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Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular 
disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults 
fail to perform substantial levels of physical activity needed to improve health. Thus, 
understanding the molecular factors that stimulate physical activity, and physical inactiv-
ity, is imperative for the development of strategies to reduce sedentary behavior and in 
turn prevent chronic disease. Despite many of the well-known health benefits of physical 
activity being described, little is known about genetic and biological factors that may 
influence this complex behavior. The mesolimbic dopamine system regulates motivating 
and rewarding behavior as well as motor movement. Here, we present data supporting 
the hypothesis that obesity may mechanistically lower voluntary physical activity levels via 
dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine 
activity is a strong contributor to voluntary physical activity behavior. We also summarize 
findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn 
contributes to reductions in physical activity that often accompany obesity. Additionally, 
we highlight examples in which central leptin activity influences physical activity levels in 
a dopamine-dependent manner. Future elucidation of these mechanisms will help sup-
port strategies to increase physical activity levels in obese patients and prevent diseases 
caused by physical inactivity.

Keywords: physical activity, physical inactivity, motivation, dopamine, obesity, leptin

inTRODUCTiOn

Physical inactivity presents a major public health problem. Predictions by Lee et al. (1) estimated 
that physical inactivity accounts for between 6 and 10% of type 2 diabetes (T2D) and coronary heart 
disease prevalence, with this percentage further elevated for specific diseases (30% for ischemic heart 
disease) (2). Moreover, the World Health Organization declared physical inactivity as the fourth 
leading risk factor for death worldwide, responsible for ~6% of the deaths worldwide in 2008 (1, 2). 
Accelerometry measurements by Troiano et al. (3) reported that less than 5% of adults met the US 
guidelines for physical activity, while questionnaire data collected globally in 2009 suggested that 31% 
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of the world’s population did not attain minimum recommended 
levels of physical activity (4). Given the deleterious effects of 
physical inactivity, understanding molecular mechanisms that 
influence physical activity adherence is needed. Here, we sum-
marize current knowledge suggesting the mesolimbic dopamine 
system regulates physical activity, obesity-induced impairments 
in dopamine signaling may cause physical inactivity, and central 
leptin resistance in obesity and T2D may alter physical activity 
in a dopamine-dependent manner. Specifically, our discussion 
focuses on motivated and self-rewarding (i.e., voluntary wheel 
running), rather than spontaneous (i.e., cage activity, tremors, 
etc.), forms of physical activity.

GeneTiC COnTROL OF PHYSiCAL 
ACTiviTY

In 1953, Mayer, a leader who helped clarify the natures of hunger 
and of obesity, demonstrated that physical activity behavior has 
a biological basis (5). Mayer noted that obese, hyperglycemic 
mice were far less active than non-obese littermates. However, 
when the obese mice were bred against mice with a so-called  
“waltzing gene” physical activity increased to sufficiently prevent 
the development of obesity. Since Mayer’s original speculation 
of an uncharacterized “waltzing gene,” studies in animals and 
humans have estimated the genetic component for physical 
inactivity to be between 20 and 80% (6–12). Analysis of 772 
same-sex twin pairs concluded that 31% of the variance in daily 
sedentary time was explained by heritable factors (13). Of these 
heritable factors, associations between dopamine and moti-
vated physical activity are well established, as discussed below. 
However, other neuromodulators such as endocannabinoids  
(14, 15), opioids (16), and brain-derived neurotrophic factor 
(17) also influence physical activity behavior. Furthermore, 
inter actions between these neuromodulatory systems imply 
that biological networks control voluntary physical activity (18). 
Evolutionary perspectives also argue that while selection did not 
operate to cope with the detrimental effects of long-term physical 
inactivity, humans adapted to avoid unnecessary exertion due 
to limited energy supply (19). Additionally, gene–environment 
interactions influence physical activity. Rowland (20) proposed 
that through components related to energy balance control an 
“activity-stat” may regulate the propensity for physical activity. 
Furthermore, obesity was speculated to be a critical negative 
influencer of the “activity-stat” (21). Collectively, these findings 
suggest that physical activity levels have strong genetic control.

