
red-diode laser. Cell size and granularity were determined on 
FSC versus SSC dot plots. Emission for FITC fluorescence from 
AT1 receptor was measured in the FL1 photomultiplier through a 
530/30 nm bandpass filter. A total of 20,000 events were analyzed 
for each sample, and list-mode files were collected using Cell 
Quest software 3.3 (BD Biosciences, San Jose, CA, USA) and 
analyzed using the FlowJo software vX.0.7 (BD Biosciences, San 
Jose, CA, USA). The mean fluorescence intensities of A7 cells and 
Q111 mutants were obtained from the flow cytometric histogram 
plots.

Drugs
Angiotensin II, angiotensin (1-7), A779, and Bis-1 were form 
Sigma Chemical Co., St. Louis, MO, USA.

statistical analysis
Data are expressed as mean  ±  SEM. Student’s t-test was used. 
Differences were considered significant when p < 0.05.
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resUlTs

Poor sensitivity of Mutant Q111 
huntingtin-expressing striatal cells to 
extracellular ang ii
To investigate the effect of Ang II on potassium current, the peptide 
was administered to the bath, and measurements of potassium 
current were performed before and after the administration of the 
peptide. As shown in Figure 1A, Ang II (100 nM) decreases the 
potassium current in normal Q7 striatal cells, and concurrently 
with the change of potassium current, the resting potential was 
found to be increased by about 8 ± 2.4 mV (n = 22) (p < 0.05). 
The effect of the peptide on potassium current was inhibited by 
valsartan (10−9M) as shown in Figure 1B. We found important 
to investigate if the mutant Q111 cells are also less sensitive to 
Ang II. Experiments performed on these cells showed that Ang II 
(100 nM) added to the bath had a negligible effect on potassium 
current as illustrated in Figure 1C.

reduced expression of aT1 receptors in 
Mutant Q111 cells
To investigate if the reduced effect of Ang II on potassium current 
in Q111 cells was related to a decreased expression of AT1R, flow 
cytometry analysis was performed in Q7 and Q111 cells. The 
results revealed a significant 67% reduction of AT1R levels in 
Q111 mutant huntingtin-expressing cells when compared with 
normal Q7 controls (see Figure 2).

intracellular ang ii and Potassium current
Previous findings indicated that intracellular Ang II changes the 
inward calcium current and cell communication in the heart and 
other tissues (26–34) and that AT1 receptors were found intra-
cellularly near mitochondria (35). These observations indicate 
that endogenous or internalized Ang II can alter mitochondrial 
function including calcium release or enhancement of oxidative 
stress (35–38). It is then important to investigate if intracellular 
Ang II has an effect on potassium current in mutant huntingtin-
expressing Q111 cells. To investigate this possibility, the peptide 
was added to the pipette solution and dialyzed into the cells using 
the patch-clamp technique. Figure 3A shows that in wild-type 
Q7 cells, the intracellular administration of the peptide reduces 
the potassium current while in mutant Q111 cells the same con-
centration of Ang II caused a negligible effect on the potassium 
current (see Figure 3B).

Q111 Mutant cells are highly sensitive to 
ang (1-7)
Evidence has been provided that the activation of the ACE2/
Ang (1-7)/Mas axis counteracts many effects of Ang II in the car-
diovascular and central nervous systems (27). To investigate the 
influence of Ang (1-7) in HD, the heptapeptide was administered 
to the extracellular fluid, and its effect on potassium current was 
investigated in immortalized Q111 mutant huntingtin-expressing 
and wild-type Q7 mouse striatal cells. As shown in Figure 4A, 
the administration of Ang (1-7) (10−9M) to the bath elicited a 
decrease in the total potassium current in Q111 mutant cells. 

Interestingly, this effect is related to the activation of Mas recep-
tors because A-799, which is a Mas receptor antagonist, added to 
the bath, abolished the effect of the heptapeptide (Figure 4A). In 
wild-type Q7 cells, the same dose of the heptapeptide elicited a 
small but statistically significant increase of potassium current as 
shown in Figure 4B.

intracrine effect of ang (1-7) on Q111 and 
Q7 cells
The presence of Mas receptors and Ang (1-7) in the cell nucleus 
(35, 39) raises the possibility that the heptapeptide plays an 
important role on cellular functions. We investigated the pos-
sible intracrine effect of Ang (1-7) on potassium current in both 
Q111 and Q7 cells. As it can be seen in Figure  4C, Ang (1-7) 
significantly reduced the potassium current in Q111 mutant cells. 
Comparative experiments performed on wild-type Q7 cells indi-
cated a small but statistically significant increment of potassium 
current (Figure 4D).

