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Increasing evidence suggests that epigenetic modifications, including changes in DNA 
methylation, covalent modifications of histone tails, and gene silencing mediated by 
non-coding RNA molecules, play a substantial role in the pathogenesis of autoimmune 
disorders and might be seen as the result of environmental insults that trigger these 
conditions. Studies in cells and tissues of patients with autoimmune thyroid diseases 
(AITD), and particularly in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are 
increasingly revealing altered epigenetic marks and resultant deregulation of gene 
expression levels, but the available data are still limited to be translated into the clinical 
settings. Particularly, genome-wide methylation and histone tail modification screenings 
are limited to a few studies in GD patients, and the diagnostic values of the observed 
epigenetic changes or their potential prognostic utility are still unclear. Similarly, data 
concerning microRNA expression in AITD patients are largely descriptive and not yet 
translated into the clinics. In addition, studies relating certain environmental exposures 
to specific epigenetic changes in AITD and studies evaluating the crosstalk between 
different epigenetic mechanisms are largely missing. In summary, despite that there is a 
clear evidence of epigenetic impairment in AITD, further research is required for a better 
understanding of the epigenetic networks involved in disease pathogenesis, thereby 
opening the way for potential diagnostic and prognostic tools, as well as for epigenetic 
interventions in the patients.

Keywords: autoimmune thyroid diseases, Graves’ disease, Hashimoto’s thyroiditis, epigenetics, DnA methylation, 
non-coding RnAs, microRnA, histone tail modifications

inTRODUCTiOn

Epigenetics is an umbrella term referred to heritable and reversible marks, such as DNA methylation 
or covalent modifications of histone tails, that regulate the chromatin structure and switch genes 
“on” and “off ” without changing the primary DNA sequence (1). In addition, several classes of 
non-coding RNAs, ranging from small to long molecules, play a substantial role in the epigenetic 
regulation of gene expression (2). Some studies performed at the end of the last century revealed that 
CD4+ T cells treated with 5-azacytidine, a substance that inhibits DNA methylation, respond to the 
presentation of self antigens and cause a lupus-like syndrome when injected in mice (3, 4), suggesting 
that epigenetic mechanisms, and particularly impaired DNA methylation, could be involved in auto-
immune reactions (3, 4). A few years ago, we reviewed the literature for studies addressing epigenetic 
modifications in autoimmune diseases, most of them were focused on systemic lupus erythema-
tosus or rheumatoid arthritis (RA), but increasing evidence was available for other autoimmune 
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pathologies, including autoimmune thyroid diseases (AITD), 
a group of disorders characterized by loss of immunological 
self-tolerance (5). The major AITD are Graves’ disease (GD) and 
Hashimoto’s thyroiditis (HT), both organ-specific autoimmune 
diseases characterized by lymphocytic infiltration of the thyroid 
gland with accompanying evidence of humoral and cellular 
immune system activation and female preponderance (6). In GD, 
the autoimmune process results in the production of thyroid-
stimulating antibodies leading to hyperthyroidism, whereas in 
HT the immune response is destructive, leading in most cases to 
hypothyroidism (7). Genetic predisposition and environmental 
factors, such as infection, chemicals, and nutrition, play a role in 
the pathogenic process of autoimmunity (8). Recent studies have 
clearly demonstrated a significant increased risk of other autoim-
mune diseases in patients with AITD and there is evidence of 
genetic factors that influence the association of different autoim-
mune disorders (9). In this regard, the investigation of the genetic 
risk factors for AITD has revealed that some genes are unique 
for GD or HT, while others are common to both diseases or to 
AITD and other autoimmune diseases (10). Increasing evidence 
suggests that epigenetic modifications may be seen to bridge the 
gap between genetics and the environment (10, 11), so that epige-
netic modifications of autoimmune-related genes, resulting from 
environmental exposure, are increasingly recognized to play a 
pivotal role in autoimmunity (5). This article critically discusses 
the most recent evidence of epigenetic modifications in AITD.

DnA MeTHYLATiOn in AiTD

DNA methylation consists of the addition of a methyl group to 
the DNA, mediated by enzymes called DNA methyltransferases 
(DNMTs). The best-characterized DNA methylation process is 
the addition of a methyl group to cytosine in a CpG dinucleotide 
context, forming 5-methylcytosine (5-mC). When the promoter 
region of a gene is methylated, the expression of that gene is 
repressed because methyl-CpG-binding domain (MBD) proteins 
recognize and bind to the methylated DNA and, in turn, recruit 
other epigenetic factors to enhance chromatin remodeling 
and transcriptional repression (12–14). DNA methylation is a 
physiological mechanism required for several cellular processes, 
including genomic imprinting, embryonic development, cell dif-
ferentiation, X chromosome inactivation, repression of repetitive 
elements, and maintenance of the cellular identity (1).