DOPAMineRGiC COnTROL OF PHYSiCAL 
ACTiviTY

Although detailed mechanisms describing the neurobiology of 
wheel running are incomplete, substantial evidence suggests 
that the mesolimbic dopamine pathway, specifically the ventral 
striatum and nucleus accumbens (NAc), plays an important role 
in determining voluntary running behavior (22–24). A detailed 
review of the mesolimbic dopamine system is beyond the scope 
of this review; however, a brief overview is provided next [please 

see Ref. (25, 26) for more detailed review]. In the mesolimbic 
dopamine system, dopaminergic neurons originating in the 
ventral tegmental area (VTA) project to various limbic nuclei, 
including the NAc, and changes in dopamine transmission play 
central roles in modulating information flow through the limbic 
system (27–30). These nuclei, through interconnections via 
dopaminergic neurons, have implications in reward, motivation, 
learning, and motor movement (31). Importantly, the NAc acts as 
a “filter” and/or “amplifier” of information passing between vari-
ous limbic, cortical, and motor areas of the brain, suggesting the 
NAc is instrumental in orchestrating behavioral processes related 
to motivation (25). Several reports have demonstrated that other 
mesolimbic structures, such as the VTA and prefrontal cortex, 
contribute to reward derived from physical activity, potentially 
through their interactions with the NAc (32–34).

Disruption of dopaminergic transmission and/or dopamine 
receptor expression in the NAc and ventral striatum can strongly 
influence voluntary physical activity. The depletion of NAc dopa-
mine by 6-hydroxydopamine decreased wheel running ~40% 
(35). Knab et  al. (22) suggested that differences in dopamine 
1-like (D1-like) receptors and tyrosine hydroxylase (Th) mRNA, 
the rate-limiting enzyme in dopamine synthesis, in the NAc influ-
ence different running distances between mouse strains.

Selective breeding studies have provided ample insight into 
voluntary physical activity regulation. Mice bred by Garland 
et  al  for high voluntary running distance displayed dysfunc-
tional dopaminergic profiles in the NAc (36, 37) and increased 
dopamine receptor 2 (Drd2) and dopamine receptor 4 (Drd4) 
mRNA ~20% in the hippocampus (38), compared to control 
mice. Furthermore, agonism (24) and antagonism (37) of D1-like 
receptors in the NAc paradoxically both decreased wheel run-
ning in high-running mice to a greater extent than in control 
mice. Similar findings from our group using rat lines selectively 
bred for high (HVR) and low (LVR) wheel-running suggested 
rats predisposed to run high nightly distances may quickly 
develop a rewarding response to exercise due to optimal D1-like 
receptor signaling in the NAc (39). Collectively, these data sug-
gest the following: (1) dopamine signaling is optimally primed 
to achieve reward associated with running in high-running rats, 
(2) dopamine is at least partially required for wheel-running 
behavior, and (3) animals run to achieve the rewarding effects 
of dopamine but do not want to run when dopamine signaling 
is artificially activated. Dopamine receptors 1 (Drd1), Drd2, 
and dopamine receptor 5 (Drd5) mRNA were also inherently 
50 to 85% higher in the NAc of HVR compared to LVR (16). 
Similarly, inherent ~1.3-fold increases in NAc Drd1 mRNA 
and ~1.8-fold greater dopaminergic activity were speculated 
to mediate increased wheel running in rats selectively bred for 
high, compared to low, aerobic capacity, suggesting that aerobic 
capacity may influence physical activity levels through altera-
tions in mesolimbic dopamine activity (40, 41). Furthermore, 
the loss of dopamine receptors or reduced dopamine release in 
the brain was associated with age-related declines in physical 
activity across many species (42) and was hypothesized to influ-
ence age-related physical activity reductions in humans (43). 
Single nucleotide polymorphism (SNP) analysis suggested that 
the DRD2 gene associated with physical activity levels in women 
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FiGURe 1 | Data suggest that both increases in energy intake and reductions in energy expenditure associate with increased obesity prevalence, 
while in later years, decreased energy expenditure more strongly associates with T2D prevalence. Percentage of US adults with obesity (A) or diagnosed 
with type 2 diabetes (B) over the past ~40 years. (C) Unadjusted food intake for male (solid line) and female (dashed line) adults in the US during the same time 
frame. (D) Physical activity (solid line/left axis) [average metabolic equivalent (MET) hours per week] and physical inactivity (dashed line/right axis) (hours per week of 
sedentary time) performed by US adults. Obesity data redrawn from Ref. (48, 51), diabetes data from the CDC (52), food intake data from Ref. (53), and physical 
activity data from Ref. (54).
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(44) and that individuals with the CC homozygous variant in 
rs1800955 of the DRD4 gene were more prone to sport-specific 
sensation seeking (45). Similarly, Wilkinson et  al. (46) found 
associations between SNPs in two dopamine pathway genes, 
angiotensin I converting enzyme (ACE) and synaptosomal-
associated protein 25 (SNAP25), and decreased likelihood for 
physical activity in youth.

