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Tanni Borgbo1,2, Hana Klučková3, Milan Macek Sr.3, Jana Chrudimska 3,  
Stine Gry Kristensen1, Lise Lotte Hansen2 and Claus Yding Andersen1*

1 Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital 
of Copenhagen, Copenhagen, Denmark, 2 Department of Biomedicine, University of Aarhus, Aarhus, Denmark, 3 Department 
of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University, University Hospital Motol, Prague, Czechia

Follicle-stimulating hormone receptors (FSHRs) are almost exclusively expressed on 
granulosa cells, and FSH action is probably most clearly reflected in intrafollicular hormone 
milieu of antral follicles. Little is known about the possible effects of the common single 
nucleotide polymorphism (SNP) FSHR −29G > A (rs1394205) on hormonal conditions 
in humsan small antral follicles (hSAFs) obtained from women in the natural menstrual 
cycle. This study investigated the follicle fluid (FF) concentrations of anti-Müllerian hor-
mone, estradiol, progesterone, androstenedione, and testosterone in hSAF in relation 
to the different genotypes of FSHR −29G > A. FF from 362 follicles was collected in 95 
women undergoing fertility preservation, who did not suffer from a disease that directly 
affected ovarian function. The testosterone levels of the minor A/A genotype were signifi-
cantly increased compared to the A/G and the G/G genotype. Furthermore, significantly 
reduced androstenedione levels were observed for the G/G genotype, as compared to 
the A/G genotype, while the other hormones did not show statistical significant differ-
ences. In conclusion, the androgen levels of hSAF were significantly elevated in the minor 
SNP genotype in the FSHR promoter polymorphism FSHR −29G > A.

Keywords: follicle fluid, follicle-stimulating hormone receptor −29g > a, follicle-stimulating hormone receptor 
polymorphisms, human small antral follicles, rs1394205

inTrODUcTiOn

FSH is instrumental in regulating ovarian activity and exerts a myriad of effects on follicles in all 
developmental stages through follicle-stimulating harmone receptors (FSHRs), which are almost 
exclusively expressed on granulosa cells (GCs). The number of FSHR proteins expressed on each 
GC change profoundly throughout follicular development. Low but measurable FSHR expression 
has been observed in human primordial follicles (1, 2), while maximal expression occurs in the 
antral stage declining toward ovulation (3). FSH signal transduction is effected via different pathways 
of which increase in intracellular cAMP production leading to activation of protein kinase A and 
transcription of a several downstream genes is one of the major ones (4–7). It is, however, currently 
unknown how FSHR density impacts on function and signal transduction.
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Follicle-stimulating hormone receptors exist as a number of 
different genetic variants, i.e., polymorphisms, which may affect 
signal transduction. Three common single nucleotide polymor-
phisms (SNPs) have been identified in the FSHR gene: rs6165 
(c.919A  >  G, p.Thr307Ala, FSHR 307), rs6166 (c.2039A  >  G, 
p.Asn680Ser, FSHR 680), and rs1394205 (c. −29G  >  A, FSHR 
−29G > A) (8–14).

The two most studied SNPs, FSHR 307, and FSHR 680, both 
reside on exon 10 in linkage disequilibrium. Studies have focused 
on the intrafollicular hormone milieu in human small antral 
follicles (hSAFs) (15) and especially their potential impact on 
ovarian stimulation (OS) have received a considerable interest 
(8–14, 16, 17). Although single studies has found an association 
to basic levels of FSH, the length of menstrual cycles, as well as the 
consumption of FSH used in OS and treatment outcome, no clear 
cut effects have been found (11, 14, 17–23). However, recently, 
Lindgreen and co-workers found a significant association to 
pregnancy rates especially in combination with a LH SNP (24).

The third common SNP FSHR −29G  >  A is located in the 
promoter region of FSHR and has been studied to a lesser extent. 
So far, studies have associated FSHR −29G >  A to changes in 
FSHR gene expression levels, in which homozygote carriers of 
the minor allele (i.e., the A/A genotype) showed a reduced FSHR 
gene expression, compared to homozygote carriers of the major 
allele (i.e., the G/G genotype) (9, 10, 19). Furthermore, Desai and 
co-workers observed that carriers of the minor genotype required 
significantly higher amounts of exogenous FSH during OS, when 
compared to the G/G and G/A genotypes (9).