Skewed X Chromosome inactivation (XCi) 
in AiTD
Many, but not all, autoimmune diseases are more common in 
females than in males, with reported ratios ranging from 10:1 to 
3:1 (15). A possible role of skewed XCI, mediated by epigenetic 
mechanisms, has been suggested in the etiology of AITD (16), 
RA (17), and scleroderma (18) to partially explain the female 
preponderance. The X chromosome contains several immune-
related genes, including CD40 ligand (CD40L), forkhead box 
P3 (FOXP3), and toll-like receptor 7 (TLR7), and one of the two 
X chromosomes in each female cell is randomly inactivated by 
methylation to balance gene expression levels between males, 

that possess only one X chromosome, and females who have two 
copies of the X chromosome (19). In some females, however, this 
inactivation can predominantly occur to either the maternal or 
paternal X chromosome, and this phenomenon is referred to as 
skewed XCI (19). Concerning AITD, studies performed over the 
last two decades have addressed the link between skewed XCI 
and AITD risk (16, 17, 20–23). A meta-analysis of those studies 
confirmed significant skewing of XCI with GD and HT (23), 
and studies on twins revealed that skewed XCI may be causally 
associated with clinically overt AITD, but not with the presence 
of thyroid autoantibodies in euthyroid subjects (7). A more recent 
study in AITD patients revealed that the proportion of skewed 
XCI was not significantly different with respect to control sub-
jects, but was higher in patients with intractable GD than in those 
with GD in remission, and in patients with severe HT than in 
those with mild HT, suggesting that skewed XCI is likely related 
to the prognosis of AITD, rather than to their development (19).

Polymorphisms of Genes involved in DnA 
Methylation and AiTD Risk
DNA methylation depends on the cellular availability of dietary 
folates and related B-group vitamins, all required for the produc-
tion of S-adenosylmethionine, the intracellular donor compound 
of methyl groups (24). Several investigators provided indirect 
evidence of impaired DNA methylation in AITD by addressing 
the role of genes involved in folate metabolism and DNA meth-
ylation reactions as genetic risk factors for AITD. Particularly, 
those studies investigated polymorphisms in DNMT genes or in 
methylenetetrahydrofolate reductase (MTHFR) and methionine 
synthase reductase (MTRR) genes, the two latter coding for 
folate-metabolizing enzymes (25, 26). rs1801133 in MTHFR was 
associated with reduced GD risk in women (25), while rs2228612 
in DNMT1 was linked to DNA hypomethylation and with the 
intractability of GD and rs1801394 in MTRR with the severity 
of HT (26). A more recent study addressed the contribution of 
DNMT gene polymorphisms in a large cohort of AITD patients 
composed by a total of 685 GD patients, 353 HT patients, and 909 
healthy controls, revealing that both rs2424913 in DNMT3B and 
rs2228611 in DNMT1 were associated with AITD susceptibility 
(27). Interestingly, DNMT gene polymorphisms have been asso-
ciated with other autoimmune disorders, for example DNMT3B 
polymorphisms were linked to increased risk of oral lichen planus 
(28), with the progression of joint destruction in RA (29), and 
with increased risk of thymoma in patients with myasthenia 
gravis (30). Collectively those studies suggest that variants in 
DNMT genes might account for a shared susceptibility to various 
autoimmune disorders.

evidence of impaired DnA Methylation in 
AiTD
More direct evidence of impaired DNA methylation in AITD 
came from recent epigenetic screenings in blood samples, 
lymphocytes, and thyrocytes from the patients (Table  1). A 
genome-wide screening in peripheral blood cells of three GD 
patients and three age- and gender-matched controls revealed 82 
hypermethylated and 103 hypomethylated genes in GD patients 
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TAbLe 1 | Epigenetic studies in patients with AITD.

endpoint Tissue Disease Findings Reference

DNA methylation PBMC GD Genome-wide screening revealed 82 hypermethylated  
and 103 hypomethylated genes

(31)