However, whether alterations in the dopamine system are 
the result or driver of differences in voluntary physical activity 
is unknown. For example, previous reports show that voluntary 
wheel running is rewarding, and over time, able to alter behavior 
and affect the neuroplasticity of the mesolimbic reward pathway 
(34). Furthermore, endurance exercise training increased central 
dopamine concentrations up to 1.5-fold (47). Thus, physical 
activity, itself, could function in a feed-forward mechanism to 
further elevate physical activity.

OBeSiTY AnD DOPAMineRGiC 
DYSReGULATiOn

In the past three decades, obesity prevalence in the US has risen 
from below 20 to 36.5% (48). Additionally, physical inactivity 

levels and excessive food intake have increased over a similar 
period, directly contributing to increases in obesity and T2D (1) 
(Figure 1). Increases in unadjusted food intake from ~1980 to 
1994 were associated with initial rapid increases in obesity, but 
not T2D, prevalence. Furthermore, beginning in ~1998 to 2000, 
physical activity levels rapidly dropped and sedentary time rapidly 
increased. This decrease in physical activity and increase in physi-
cal inactivity corresponded with increases in both obesity and 
T2D prevalence, despite food intake staying relatively constant 
during the same period. In our opinion, more recent increases 
in obesity are thus better associated with physical inactivity 
increases as caloric intakes were unchanged. Importantly, while 
declining physical activity levels contribute to obesity develop-
ment, obesity contributed to reductions in physical activity in 
humans, even after controlling for baseline differences in physical 
activity (49). This interaction may promote the development of 
self-perpetuating vicious cycles whereby physical inactivity and 
obesity promote each other’s development (50).

The effects of obesity on the mesolimbic dopamine system are 
well studied, and hypotheses suggesting “reward dysfunction”  
in obesity have developed given findings that obesity is asso-
ciated with alterations in striatal dopamine signaling (55). 
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For example, reduced dopamine function, particularly DRD2 
sig nal ing, is associated with obesity development in rodents 
(56–59) and humans (60–62). However, these studies associ-
ated hyperphagia with obesity development and did not assess 
physical activity. Similarly, using positron emission tomography 
(PET) Guo et al. (63) observed a negative relationship between 
D2-like receptor binding in the ventral striatum and body mass 
index (BMI), suggesting that BMI could influence rewarding 
and effort-based actions. Similar measurements associating 
D1-like receptor neuron activity with obesity in humans are 
lacking, although several animal studies found that Drd1 mRNA 
is reduced up to ninefold in the NAc of obese rats (64, 65).  
High-fat diet consumption for 12 weeks decreased tonic dopa-
mine and Drd1 and Drd2 mRNA expression ~50% in the NAc 
of mice (66). Interestingly, following a 4-week recovery from 
high-fat diet, NAc Drd1 and Drd2 mRNA expressions were 
normalized in female, but not male, mice (66). Similarly, PET 
studies in humans show that DRD2 binding is not recovered 
(67) or partially recovered (68) following Roux-en-Y gastric 
bypass surgery. Collectively, these data suggest that reductions 
in dopamine function accompanying obesity could persist 
following weight loss. This notion is consistent with findings 
that physical inactivity levels remained high in obese humans 
months after weight loss (69–71), raising the question whether 
“physical activity resistance” exists temporarily/permanently 
after weight loss.

