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In several human malignant tumors of the urogenital tract, including cancers of the  
endometrium, ovary, urinary bladder, and prostate, it has been possible to identify 
expression of gonadotropin-releasing hormone (GnRH) and its receptor as part of an 
autocrine system, which regulates cell proliferation. The expression of GnRH receptor has 
also been identified in breast cancers and non-reproductive cancers such as pancreatic  
cancers and glioblastoma. Various investigators have observed dose- and time- 
dependent growth inhibitory effects of GnRH agonists in cell lines derived from these 
cancers. GnRH antagonists have also shown marked growth inhibitory effects on most 
cancer cell lines. This indicates that in the GnRH system in cancer cells, there may 
not be a dichotomy between GnRH agonists and antagonists. The well-known signal-
ing mechanisms of the GnRH receptor, which are present in pituitary gonadotrophs, 
are not involved in forwarding the antiproliferative effects of GnRH analogs in cancer 
cells. Instead, the GnRH receptor activates a phosphotyrosine phosphatase (PTP) and 
counteracts with the mitogenic signal transduction of growth factor receptors, which 
results in a reduction of cancer cell proliferation. The PTP activation, which is induced 
by GnRH, also inhibits G-protein-coupled estrogen receptor 1 (GPER), which is a mem-
brane-bound receptor for estrogens. GPER plays an important role in breast cancers, 
which do not express the estrogen receptor α (ERα). In metastatic breast, ovarian, and 
endometrial cancer cells, GnRH reduces cell invasion in vitro, metastasis in vivo, and the 
increased expression of S100A4 and CYR61. All of these factors play important roles 
in epithelial–mesenchymal transition. This review will summarize the present state of 
knowledge about the GnRH receptor and its signaling in human cancers.
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eXPReSSiON OF GONADOTROPiN-ReLeASiNG HORMONe 
(GnRH) AND iTS ReCePTOR iN HUMAN CANCeRS

In several earlier studies, it has been demonstrated that cancers of the breast, ovary, and endo-
metrium have receptors for GnRH (1). Receptor-binding abilities are different between pituitary 
gonadotrophs and cancer cells. In cancer cells are two types of GnRH-binding sites, one with low 
affinity and high capacity and a further one with high affinity and low capacity. The second is similar 
to the GnRH receptor found in pituitary gonadrotrophs (1–3). The low-affinity binding site is similar 
to that found in human placenta and corpus luteum and is unable to discriminate between GnRH 
agonists and superactive GnRH agonists (4). In addition, the low-affinity GnRH receptor is only 
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activated at high concentrations of GnRH agonists, whereas the 
high-affinity GnRH receptor is fully activated at low levels of 
GnRH agonists.

Expression and sequence analysis of the GnRH receptor 
found in human pituitary gonadotrophs were first demonstrated 
in 1992 (5). Due to these findings, intensive research was 
carried out, which lead to the demonstration of high-affinity 
GnRH receptors in ovarian and endometrial cancer cell lines 
and in about 80% of their respective primary tumors (5–8). 
High-affinity/low-capacity-binding sites, strongly related to the 
pituitary GnRH receptor, were found in specimens of ovarian 
and endometrial cancers and cell lines, which express mRNA 
for the GnRH receptor known from pituitary gonadotrophs (6, 
7, 9–13). Kakar et al. (14) confirmed that the DNA sequence of 
GnRH receptors in human breast and ovarian cancers is identical 
to that within the pituitary. Harris et al. (15) reported on GnRH 
mRNA expression in two human breast cancer cell lines. About 
50–64% of human breast cancers have high-affinity GnRH 
receptors, according to various studies (16–19). A more recent 
study reported that GnRH receptor expression was detected 
in 67% of hyperplasia cases (4 out of 6), in 100%of benign 
fibroadenoma cases (3 out of 3), in 100% of carcinoma in  situ 
cases (4 out of 4), and in 71% cases of malignant breast cancers 
(22 out of 31) (20). The therapeutic options today are incredibly 
limited in particular for triple-negative breast cancers (TNBCs), 
which do not exhibit either the estrogen receptor α (ERα) or 
the progesterone receptor and do not overexpress the HER2-neu 
gene. It has been shown that 74% of TNBCs (n = 42) have GnRH 
receptor expression (21). In another study, GnRH receptors were 
found in all analyzed TNBCs (n = 16) (22). Since breast, ovarian, 
and endometrial cancers express both GnRH and its receptor, 
it appears plausible to consider that there may be a regulative 
system locally based on GnRH in many of these tumors. This 
also applies to prostate cancer cells (23–25). In addition, expres-
sion of GnRH receptor has also been found in some cancers of 
non-reproductive tissues, such as cancers of the urinary bladder, 
pancreatic cancers, and glioblastoma in addition to that found in 
breast cancers (26–29).