DNA methylation CD4+ and CD8+ T cells GD Genome-wide screening revealed 365 and 3,322 differentially  
methylated sites in CD4+ and CD8+ T cells, respectively

(32)

DNA methylation Thyroid gland AITD Impaired methylation and increased expression  
of the ICAM1 gene

(33)

Histone tail modifications PBMC GD Global reduction of histone 4 acetylation (36)

Histone tail modifications CD4+ and CD8+ T cells GD Reduction of histone 3 lysine 4 trimethylation (H3K4me3)  
and histone 3 lysine 27 acetylation (H3K27ac)

(32)

MicroRNA (miRNA) 
expression

PBMC GD No expression of miR-154*, miR-376b, and miR-431* 
in early disease stages

(39)

MiRNA expression Serum HT Increased levels of miR-22, miR-375, and miR-451 (40)

MiRNA expression Serum GD Increased levels of miR-16, miR-22, miR-375, and miR-451 (36)

MiRNA expression CD4+ and CD8+ T cells HT and GD Differential expression of miR-200a and miR-155 (40)

MiRNA expression Serum GD Correlation between circulating levels of miR-155 and miR-146a  
and Grave’s ophtalmopathy

(42, 43)

MiRNA expression Plasma and CD4+ T cells GD Upregulation of Bcl-6 and downregulation of miR-346 (44)

MiRNA expression PBMC and thyroid gland HT Downregulated miR-125a-3p expression resulting  
in upregulation of interleukin-23 receptor levels

(45)

MiRNA expression PBMC HT Increased let-7e expression regulates interleukin 10 expression (46)

MiRNA expression Thyroid gland HT Increased miR-142-5p expression regulates claudin-1 expression (47)

MiRNA expression Thyroid gland GD Altered expression of 23 miRNAs with resulting deregulated expression  
of more than 2,000 messenger RNAs

(48)

AITD, autoimmune thyroid diseases; GD, Graves’ disease; HT, Hashimoto’s thyroiditis; PBMC, peripheral blood mononuclear cells.
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(31). Among them, the authors identified some candidate genes 
already associated to GD or other autoimmune diseases, such as 
the immunoregulatory factor ADRB2 (hypermethylated), ICAM1 
(hypomethylated) coding for a glycoprotein of cell surface named 
intercellular adhesion molecule 1, B3GNT2 (hypermethylated) 
involved in the regulation of lymphocyte activity, and others 
(31). Besides, the transcription of DNMT1 and MECP2 (a MBD 
protein) at the messenger RNA (mRNA) level was significantly 
decreased in GD patients compared with normal controls (31). 
Another genome-wide analysis of DNA methylation was per-
formed in CD4+ and CD8+ T  cells of 38 GD patients and 31 
matched controls. The study revealed 365 and 3,322 differentially 
methylated CpG sites in CD4+ and CD8+ T cells, respectively 
(32). Among the hypermethylated CpG sites, the authors found 
enrichment of genes involved in T cell signaling (CD247, LCK, 
ZAP70, CD3D, CD3E, CD3G, CTLA4, and CD8A) and decreased 
expression of CD3 gene family members (32). Furthermore, 
the authors observed hypermethylation of the first intron of the 
thyroid-stimulating hormone receptor (TSHR) gene, a gene that 
contains several GD-associated polymorphisms (32). A more 
recent study revealed aberrant DNA methylation of the ICAM1 
gene promoter, associated with increased gene expression, in the 
thyrocytes of 35 AITD patients with respect to 35 sex- and age-
matched controls (33).

HiSTOne TAiL MODiFiCATiOnS in AiTD

Several posttranslational modifications occur on the histone tails 
of nucleosomes and are associated with either open or condensed 
chromatin structure. Collectively those modifications are involved 
in the regulation of gene expression, as well as in DNA repair, rep-
lication, and recombination processes, and include acetylation, 
methylation, phosphorylation, ubiquitylation, sumoylation, and 
other covalent modifications that directly influence the overall 
chromatin structure or regulate the binding of effector molecules 
(34). Among them, acetylation and methylation on histone tail 
residues represent the two best-characterized epigenetic marks 
regulating the chromatin structure (35). Histone tail acetylation 
is mediated by histone acetyltransferases and results in an open 
chromatin structure that allows transcription (35, 36). Histone 
tail methylation of core histones H3 and H4 can be associated 
with either chromatin condensation or relaxation, due to the fact 
that several sites for methylation are present on each tail (35, 36).