Interestingly, animal studies also suggest that high-fat diet 
exposure, rather than weight gain, may be more predictive of 
changes in striatal dopamine signaling. Isocaloric high-fat diet 
feeding in rats resulted in ~40% lower DRD2 in the NAc (72). 
Furthermore, chronic ad libitum high-fat diet reduced dopamine 
turnover 3.5-fold in the NAc of rats, although similar reductions 
were observed following isocaloric high-fat diet (73). Additionally, 
animal studies suggest that longer-term high-fat diet exposure 
can suppress dopamine synthesis, release, or turnover, ultimately 
reducing motivated behaviors not limited to motivation for food, 
such as physical activity (74). Despite considerable variability in 
experimental outcomes, we conclude that decreased dopamine 
signaling, particularly decreased D2-type function, could be 
particularly relevant to obesity.

OBeSiTY AnD PHYSiCAL inACTiviTY

Obesity is strongly associated with physical inactivity (75, 76). 
While sparsely studied, several studies suggest that diet-induced 
dopaminergic alterations accompanying obesity may promote 
physical inactivity. Friend et  al. (77) noted that diet-induced 
obesity in mice reduced D2-type receptor binding in the stria-
tum that associated with decreased voluntary physical activity. 
Furthermore, in the same study the deletion of the Drd2 gene, 
specifically in inhibitory medium spiny neurons (iMSNs), 
decreased wheel revolutions compared to littermate controls, 
although these mice were surprisingly not more vulnerable to 
diet-induced weight gain (77). Finally, the restoration of iMSN 
signaling reversed deficits in wheel running (77). Collectively, 
these data support the notion that D2-type receptor dysregula-
tion contributes to obesity-induced physical inactivity, but that 

physical inactivity may be a consequence, rather than effector, 
of obesity.

Similarly, comparisons between mice bred for excessive 
exercise or obesity revealed that NAc dopamine content was 
increased in high running compared to obese and control mice, 
while Drd1, Drd2, and adenylate cyclase 5 (Adcy5) mRNAs were 
downregulated 92, 80, and 91%, respectively, in obese compared 
to control mice (78). Nonetheless, the authors hypothesized that 
modifications in the dopaminergic system may contribute to 
the differences in voluntary exercise between the high-running 
and obese mice (78). Analysis of obesity-resistant, compared to 
obesity-prone, rats also suggested that reduced physical activity 
levels in obesity-prone rats may stem from decreased action of 
hypothalamic orexin on dopamine neurons in the striatum and 
substantia nigra (79, 80). Finally, lower striatal dopaminergic 
activity may have contributed to low wheel running activity in 
rats with low aerobic capacity, who also had greater body weight 
and metabolic disease risk (40).

A recent study found that decreased DRD2 signaling in 
the striatum influences obesity development via reductions in 
physical activity rather than increases in food intake. Using 
Drd2 knockdown mice, Beeler et  al. (81) observed that when 
presented with voluntary exercise in an enriched environment, 
Drd2 knockdown mice were dramatically less active than wild-
type mice. Importantly, in the same study reduced voluntary 
exercise by Drd2 knockdown mice promoted an obese pheno-
type despite no differences in food intake (81). These intriguing 
observations not only suggest a direct link between reduced 
dopamine function and decreased physical activity, but that the 
decreases DRD2 signaling can contribute to obesity via reduced 
energy expenditure rather than the initiation of compulsive 
overeating. Furthermore, obesity-induced reduction in DRD2 
signaling could initiate the following feedback mechanism to 
further amplify obesity and physical inactivity: obesity → ↓ 
DRD2 signaling → ↑ physical inactivity → ↑ obesity → futile 
cycle. On the contrary, separate experiments show that dietary 
restriction increased wheel running (82) and dopamine over-
flow and receptor expression in the NAc (83, 84), suggesting 
that obesity and dietary restriction may have opposing effects 
on dopamine signaling and, in turn, voluntary physical activity. 
However, future research is needed to dissect causal and conse-
quential relationships between obesity, dopamine, and physical 
inactivity.