Besides GnRH, another structural version of GnRH is present 
in mammals. GnRH-II is completely conserved in its structure 
from fish to mammals and is different from GnRH in three 
amino acids. A specific functional receptor for GnRH-II was 
identified in different species including non-human primates 
(30–33). The existence of a GnRH-II receptor in humans is, 
however, controversial (34). The full-length human GnRH-II 
receptor is known to be a 7 transmembrane receptor. It has not 
yet been possible to successfully clone or sequence this recep-
tor (31, 35–37). A functional GnRH-II receptor is likely to be 
expressed in a variety of splice variants (32). Assuming that a 
functional GnRH-II receptor is secreted by human tissues, it 
might be a 5 transmembrane domain receptor, which lacks the 
transmembrane regions 1 and 2 (32). It was possible to identify 
mutations of chemokine receptors which are functional 5 trans-
membrane G-protein-coupled receptors where the N-terminus 
is linked right to transmembrane domain 3 due to deletion of 
transmembrane domains 1 and 2 (38). Morgan et al. learned that 
the human GnRH-II receptor is also present in a number of splice 

variants (39). It is suspected that the GnRH-II receptor is non-
functional due to a stop codon within exon 2 (35, 39). A GnRH-II 
receptor, composed of the three exons required for a complete 
receptor protein, has recently been cloned from human sperm by 
Van Biljon et al. (40). This transcript also has a stop codon and a 
frame shift mutation. While this would suggest that this gene is a 
transcribed pseudogene, the authors speculate that the GnRH-II 
receptor in human sperm and testis may have a functional role 
(40). Evidence for the existence of a functional GnRH-II receptor 
in human cancers was demonstrated in earlier studies carried out 
in our laboratory (35, 41, 42). A GnRH-II receptor-like protein 
could be detected in cancers of human reproductive organs 
using an antiserum to the putative human GnRH-II receptor 
(41). In membrane preparations of these cancer cell lines, a 
band at approximately 43 kDa was detectable whereas in ovaries 
obtained from marmoset monkey (Callithrix jacchus) a band at 
approximately 54 kDa was shown (41). To identify the GnRH-II 
receptor-like antigen, the photo-affinity-labeling technique was 
used. Photo chemical reaction of 125I-labeled (4-Azidobenzoyl)-
N-Hydroxysuccinimide-[D-Lys6]-GnRH-II with membrane 
preparations of human endometrial and ovarian cancer cells 
yielded a band at approximately 43 kDa. Western blot analysis of 
the same gel using the anti-human GnRH-II receptor antiserum 
identified this band as GnRH-II receptor-like antigen (41). In 
competition experiments, GnRH-II agonist [D-Lys6]-GnRH-II 
showed a strong decrease of 125I-labeled (4-Azidobenzoyl)-N-
Hydroxysuccinimide-[D-Lys6]-GnRH-II binding to its binding 
site (41). Kim et al., however, has shown that the effects of GnRH 
and GnRH-II can be reversed by the transfection of short-
interfering RNA to nullify the GnRH receptor gene expression 
(43). These findings of Kim et al. suggest that the effects of GnRH 
and GnRH-II are produced by utilizing the GnRH receptor. Our 
recent work shows that GnRH-II antagonists bind with the 
GnRH receptor in a similar way to how they bind with the GnRH 
antagonist cetrorelix (19). We were also able to demonstrate 
that, although GnRH-II antagonists are clearly antagonists at 
the GnRH receptor, [D-Lys6]GnRH-II is an agonist at the GnRH 
receptor (44). Similar results were found for prostate cancer. 
The GnRH receptor mediates the effects of GnRH-II on prostate 
cancer cells (45).