Little is known about histone tail modifications in AITD 
(Table 1). A pilot study in peripheral blood mononuclear cells 
(PBMC) of GD patients revealed reduced global histone H4 acet-
ylation levels coupled with increased levels of histone deacetylase 
proteins with respect to healthy controls (36). Furthermore, the 
previously described genome-wide DNA methylation analysis 
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in CD4+ and CD8+ T  cells of GD patients (32) revealed that 
the hypermethylation of genes involved in T cell signaling was 
accompanied by decreased levels of H3K4me3 (histone 3 lysine 
4 trimethylation) and H3K27ac (histone 3 lysine 27 acetylation), 
both marks usually found in nucleosomes that flank active 
promoters (32). Collectively, those studies confirm that gene 
promoter methylation observed in cells of GD patients is coupled 
to changes in the chromatin structure to allow the silencing of 
gene expression.

nOn-CODinG RnAs in AiTD

A growing body of evidence suggests impaired expression of 
non-coding RNAs, and particularly of microRNAs (miRNAs) in 
autoimmune diseases (33). MiRNAs are small RNA molecules 
ranging from 18 to 25 nucleotides in length that bind to the 3′ 
untranslated region of target mRNAs and mediate their post-
transcriptional regulation, leading to either degradation or 
translational inhibition, depending on the degree of sequence 
complementarity (37). MiRNAs target about 60% of all genes, 
and interact with other epigenetic mechanisms, such as DNA 
methylation and histone tail modifications, to organize the 
whole gene expression profile (38). Early studies in the field 
revealed several miRNAs that were differently expressed in cells 
from patients with AITD than in cells from healthy subjects 
(Table 1). For example, it was observed that the expression of 
miR-154*, miR-376b, and miR-431* was suppressed in PBMC 
from initial GD patients with respect to healthy controls, but 
recovered in GD patients in remission (39). Others observed 
that serum levels of miR-22, miR-375, and miR-451 were 
increased in patients with HT compared with healthy subjects 
and that serum levels of miR-16, miR-22, miR-375, and miR-451 
were increased in patients with GD (40), while another study 
revealed significant variations of miR-200a and miR-155 in 
purified CD4+ T-cells and CD8+ T-cells of patients suffering 
from GD and HT (41). More recent studies attempted to explain 
the biological significance of miRNA deregulation or their pos-
sible clinical implications in AITD (42–46). For example, it has 
been proposed that increased miR-155 and decreased miR-146a 
may promote ocular inflammation and proliferation in Graves’ 
ophthalmopathy (42) and that circulating levels of miR-146a 
and interleukin 17 are significantly correlated with the clinical 
activity of Graves’ ophthalmopathy (43). It was also observed 
that miR-346 regulates CD4(+)CXCR5(+) T cells by targeting 
Bcl-6, a positive regulator of follicular helper T cells, and might 
play an important role in the pathogenesis of GD (44). Similarly, 
a decreased expression of miR-125a-3p was shown to upregulate 
interleukin-23 receptor levels in patients with HT (45). Increased 
expression levels of the miRNA let-7e were observed in PBMC 
of HT patients compared with those in GD patients and healthy 
volunteers, and it was shown that let-7e may be associated with 
the pathogenesis of HT through the regulation of intracellular 
interleukin 10 expression (46).

Limited data are available concerning miRNA expression in 
the thyroid gland of AITD patients. In this regard, miR-142-5p, 
miR-142-3p, and miR-146a showed high expression in HT thy-
roid gland (47). Furthermore, miR-142-5p was also detected in 

HT patient serum and positively correlated with thyroglobulin 
antibody (47). In addition, the overexpression of miR-142-5p in 
HT thyrocytes resulted in reduced claudin-1 mRNA and protein 
levels (47). Claudin proteins are major constituents of the tight 
junction complexes that regulate the permeability of epithelia, 
and miR-142-5p-mediated reduced expression of claudin-1 led to 
an increased permeability of thyrocytes monolayer (47). Another 
study showed a differential expression of 23 miRNAs in thyroid 
tissue of GD patients, resulting in the upregulation of 1,271 
mRNAs and in downregulated expression of 777 mRNAs (48). 
Particularly, an integrated analysis of differentially expressed 
miRNAs and their target mRNAs demonstrated that miR-22 and 
miR-183 were increased in thyroid tissue of GD patients while 
their potential target mRNAs were decreased. On the contrary, 
miR-101, miR-197, and miR-6 were decreased while their poten-
tial target mRNAs were increased (48).