DiscUssiOn

The present results demonstrate for the first time that mutant 
huntingtin-expressing striatal cells are highly sensitive to Ang 
(1-7), a conclusion supported by the finding that the decrease of 
total potassium current elicited by Ang (1-7) was significantly 
greater in Q111 cells than in wild-type Q7 cells. The effect of 
Ang (1-7) in mutant huntingtin-expressing cells is related to the 
activation of Mas receptors because A-799 abolished the effect 
of the heptapeptide on potassium current. Evidence is available 
that the Mas receptor is found in various areas of the brain, 
including the hippocampus, amygdala, forebrain, piriform cor-
tex, olfactory bulb, thalamus, and portions of the hypothalamus 
(40, 41) and that Ang (1-7) counteracts several effects of Ang II 
in these and other tissues (42, 43). Furthermore, Mas expression 
was also discovered in the monkey retina (44). The presence of 
Mas in areas, such as the hypothalamus, nucleus tractus solitarii, 
rostral, and caudal ventrolateral medulla, provides the basis for 
several effects produced by its agonist, Ang-(1–7), in the brain. 
Although the appreciable effect of Ang (1-7) on potassium cur-
rent seen in mutant Q111 cells might be related to an enhanced 
expression of Mas receptors, further studies are needed to 
confirm this possibility.

Of particular interest was the finding that the effect of Ang 
II on potassium current in Q111 mutant cells was negligible, 
contrasting with the significant increase of potassium current 
elicited by the peptide in wild-type Q7 cells. The reason for the 
small effect of Ang II on mutant neurons was the appreciable 
decline of expression of Ang II type 1 receptors (AT1R) found 
in the cell membrane of these cells. Consistent with this finding 
is the observation that AT1R levels are significantly decreased in 
postmortem putamen of HD patients relative to control individu-
als (45). This finding seems to be in accord with recent studies 
showing that the immune system plays an important role in HD 
and that the presence of T cell activating autoantibodies against 
AT1R described in all stages of the disease (21) may explain the 
decline in AT1R levels found in HD patients. Not only AT1R seem 
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FigUre 1 | (a) Top—Current/voltage curves showing the decline of total potassium current in normal Q7 cells elicited by extracellular administration of angiotensin 
II (Ang II) (100 nM) to the bath. Each point is the average of 35 cells. Vertical line at each point represents the SEM (p < 0.05). Bottom—Potassium currents recoded 
from single Q7 cells before (control) and after the administration of Ang II (100 nM) to the bath. Vertical calibration represents 1 nA; horizontal calibration represents 
300 ms. Holding potential −80 mV. (B) Influence of valsartan (10−9M) on the effect of Ang II (100 nM) on peak potassium current elicited by a depolarizing pulse from 
the holding potential −80 to 0 mV. Each bar is the average from 25 Q7 cells. Vertical line at each bar represents the SEM. (c) Top—Current/voltage curve showing 
the lack of action of Ang II (100 nM) on several Q111 mutant cells. Each point is the average from 36 cells. Vertical line at each bar represents SEM (p > 0.05). 
Bottom—Lack of action of Ang II (100 nM) administered to the bath on total potassium current recorded from Q111 single cell before (control) and after the 
administration of Ang II to the bath. Vertical calibration represents 1 nA; horizontal calibration represents 300 ms.
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altered in HD but also the activity of the ACE is reduced. Studies 
performed in different regions of the calf and human brains with 
HD indicated a decline of ACE activity including a reduction of 
83–92% in the globus pallidus, while the caudate and putamen of 
choreic patients display 62–69% decrease in the enzyme activity 
(25). These observations support the view that the ACE/Ang II/

AT1 receptor axis is reduced in animal models and in patients 
with HD.

Evidence is available that independent of the conventional 
renin–angiotensin aldosterone (RAAS) system, different compo-
nents of RAAS are expressed in cells of the cardiovascular system 
and play an important role on cardiovascular pathophysiology 
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FigUre 3 | (a) Decrease of total potassium current caused by intracellular administration of angiotensin II (Ang II) (100 nM) in normal Q7 cells. Each bar is the 
average from 32 cells. Vertical line at each bar represents the SEM (p < 0.05). (B) Negligible effect of intracellular administration of Ang II (100 nM) in Q111 mutant 
cells. Each bar is the average from 36 cells. The vertical line at each bar represents the SEM (p > 0.05).