ANTiPROLiFeRATive ACTiON OF GnRH 
iN HUMAN CANCeRS

Dependent upon dose and time, GnRH agonists were found to 
reduce proliferation of human endometrial, ovarian, and breast 
cancer cell lines (1, 46). Comparable results were found for 
prostate cancer cell lines (23–25). When tested on most tumor 
cell lines, GnRH antagonists act like agonists, which indicate that 
the dichotomy of GnRH agonist/GnRH antagonist, as described 
in gonadotrophic cells of the pituitary, is not valid for the GnRH 
system in tumors of the human being. GnRH antagonists also 
caused a time- and dose-dependent reduction in cell growth  
(1, 46). In tumor cells, GnRH receptors may be mainly coupling 
with Gi proteins, which, according to cell lineage, may result in 
the production of different receptor conformation and signaling 
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complexes (47–49). This may help to explain how tumor GnRH 
receptors have different actions compared with pituitary cells.  
A reduction in proliferation of human endometrial, ovarian, and 
breast cancer cells can also be demonstrated with GnRH-II ago-
nists. These effects are significantly greater than those produced 
by GnRH agonists (35). The reduction in cancer cell growth 
caused by GnRH or GnRH-II agonists does not appear to be due 
to induced apoptosis (1). Instead, GnRH and GnRH-II agonists 
counteract the signaling of growth-factor receptors through 
activation of a phosphotyrosine phosphatase (PTP). This results 
in a reduction in cancer cell growth (47, 50, 51). This is discussed 
in Section “GnRH Receptor Signal Transduction in Human 
Cancers.”

Antagonistic analogs of GnRH and GnRH-II, in contrast to 
GnRH and GnRH-II agonists, however, do induce apoptotic 
cell death in several human cancer cells (44, 52, 53). In human 
endometrial and ovarian cancer cells, this occurs due to a 
dose-dependent loss of mitochondrial membrane potential 
and induction of caspase-3 (44, 52). It was possible to confirm 
these effects in nude mice. The progress of human endometrial 
and ovarian tumors grown in mice was significantly inhibited 
by GnRH-II antagonists without causing any apparent side 
effects (44, 52). Apoptotic cell death induced by antagonists of 
GnRH-II is permitted via the intrinsic cascade through stress-
activated mitogen-activated protein kinases (MAPKs) p38- and 
JNK-induced stimulation of the proapoptotic factor Bax, together 
with the loss of mitochondrial membrane potential, cytochrome 
c release, and caspase-3 activation (44, 52).

ANTiMeTASTATiC ACTiON OF GnRH  
iN HUMAN CANCeRS

By using coculture to mimic tumor cell invasion, we have forced 
non-invasive MCF-7 breast cancer cells to behave in an invasive 
manner resulting in a marked increase in the number of cells 
undergoing epithelial–mesenchymal transition (EMT) (54–57). 
By prolonged mammosphere culture, we have made a mesen-
chymal transformed MCF-7 cell line (MCF-7-EMT), which as 
opposed to wild-type MCF-7 cells, exhibits a significant increase 
in invasive behavior both in vitro and in vivo as well as increased 
expression of EMT-related genes (55). When non-invasive wild-
type MCF-7 breast cancer cells were cocultured with human 
primary osteoblasts or osteoblast-like cell line MG63, the inva-
sion of tumor cells through an artificial basement membrane was 
dramatically increased (54). Treatment with GnRH analogs sig-
nificantly reduced the capability to invade through the basement 
membrane and to migrate in response to the cellular stimulus 
(54). GnRH analogs exhibited comparable antimetastatic effects 
in prostate cancer cells (58).