Indirect evidence of a possible involvement of miRNAs in 
AITD pathogenesis came also from studies linking polymor-
phisms in miRNA genes to increased AITD risk (49–51), so that 
there is increasing interest to clarify the variability in miRNA 
expression in order to better discriminate between miRNAs that 
are deregulated in a given disease, from others that could account 
for several autoimmune disorders (52, 53). In this regard, a deeper 
understanding of miRNA mediated networks in autoimmune 
diseases and their crosstalk with other epigenetic mechanisms 
that regulate gene expression levels is fundamental to elucidate 
the potential translational implications of these biomarkers (52, 
53). In addition, there is increasing evidence that other non-
coding RNAs than miRNAs, such as for example long non-coding 
RNAs, might play a role in autoimmune diseases, even if evidence 
in AITD is still limited (54).

COnCLUDinG ReMARKS

Autoimmune thyroid disease patients can be clinically cat-
egorized into those with hyperthyroidism (GD), those with 
hypothyroidism (HT), and euthyroid subjects harboring thyroid 
autoantibodies (7). However, despite their phenotypic differences, 
it is believed that AITD patients share some common etiological 
factors (7), and genetic studies have revealed that if certain genes 
are unique for GD or HT, others are common to both disorders or 
to AITD and other autoimmune diseases (10). Indeed, different 
AITD phenotypes are often seen in members of the same family 
(7), and a significant increase in the prevalence of certain other 
autoimmune disorders has been reported in AITD patients (9). 
Epigenetic changes have been observed in multiple autoimmune 
diseases, they can be induced by environmental factors, and 
are increasingly recognized as one of the mechanisms by which 
environmental factors can trigger autoimmunity (10, 11). In this 
regard, there is increasing interest in searching for epigenetically 
deregulated pathways that might be common to different autoim-
mune disorders, and others that characterize a given disease and 
might be relevant in the clinical setting for diagnostic, prognostic, 
and therapeutic purposes (5). For what is concerning AITD 
there is increasing evidence of epigenetic changes in these condi-
tions, but the available studies are still limited (Table  1) to be 
translated into the clinical settings. Particularly, the two available 
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genome-wide DNA methylation studies in blood AITD cells are 
limited to GD patients (31, 32), and one of them included only 
three patients and three matched controls (27) making it difficult 
to clearly discriminate disease-specific epigenetic changes from 
others that could result from interindividual variability. Also 
data concerning histone tail modifications are mainly available 
from GD patients (32, 36), and lack of similar epigenome-wide 
data in cells from HT individuals does not allow comparing the 
two conditions in terms of epigenetic differences or similarities, 
so that the diagnostic values of the observed epigenetic changes 
and their potential prognostic utility are not yet clearly defined. 
Furthermore, methylation data in thyroid cells of AITD patients 
are limited to the study of a single gene (33). Data concerning 
miRNA expression in cells and tissues from AITD patients have 
been largely descriptive, and even if some investigators attempted 
to evaluate their potential clinical utility (42–46), data are still 
limited to be translated into the clinics. Epigenetic data are also 
lacking for another AITD, the postpartum thyroiditis, in con-
trast with postpartum psychosis, concerning which a study on 
miRNA expression was carried out (55). In this study, changes 
in miR-146a and miR-212 expression were observed in the 20 
recruited patients with postpartum psychosis, but only 3 patients 
developed autoimmune thyroiditis, the small number impeding 
statistical analysis (55).

In addition, at best of my knowledge, data linking environ-
mental exposures to specific epigenetic changes in AITD as well 

as studies evaluating the crosstalk between different epigenetic 
mechanisms are largely missing.

In conclusion, many investigators observed epigenetic 
changes in cells from AITD patients, but additional studies are 
required to confirm the observed changes and relate them to 
altered pathways that could be peculiar of a certain disease or 
of a certain environmental exposure, as well as to clarify com-
mon pathways in autoimmunity that could justify the onset of 
different autoimmune phenotypes in related family members, 
or in the same individual, in relation to different environmental 
exposures. Therefore, further research in this field could lead 
to a better understanding of the networks involved in disease 
pathogenesis, thereby opening the way for potential diagnostic 
and prognostic tools, as well as for epigenetic interventions 
in the patients based on miRNA silencing and/or chromatin 
remodeling agents.
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