FigUre 2 | Membrane levels of aT1 receptor in a7 cells and Q111 mutant cells. Cells were stained for membrane AT1 receptor using an anti-AT1 receptor 
primary antibody, and their fluorescence intensity was analyzed by flow cytometry using an FITC-secondary antibody. (a) Representative flow cytometric histograms 
show the differences in the fluorescence intensities of membrane AT1 receptor levels from Q7 (dark histogram) and Q111 mutant cells (dark gray histogram). The 
light gray histogram represents the unlabeled cells. (B) Graph shows the significant differences (p < 0.05) between the AT1 receptor levels of Q7 (dark bar) and 
Q111 mutant cells (gray bar) obtained from the mean fluorescence intensities (MFI) of the histograms. Error bars represent the SD.
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(26–33). Previous observations revealed that AT1R are present 
inside neurons near mitochondria leading to the hypothesis 
that endogenous or internalized Ang II can alter mitochondrial 
function and generate oxidative stress (35) (see also (34)). The 
finding that intracellular Ang II reduces the potassium current 
in wild-type Q7 cells indicate that the peptide has an intracrine 
action while in mutant Q111 cells the effect of intracellular 
Ang II was negligible, possibly due to a decreased expression of 
AT1R inside the cell. Of particular interest was the observation 
that intracellular Ang (1-7) reduced the potassium current in 

mutant cells, an effect opposite to that seen when the heptapep-
tide was added to the wild-type cells. The significance of these 
preliminary findings and their possible implications for HD are 
not known. Mutant huntingtin associates directly with brain 
mitochondria (46–48) disrupts calcium homeostasis, reduces 
ATP generation, and inhibits the mitochondrial trafficking 
(49). In mutant huntingtin-expressing Q111 cells, a significant 
increase in mitochondrial-generated superoxide is observed 
compared to wild-type cells (50). Moreover, mitochondrial 
bioenergetics and spare respiratory capacity are significantly 
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FigUre 4 | (a) Inhibition of the effect of Ang (1-7) elicited by A-799 (10−8M) administered to the bath. Each bar is the average from 24 cells. Vertical line at each 
point represents the SEM (p < 0.05). (B) Increase of total potassium current caused by extracellular administration of Ang (1-7) (100 nM) in Q7 cells. Top—current–
voltage curves showing the effect of the heptapeptide in several Q7 cells. Each point is the average from 33 cells. Vertical calibration at each point represents the 
SEM (p < 0.05). Bottom—effect of the heptapeptide in single cells before (control) and after the administration of Ang (1-7) to the bath. Vertical calibration represents 
1 nA; horizontal calibration represents 300 ms. (c) Decrease of total potassium current caused by intracellular administration of Ang (1-7) (100 nM) in mutant Q111 
cells. Each bar is the average from 28 cells. Vertical line at each bar represents the SEM (p < 0.05). (D) Small increase of total potassium current recorded from 
normal Q7 cells seen after the intracellular administration of Ang (1-7) (100 nM). Each bar—average from 29 cells. Vertical line at each bar represents the SEM 
(p < 0.05).
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reduced in immortalized mutant huntingtin-expressing mouse 
Q111 cells compared to wild-type cells (50). Thus, it is possible 
that mitochondrial dysfunction and increased levels of mito-
chondrial reactive oxygen species (ROS) may enhance the ACE2/
Ang(1-7)/Mas axis in Q111 cells. Interestingly, blockade of the 
AT1R inhibits cardiac hypertrophy by induction of ACE2 gene 
expression, suppression of ROS generation, and enhancement of 
the ACE2/Ang(1-7)/Mas axis (51).

Electrophysiological studies performed on striatal neurons 
from Q175 mouse model of HD revealed that the frequency of 
spontaneous and miniature excitatory postsynaptic currents 
(EPSCs) was decreased while the frequency of spontaneous 
inhibitory postsynaptic currents was enhanced (52). Since Ang II 
reduces the potassium current and depolarizes the wild-type Q7 

cells, it is possible that the lack of effect of Ang II on potassium 
current in mutant Q111 cells represents a compensatory mecha-
nism against the decrease of EPSC described in striatal neurons 
in animal models of the disease.

cOnclUsiOn

The present observations indicate: (1) a significant decline in the 
expression of Ang II AT1R in mutant Q111 cells and a drastic 
decrease in the effect of the peptide on potassium current; (2) a 
large effect of Ang (1-7) of potassium current in mutant cells, an 
effect suppressed by a Mas receptor antagonist. These observations 
indicate that the ACE2/Ang (1-7)/Mas receptor axis of the RAS 
in mutant neurons is predominantly activated over the ACE/Ang 
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II/AT1R axis. Although we do not know the pathophysiological 
significance of these results, they support the view that the RAS 
is involved in the derangement of brain function seen in different 
degenerative diseases.
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