Potential differences in the signal transduction of the different 
FSHR polymorphisms is probably best studied in FF, as the con-
centrations of locally produced substances such as sex steroids 
and anti-Müllerian hormone (AMH) often shown concentra-
tions up to a thousand times higher than in circulation (25–27). 
The aim of this study was to evaluate the impacts of the FSHR 
−29G > A genotype on the hormone profile in FF from hSAF.

MaTerials anD MeThODs

sample Material
In total, 362 follicles were collected from 95 women, with a mean 
age of 28.5 years (ranging from 15 to 38 years). The number of 
follicles analyzed from each woman ranged from 1 to 10 (mean 
3.8 follicles/patient). Follicle diameters ranged from 3 to 13 mm, 
as calculated from the aspirated volume, assuming a spherical 
structure of the follicle. All follicles were obtained from surplus 
ovarian tissue from women undergoing fertility preservation, hav-
ing ovarian tissue cryopreserved at Laboratory of Reproductive 
Biology, Rigshospitalet, Denmark. The diagnosis of women was 
in all cases unrelated to the ovary including polycystic ovary 
syndrome. The fertility preservation procedure involved excision 
of one entire ovary from which individual visible antral follicles 
were aspirated with a 23G needle attached to a syringe. The collec-
tion of FF had no effect on the fertility preservation procedure. In 
all cases, the ovary had overall gross normal appearance.

As the intrafollicular hormone milieu in human small antral fol-
licles (hSAFs) are independent of circulating levels of gonadotropins 

and have no major impact on the serum hormone levels (15), 
serum hormone levels were not included in this study. The follicles 
were collected at various times during the menstrual cycle, as the 
dynamics of the hSAF are similar throughout the menstrual cycle 
(15, 28).

Parts of this material has been used in previous studies (3, 15, 
27, 29, 30).

ethical approval
The study was approved by the ethical committee of the munici-
palities of Copenhagen and Frederiksberg (H-2-2011-044). Oral 
information and written informed consent was obtained from 
research participants and from parents of minors.

Dna extraction
Seventy-two patients were genotyped using DNA extracted from 
approximately 25 mg ovarian tissue, using the DNeasy Blood & 
Tissue Kit (Qiagen, Hilden, Germany), following the manufac-
turers protocol. The DNA samples were subsequently stored at 
−20°C. The remaining 23 patients were genotyped from DNA 
extracted from aspirated GC, as no ovarian tissue was available 
for these patients. The DNA was extracted from the GC samples 
using Tri Reagent (Sigma-Aldrich, St. Louis, MO, USA), with 
slight modifications to the protocol as previously described (30).

genotyping of the Fshr −29g > a 
Polymorphism
The samples were genotyped using CADMA-based genotyping as 
previously published with slight modifications to the PCR master-
mix (30). In brief, the final reaction mix consisted of 2 µl template 
DNA (10 ng/µl), 5 µl LightCycler® 480 High Resolution Melting 
Master (Roche Diagnostics, Ropkreuz, Switzerland), 1.2 µl MgCl2 
(25 µM, Roche Diagnostics, Ropkreuz, Switzerland), 0.2 µl wild-
type primer 5′-TATGCATCCGTCCACCTGAGTTCTTC-3′ 
(10  µM), 0.2  µl mutation primer 5′-TATGCATCTATCCACA 
TGATTTCTTT-3′ (10  µM), 0.2  µl common reverse primer 
5′-GAGGTTTTTCTCTGCAAATGCAG-3′ (10 µM), and finally 
adding 1.2 µl ddH2O to a final volume of 10 µl.