Approximately 10–15% of breast cancers are TNBCs, which 
do not have estrogen receptor α and progesterone receptors and 
show not an overexpression of HER2-neu (59–61). TNBCs are 
believed very aggressive and have a poor prognosis. The most 
frequent site for metastasis formation in breast cancers is bone, 
followed by the lungs and liver (62). Development of bone 
metastasis by MDA-MB-435 TNBC cells grown in the mammary 

glands of nude mice was significantly inhibited by treatment with 
GnRH analogs. GnRH analogs also significantly inhibited bone 
metastasis formation from circulating MDA-MB-231 TNBC 
cells, which were injected intracardially (63). This indicates that 
GnRH analogs may have an influence on the biology of circulat-
ing breast cancer cells as well as influencing the first steps of breast 
cancer metastasis including EMT, migration, and invasion as was 
already known from in vitro data (54).

The S100 calcium-binding protein A4 (S100A4) and the 
cysteine-rich angiogenic inducer 61 (CYR61, CCN1) promote 
cancer cell motility and thus play important roles in EMT, inva-
sion, and metastasis (64–68). Highly invasive MDA-MB-231 
breast cancer cells exhibit high expression of both genes (20). 
An increased CYR61 level correlates with a poor prognosis, 
poor lymph node status, and metastatic propagation (69, 70). 
Jenkinson et  al. showed that S100A4 has a clear influence on 
the invasiveness of breast cancer cells (71). Breast cancer cells 
with S100A4 overexpression were shown to be markedly more 
invasive than the non-transfected controls. High levels of 
S100A4 and CYR61 were found in biopsy specimens of malig-
nant human breast cancers, whereas in carcinoma, in situ, the 
expression levels were much lower. No expression of S100A4 
and CYR61 was detectable in normal breast tissues and benign 
fibroadenoma (20). MCF-7 cells are non-invasive and show 
very low levels of S100A4 and CYR61 expression (20). Invasion 
of cells and levels of S100A4 and CYR61 expression in MCF-7 
cells was markedly increased after mesenchymal transition 
(MCF-7-EMT) (20). The increase in invasive behavior could be 
reduced by anti-S100A4 and anti-CYR61 antibodies (20). The 
use of anti-S100A4 and anti-CYR61 antibodies also reduced 
invasive behavior in naturally aggressive MDA-MB-231 cells 
(20). Treatment of mesenchymal transformed MCF-7-EMT 
and naturally highly invasive MDA-MB-231 cells with a GnRH 
agonist resulted not only in a significant decrease of invasion 
but also a reduced expression of S100A4 and CYR61 (20). The 
neutralization of CYR61 resulted in inhibition of breast cancer 
metastasis in vivo (72). The precise mechanisms remain unclear 
and are part of our current research. However, the use of GnRH 
agonists or similar treatments to block S100A4 and CYR61 
should be further explored as they may have new antimetastatic 
therapeutic potential.