CenTRAL LePTin ACTiOn AnD 
PHYSiCAL ACTiviTY

Relationships between leptin and physical activity are well estab-
lished. Central leptin resistance is a hallmark of obesity (85, 86), 
and leptin resistance in the VTA following diet-induced obesity 
has been noted previously (87). Normal leptin signaling in VTA 
dopaminergic neurons is well characterized, with a general 
consensus being that leptin receptor (LEPR) signaling inhibits 
dopamine activity (88–90). Correspondingly, associations 
between select DRD2 and LEPR allelic gene variations have been 
associated with the development of severe obesity (91).
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Leptin suppressed the rewarding effects of wheel running in 
mice via activation of signal transducer and activator of transcrip-
tion-3 (STAT3) signaling in VTA dopamine neurons, an effect 
which likely influenced dopamine overflow and function in the 
NAc and suggested that leptin may influence the motivational 
and rewarding effects of wheel running (92). Additional studies 
show that dopamine overflow in the NAc is reduced by leptin 
deficiency (88) and diet-induced obesity (57). In mice bred by 
Garland et  al  for high voluntary wheel running, which display 
dysfunctional dopaminergic profiles in the NAc as described 
above (36, 37), intraperitoneal leptin injection increased running 
by 17%, while control mice were unaffected (93). Paradoxically, 
in the same study high-fat feeding increased wheel running 20% 
in high-running mice, an effect speculated to be mediated by 
leptin (93). Intracerebroventricular injection of a recombinant 
adeno-associated virus (rAAV) overexpressing a mutant of 
leptin, which produces a protein that acts as a LEPR antagonist, 
decreased wheel running 25 and 40% in rats fed either a standard 
chow or high-fat diet, respectively, while rAAV overexpression 
of functional leptin increased wheel running ~2-fold Matheny 
et al. (94). However, changes in voluntary physical activity in the 
Matheny et al. study could be secondary to changes in adiposity 
following rAAV injection. Collectively, a hypothesis describing 
the interaction between obesity, dopamine, leptin, and physical 
inactivity is presented in Figure 2.

Further suggesting that leptin may impact the motivational 
and rewarding effects of running are observations that high 
serum leptin levels inversely correlated with low marathon run 
times after BMI adjustment (96), and with running performance 
(time and speed) in mice bred for high voluntary running (97). 

Leptin deficiency has also been shown to influence physical 
activity humans, whereas acute leptin increased locomotor 
activity in leptin-deficient patients during the fed state (98, 99). 
Similarly, leptin-deficient ob/ob mice increased wheel running 
3.5-fold during the fed state following acute subcutaneous leptin 
injection, while no effect was observed in wild-type mice (100). 
Collectively, these studies highlight the important role of leptin 
as an effector of voluntary physical activity, potentially through 
alternations in dopamine signaling.

COnCLUSiOn

Physical inactivity and obesity have reached pandemic levels 
(101). The abovementioned studies strongly suggest that dopa-
minergic function influences physical inactivity levels. Similarly, 
obesity-induced suppression of dopamine signaling may con-
tribute to the high prevalence of physical inactivity observed 
in obese people. Additional understanding of mechanisms by 
which dopaminergic dysfunction contributes to obesity, physical 
inactivity, or their interactions may reveal novel approaches for 
increasing physically activity in obese populations.
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FiGURe 2 | Hypothesized model by which impaired dopaminergic signaling promotes physical inactivity in obesity. (A) Summary of the reward circuitry 
in the brain; originally established by Robison and Nestler (95). The blue projection illustrates dopaminergic projections from the ventral tegmental area (VTA) that 
release dopamine (DA) onto post-synaptic neurons in the nucleus accumbens (NAc). (B) Expanded, but simplified, illustration of this dopaminergic VTA to NAc 
projection as it is hypothesized to relate to physical inactivity in lean and obese individuals. In obesity, dopamine receptor (DxR), particularly dopamine receptor 2, 
expression is decreased in NAc medium spiny neurons (MSNs). Similarly, mechanisms controlling DA production and release are reduced with obesity, leading to 
less DA in the synapse. Central leptin resistance in obesity [denoted by open leptin receptor (LEPR) symbol] may influence LEPR signaling in VTA DA neurons, in 
turn further diminishing downstream DA function. Collectively, these obesity-induced impairments in dopaminergic signaling may lead to exacerbated levels of 
physical inactivity, which may in turn lead to a futile cycle of increased obesity, dopaminergic dysregulation, and physical inactivity. Other abbreviations: Amyg, 
amygdala; PFC, prefrontal cortex.
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