hormone Measurements
The concentration of AMH, estradiol, progesterone, androsten-
edione, and testosterone were measured using commercially 
available ELISA assays. AMH was measured using the Ultra 
Sensitive AMH/MIS Elisa kit (Al-105-i, AnshLabs, Webster, TX, 
USA), according to the manufacturer’s protocol, with a 1:300 dilu-
tion of the FF samples using the supplied assay buffer. Estradiol, 
progesterone, androstenedione, and testosterone were initially 
measured using commercially available RIA kits (DSL-43100, 
DSL-3400, DSL-3800, DSL-4000; DSL, Webster, TX, USA). 
However, during the course of sample collection, the RIA assays 
became unavailable and it was necessary to switch to ELISA 
assays (NovaTec Immundiagnostica, Dietzenbach, Germany, 
DNOV 002, 003, 006 and 008, respectively).

Due to limited sample material, it was not possible to re-
analyze the FF analyzed with RIA. The RIA kit was used to analyze 
between 11 and 15% of the FF samples in this study; progesterone 
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Table 1 | Intrafollicular hormone levels grouped according to follicle-stimulating hormone receptor −29G > A genotype mean ± SEM.

genotype a/a a/g g/g

n follicle 
fluid (FF)

n (women) Mean ± seM n (FF) n (women) Mean ± seM n (FF) n (women) Mean  ± seM

Anti-Müllerian 
hormone (pmol/l)

48 9 8,814 ± 746 133 37 6,266 ± 441 166 46 7,832 ± 510

Progesterone (mol/l) 49 10 165 ± 48 123 37 168 ± 26 164 46 160 ± 19

Estradiol (E2) (nmol/l) 48 10 130 ± 33 123 37 217 ± 31 166 47 142 ± 22

Testosterone (T) 
(nmol/l)

49 10 386 ± 32*1,2 125 37 230 ± 14*1 164 45 236 ± 13*2

Androstenedione 
(nmol/l)

49 10 2,157 ± 188 125 37 1,919 ± 104*3 171 47 1,521 ± 87*3

Age ±SD (years) 10 29.6 ± 5.8 37 28.8 ± 5.7 45 28.0 ± 5.9

Follicle  
diameter (mm)

50 10 5.3 ± 0.2 135 37 6.1 ± 0.1 177 48 5.6 ± 0.1

*Statistical significances.
Testosterone: 1P = 0.02, 2P = 0.02.
Androstenedione: 3P = 0.03.
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(n  =  39/336, 12%), estradiol (n  =  37/337, 11%), testosterone 
(n = 47/338, 14%), and androstenedione (n = 50/345, 15%). Based 
on highly significant linear correlations between the results from 
the two types of assays (correlation coefficients: estradiol r = 0.99, 
progesterone r = 0.93, testosterone r = 0.91, and androstenedione 
r = 0.91), mathematical equations was used for transforming data 
from RIA into ELISA, as previously published (3). The remaining 
follicles were analyzed using NovaTech ELISA assays, according 
to the manufacturer’s protocol, using in-house prepared steroid-
free serum for FF dilution.

statistical analysis
The statistical analysis was performed using STATA version 
13.1 (STATACorp LP, USA). The hormones were log- or square 
root-transformed in order to approximate normal distributions. 
A one-level mixed effects model was used for the statistical 
analysis, including follicle size as covariant and patients as 
random effect, in order to take into account that GC function 
varies with follicle size, and that follicles from one patient may 
be more similar than follicles from different patients. P-values 
≤0.05 were considered statistically significant.

In this study, we have included follicles ranging from 3 to 
13 mm in diameter. The intrafollicular hormone production is 
dependent on the developmental stage and size of the follicles, 
and a shift in hormone profiles is expected when follicles reach 
810  mm when selection for dominance is initiated. In the fol-
licle cohort of this study; however, no differences were found 
in the statistics, when excluding follicles above 8 mm (data not 
published).

resUlTs

The distribution between the three FSHR −29G > A genotypes 
(i.e., A/A, A/G, and G/G allele) was 14, 37, and 49%, respectively. 
This frequency distribution compares well to what have been 
reported from other countries (9, 13, 31).