GnRH ReCePTOR SiGNAL 
TRANSDUCTiON iN HUMAN CANCeRS

interaction of GnRH Receptor and Growth 
Factor Receptor Signaling
Over the last two decades, the signal transduction mechanisms 
affecting the growth inhibiting actions of GnRH analogs in cancer 
cells of the breast, ovary, and endometrium have been discussed 
(Figure 1). The GnRH receptor signal transduction in human 
malignant tumors is different from that found in gonadotrophic 
cells in the pituitary, where GnRH receptors bind to G-protein 
αq and induce activation of phospholipase C (PLC), protein 
kinase C (PKC), and adenylyl cyclase (AC) (1). The signal 
transduction mechanisms activated by GnRH in gonadotrophic 
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FiGURe 1 | Gonadotropin-releasing hormone (GnRH) receptor signal transduction in human cancers. Binding of GnRH or GnRH-II agonists to GnRH receptor 
causes G-protein αi-mediated activation of phosphotyrosine phosphatase (PTP), resulting in dephosphorylation of activated EGF receptor (EGF-R) and inhibition of 
EGF-R signal transduction. GnRH antagonists also show GnRH receptor-induced PTP activation. GnRH-induced activation of PTP also inhibits G-protein βγ 
subunit-mediated Src/MMP/HB-EGF signaling cascade of GPER and inhibits E2-induced proliferation in ERα-negative breast cancer cells. In addition, GnRH 
agonists activate the JNK/activator protein-1 (AP-1) pathway independent of known AP-1 activators, protein kinase C, or mitogen-activated protein kinase, resulting 
in an increased G0/1 phase of cell cycle and decreased DNA synthesis. GnRH-II antagonists induce apoptosis in human breast, endometrial, and ovarian cancer cells 
through activation of the intrinsic apoptotic pathway.
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cells of the pituitary were not turned on by GnRH agonists in 
cancers of the ovary, endometrium, and breast even though 
activation of PLC, PKC, and AC in cells of these cancers by 
pharmacological stimulation was clearly shown (23, 47). The 
cancer GnRH receptor binds to G-protein αi after ligand bind-
ing and induces activation of a PTP (23, 47, 73–76). The EGF 
receptors (EGF-Rs) are dephosphorylated by the PTP (47). 
Because of this, mitogenic signal transduction, caused by EGF-R 
activation, is prevented, which leads to the downregulation of 
EGF-permitted activation of MAPK (23), c-fos expression (51), 
and EGF-induced proliferation (77). These findings agree with 
other reports of GnRH analogs reducing the expression of 
growth factor receptors (78–80) and/or growth factor-induced 
tyrosine kinase activity (23, 73, 74, 76, 79, 81–83). The explana-
tion for the dissimilarities of GnRH receptor signal transduc-
tion between gonadotrophic cells of the pituitary and cancer 
cells is still unclear, as we were unable to identify mutations or 
splice variations in the cancer cell GnRH receptor, which can 
have explained the phenomenon (47).

The effects of GnRH are not confined to mitogenic signal 
transduction of growth factor receptors. GnRH agonists stimu-
late activator protein-1 (AP-1) activity via G-protein αi in human 
ovarian and endometrial cancer cells. In addition, GnRH agonists 
also activate JNK, which is a known trigger of AP-1 (84). In earlier 
research, it was demonstrated that GnRH agonists do not induce 
PLC and PKC in endometrial and ovarian cancer cells (23). 
GnRH agonists have also been found to inhibit mitogen-activated 
protein kinase (MAPK, ERK) activity caused by growth factors 
(23). Activation of the JNK/AP-1 signaling caused by GnRH in 
endometrial cancer cells is, therefore, independent of the AP-1 
activators, PKC, or MAPK (ERK). Yamauchi et al. demonstrated 
that JNK is involved in the downregulation of cell prolifera-
tion, which is caused by the α1B-adrenergic receptor in human 
embryonic kidney cells (85). In an analysis in rats, it was sug-
gested that c-jun mRNA suppression and endometrial epithelial 
cell growth may be linked (86). Cytokines show inhibitory action 
on cell growth in UT-OC-3 ovarian cancer cells and activate 
AP-1 and NFκB (87). As the JNK/c-jun signaling is activated by 
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antiproliferative GnRH agonists and JNK/c-jun was also found to 
be integrated in reducing cell growth in distinct systems, it seems 
plausible to consider whether the JNK/c-jun signaling is involved 
in the inhibitory effect of the GnRH agonists. We have also shown 
that GnRH agonists cause JunD-DNA binding, which results in 
decreased cell proliferation shown by an increased G0/1 phase of 
cell cycle and reduced DNA synthesis (88).

interaction of GnRH Receptor and 
estrogen Receptor Signaling
Different studies have shown that estrogen receptor α (ERα) 
mediates 17β-estradiol (E2)-activated expression of c-fos, which 
is induced as an immediate early response gene in ERα-positive 
breast cancer cell lines (89–96). ERα activates the serum response 
element (SRE) in MCF-7 breast cancer cells via MAPK-dependent 
Elk-1 phosphorylation (97, 98). Duan et  al. have shown that 
SRE in breast cancer cells is activated through the Ras/MAPK 
cascade by both E2 (ERα-dependent) and growth factors (ERα-
independent) (97).

Because GnRH agonists antagonize EGF-induced cell growth 
and c-fos gene expression through the Ras/MAPK pathway, 
we have analyzed whether E2-induced activation of SRE and 
expression of c-fos in ERα-positive human breast, endometrial, 
and ovarian tumor cells is also inhibited by GnRH agonists 
and whether GnRH reduces E2-induced cell proliferation 
(1). Dormant ERα-positive/ERβ-positive breast, endometrial, 
and ovarian tumor cell lines were stimulated to multiply by 
treatment with E2 but ERα-negative/ERβ-positive cell lines 
were unaffected. This action was time- and dose-dependent 
inhibited by co-treatment with GnRH agonists (99). We were 
also able to show that in ERα-positive/ERβ-positive cell lines, 
E2 activates the SRE and the expression of c-fos. These effects 
were antagonized by GnRH agonists (99). GnRH agonists did 
not affect the activation of the estrogen response element caused 
by E2. Transcriptional SRE activation by E2 is due to activation, 
by ERα, of the MAPK pathway. GnRH blocks this pathway, 
which results in a decrease of activated SRE caused by E2 and, 
in consequence, a decrease in E2-mediated expression of c-fos. 
This causes a reduction in the cancer cell proliferation caused by 
E2 (99). PTP activation caused by GnRH also inhibits G-protein 
βγ subunit-mediated Src/MMP/HB-EGF signaling cascade of 
G-protein-coupled estrogen receptor 1 (GPER, GPR-30), which 
is a membrane-bound receptor for estrogens, which plays an 
important role in breast cancers, which do not show expression 
of estrogen receptor α (ERα) (100–103). Because of the inhibi-
tion of GPER signaling, cancer cell proliferation, due to E2, in 
ERα-negative breast cancer cells was prevented (100–102).

Recently, we demonstrated that human breast cancer cells 
are resensitized by GnRH analogs to the estrogen antago-
nist 4OH-Tamoxifen (104). We have developed sublines of 
4OH-Tamoxifen resistant cell lines and compared the expression 
levels of ER, Her-2, EGF-R, and GnRH receptor in the wild-type 
and the resistant cell lines. We identified slightly decreased 
expression of GnRH receptors and increased levels of EGF-R 
in the developed sublines (104). Apoptotic cell death induced 
by 4OH-Tamoxifen in wild-type MCF-7 and T47D cells was 

unaffected by GnRH analogs, but, when the resistant sublines were 
pretreated with analogs of GnRH, sensitivity for 4OH-Tamoxifen 
was completely restored in these cells (99). Analogs of GnRH 
counteract EGF-dependent growth and probably interrupt the 
change in growth regulation, from being estrogen dependent 
to being EGF dependent, which ocurrs after acquiring second-
ary resistance to 4OH-Tamoxifen. This interruption of EGF-R 
signaling resensitized the resistant cell lines for a therapy using 
4OH-Tamoxifen (104).