The FF hormone concentrations are summarized in Table 1 
and Figure 1. Overall, the FSHR −29G > A genotype was found 
to be significantly associated to the androgen levels in hSAF. 
Significantly increased testosterone levels were observed for the 
A/A genotype as compared to both the A/G (P = 0.02) and G/G 
(P = 0.02) genotype. Likewise, significantly lower androstenedi-
one levels were observed for the G/G genotype as compared to the 
A/G genotype (P = 0.03), however, with no significant differences 
observed between the A/A and the A/G genotype.

No statistically significant differences were observed for AMH, 
estradiol, or progesterone.

DiscUssiOn

On a relatively large sample size of more than 300 normal hSAF, 
the present study demonstrated that the minor genotype of the 
common SNP at position −29 of the FSHR promoter region, 
FSHR −29G  >  A, is significantly associated to augmented FF 
concentrations of androstenedione and testosterone. Androgens 
exert an important role in follicular development and in female 
reproduction, and the present results enforce that SNP’s in the 
gonadotropin receptors affect the fine-tuned pituitary gonadal 
interactions. The present study was performed entirely on hSAF 
from women who did not receive any kind of exogenous stimula-
tion in their natural menstrual cycle and it remains to be seen 
whether the supraphysiological concentrations of FSH as used is 
connection with OS override these subtle differences and wipe 
out any impact on the reproductive output of fertility treatment.

Androgen production takes place exclusively in the theca 
cells, which do not express FSHR and there is no direct effect 
of FSH on theca cells. However, in rats, it has been shown that 
FSH-induced paracrine factors from GCs enhance theca cell 
androgen synthesis (32). Treatment with FSH was found to sig-
nificantly increase the thecal CYP17A1 mRNA levels, as well as 
the androgen production in response to LH (32). Smyth and co-
workers found that inhibin enhanced the LH-induced androgen 
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FigUre 1 | Follicular fluid hormone profiles grouped according to follicle stimulating hormone receptor −29G > A genotype. The figure displays the Mean ± SEM of 
the intrafollicular hormone levels. Statistically significant differences in hormone levels are observed for androstenedione, and testosterone. In addition, discrete 
genotype-dependent differences are observed for Anti-Müllerian hormone and estradiol in an inverse manner, although not statistically significant.
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production and suggested that FSH-induced paracrine factors 
produced by the GCs (e.g., inhibin-B or IGF2) could augment 
theca cell androgen output. More recently, we found a statisti-
cal significant association between inhibin-B and the androgen 
concentration in hSAF (33, 34). In the present study, inhibin-B 
was only measured in a small fraction of FF that did not allow a 
valid analysis.

Although the minor allele of FSHR −29G  >  A has been 
associated with reduced FSHR gene expression levels (9, 10, 
19) and, therefore, would be expected to result in less paracrine 
androgen stimulation, it is not known how and if this specific 
SNP affect inhibin-B secretion. Especially, the inhibin α-gene 
has been shown to be upregulated by acidic FSH isoforms in 
contrast to almost any other FSH-inducible GC substance, 
where the less acidic isoforms are more potent (35). It could, 
therefore, also be speculated that the minor allele of FSHR 
−29G > A had a similar effect. It will, therefore, be of interest to 
evaluate the levels of inhibin-B and inhibin-A in FF from hSAF 
in order to evaluate whether levels of inhibin is also associated 
to this SNP.

The paracrine effects of androgens-enhancing GC FSHR 
expression has been documented in several studies (36, 37). 
Thus, GC from follicles obtained from women having the minor 
allele A/A genotype, which showed augmented androgen FF 
concentration, would be expected to show enhanced FSHR 
expression. The increased FSHR expression is expected to 
translate into an augmented aromatase expression. However, 

previous studies showed that the minor allele group had a 
reduced FSHR expression (9, 10, 19), which may explain why 
levels of estradiol are not significantly enhanced. It would be 
relevant to evaluate both the FSHR and LHR expression of the 
corresponding GCs to substantiate the effects of androgens in 
a future study.

In conclusion, this study shows that the minor A/A genotype 
at position −29 of FSHR is associated with an altered FF milieu, 
resulting in significant increased androgen levels.
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