GnRH ReCePTOR AS TARGeT FOR 
CANCeR THeRAPY

Apart from pituitary cells and reproductive organs, most other 
tissues and hematopoietic stem cells do not show expression of 
the GnRH receptor (Figure 2). The reproductive organs, ovaries, 
fallopian tubes, and uterus are regularly eliminated during  
surgery of ovarian or endometrial cancer (105). These recep-
tors could, therefore, be used to deliver a targeted therapy with 
improved antitumor effects and reduced side effects. Cytotoxic 
GnRH agonists, in which a cytotoxic substance is covalently 
coupled to a GnRH agonist, have been developed (106). These 
GnRH analogs, which are covalently bound to a cytotoxic agent 
couple specifically to GnRH receptors with their peptide fraction 
and operate as chemotherapeutic drug after internalization of 
the receptor–ligand complex (106). Thus, these cytotoxic GnRH 
analogs selectively attack only cells that have membrane GnRH 
receptors and cause fewer side effects than not conjugated cyto-
toxic substances (106). We demonstrated that such a cytotoxic 
GnRH agonist, Zoptarelin Doxorubicin (AEZS-108, AN-152), 
in which doxorubicin is covalently coupled to the GnRH analog 
[D-Lys6]GnRH, is selectively accumulated in the nucleus of 
human GnRH receptor-positive breast, ovarian, and endometrial 
cancer cell lines. The uptake of Zoptarelin Doxorubicin could be 
competitively blocked by an excess of another GnRH agonist. No 
intracellular Zoptarelin Doxorubicin could be found in tumor 
cell lines that do not have membrane GnRH receptors (107). 
Zoptarelin Doxorubicin was more potent than doxorubicin 
in inhibition of cell growth, in  vitro, in most GnRH receptor-
positive cancer cell lines. These results indicated that Zoptarelin 
Doxorubicin had a selective receptor-mediated effect on GnRH 
receptor-positive cancer cell lines and inspired us to analyze the 
effectiveness of Zoptarelin Doxorubicin in vivo (105). In testing 
on experimental cancers in nude mice, Zoptarelin Doxorubicin 
was less toxic than unbound Doxorobicin and more effective 
in decreasing the growth of GnRH receptor-positive tumors  
(105, 108). This is thought to be due to the receptor-mediated 
admission of Zoptarelin Doxorubicin and the reduced causation 
of multidrug resistance (109, 110). Clinical trials of Zoptarelin 
Doxorubicin were planned as it appears that the drug allows a 
more effective and less toxic targeted chemotherapy for GnRH 
receptor-positive cancers. In a dose escalation and pharmacoki-
netic trial, Zoptarelin Doxorubicin was used by women with 
GnRH receptor-positive cancers. The maximum tolerated dose in 
the absence of supportive medication was found to be 267 mg/m2. 
This dose was recommended as the starting dose for therapeutic 
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phase II trials (111). It has also been shown, in vitro, that Zoptarelin 
Doxorubicin is an effective therapeutic option in TNBC where 
there is a high percentage of GnRH receptor-positive cancers (21). 
Other types of tumors were found to be suitable for treatment 
with Zoptarelin Doxorubicin. Thirty-two percent of pancreatic 
cancers express GnRH receptors (28). We demonstrated that 
treatment of GnRH receptor-positive MiaPaCa-2 and Panc-1 
human pancreatic cancer cells with Zoptarelin Doxorubicin 
resulted in apoptosis in vitro. The antitumor effects could be also 
demonstrated in nude mice (28). In 2014, the first data from a 
multicenter phase II trial were published demonstrating that 
Zoptarelin Doxorubicin proved to be effective and of low toxicity 
in women with advanced or recurrent GnRH receptor-positive 
endometrial cancer (112). A second multicenter phase II trial 
confirmed that Zoptarelin Doxorubicin is an effective and safe 
compound for the treatment of women with platinum refractory 
or resistant ovarian cancers (113). Zoptarelin Doxorubicin is 
currently in a phase III clinical trial on patients with ovarian or 
endometrial cancer.

CONCLUSiON

Gonadotropin-releasing hormone plays an important role in 
the control of mammalian reproduction. In addition to this  
well-documented classic hypophysiotropic action, GnRH might 
have a role as a modulator of cell growth and metastasis in a num-
ber of human malignant tumors, including cancers of the breast, 
ovary, endometrium, and prostate. In addition, GnRH receptors 
expressed in many tumor types provide suitable targets for the 
therapy with GnRH analogs.
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