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A detailed understanding of the molecular pathways and cellular interactions that result
in islet beta cell (p cell) destruction is essential for the development and implementation
of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events
that define the pathogenesis of human T1D have remained elusive. This gap in our
knowledge results from the complex interaction between genetics, the immune system,
and environmental factors that precipitate T1D in humans. A link between genetics,
the immune system, and environmental factors are type 1 interferons (T1-IFNs). These
cytokines are well known for inducing antiviral factors that limit infection by regulating
innate and adaptive immune responses. Further, several T1D genetic risk loci are within
genes that link innate and adaptive immune cell responses to T1-IFN. An additional
clue that links T1-IFN to T1D is that these cytokines are a known constituent of the
autoinflammatory milieu within the pancreas of patients with T1D. The presence of
IFNo/p is correlated with characteristic MHC class | (MHC-I) hyperexpression found
in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk
between autoreactive cytotoxic CD8* T lymphocytes and insulin-producing pancreatic
B cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in
the islet microenvironment.

Keywords: type 1 diabetes, type 1 interferons, humans, CD8* T cell, beta cells

INTRODUCTION

Type 1 diabetes (T1D) results from an autoimmune-mediated attack that specifically targets
insulin (INS)-secreting pancreatic beta () cells. Through the interactions of f cell antigen-specific
T cell receptors (TCR) with MHC-peptide complexes, f cells are destroyed leading to aberrant
glucose homeostasis and persistent hyperglycemia. Critical to T1D pathogenesis is the targeted
destruction of pancreatic p cells mass by autoreactive cytotoxic CD8* T lymphocytes (CTLs)
(1-6). Although responses in T1D are directed toward autoantigens, the activation of the p cell
specific CTLs is expected to be similar to activation of CD8" T cells observed during a typical
response to infectious agents. Following activation, autoreactive CTLs clonally expand, home
into the pancreatic islets, and survey the surface of f cells for antigen presented in the context
of MHC class I (MHC-I). Recognition of the specific cognate peptide- human leukocyte antigen
(HLA) class I complex results in the induction of TCR signaling, formation of the immunological
synapse, and targeted destruction of B cells. While the immune system plays a significant role in
perpetuating disease pathology, a large body of literature supports the notion that development
of T1D is dependent upon a complex network of determinants including those of genetic and
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environmental etiologies (7-15). Tissue microenvironments
influence immune responses in models of tumor biology and
infectious disease. However, this notion remains largely been
unexplored in the target tissues of autoimmune diabetes.

Type 1 interferons (T1-IFNs), classically known for interfer-
ing with viral infection, have been implicated in the early stages
of T1D autoimmunity (16-21). Transcriptome analysis reveals
a T1-IFN signature in the peripheral blood of patients prior
to the development of autoantibodies (16, 17). Additionally,
these cytokines have been identified as being expressed in the
pancreata of deceased tissue/organ donors with T1D versus
non-diabetic donors (18, 19, 21). GWAS studies reveal several
T1D-associated genes that are involved in the production, sign-
aling, and regulation of the T1-IFN pathway (12, 22). Moreover,
induction of T1D hasbeen reported in patients receiving T1-IFN
therapy for various conditions including hepatitis C, multiple
sclerosis, and hairy cell leukemia (23-30) supporting the idea
that these cytokines may actively exacerbate T1D progression.
Despite the growing evidence for the role of T1-IFNs in T1D,
little is known about how these cytokines contribute to the
inflammatory environment of the human autoimmune diabetic
islet (16, 17, 31-36). This review will consider the current para-
digms in the natural history of T1D as well as T1-IFN action
while summarizing the published literature regarding a role for
T1-IFNs in T1D pathogenesis. Additionally, we highlight the
exciting new avenues of research suggesting that T1-IFNs may
be a catastrophic feature within the diabetic microenvironment.

SETTING THE STAGE FOR
AUTOIMMUNITY: ROLE OF GENETIC
SUSCEPTIBILITY

Genetic predisposition constitutes a primary risk factor for the
initiation of B cell autoimmunity and can be attributed to the
complex interplay of more than 50 genetic loci that may impact
immune function, INS expression, and f cell function (11, 37, 38).
Identified as the first genetic locus associated with T1D in the
1970s, the HLA region on chromosome 6p21 confers approxi-
mately 50% of the genetic risk for disease development (39). This
region, also referred to as (it) IDDM1 (it), is highly polymorphic,
containing over 200 identified genes that can be categorized as
class I, II, or III genes that play an important role in antigen
presentation as well as regulation of this process. Particularly,
class I and II genes encode the classical HLA cell surface proteins
that are involved in presenting antigen to CD8+ and CD4+
lymphocytes, respectively. In fact, the strongest association is
found in patients harboring the specific HLA class IT haplotypes,
DR3-DQ2 (DRB*301-DQB*201) and DR4-DQ8 (DRB*401-
DQA*301-DQB*302) with the highest risk seen in DR3/DR4
compound heterozygotes (40, 41). Conversely, strong protec-
tion from T1D is observed in individuals with the DQB*602
allele, which is reported in less than 1% of patients with T1D
(42,43). Comparison of high- and low-risk DQ alleles in humans
and mouse models reveal key differences in peptide binding,
as predisposing alleles contain a substitution of non-charged
amino acids (alanine, valine, or serine) for aspartate at position

57, which destabilizes binding of antigenic epitopes (44-46).
While most studies assessing HLA risk haplotypes have been
carried out in Caucasian individuals, recent efforts have begun
to characterize HLA susceptibility in other ethnic groups. For
example, HLA genotyping in African American patients found
that the African-specific DR9 (DRB1*09:01-DQA1*03:01-
DQB1*02:01g) haplotype in combination with DR4 mimics
risk for T1D seen in patients with DR3/DR4 heterozygosity in
European populations. Alternatively, the African-specific “DR3”
haplotype (DRB1*03:02-DQA1*04:01-DQB1*04:02) confers
significant protection (47). Future studies in this area should
be geared toward understanding HLA risk haplotypes in indi-
viduals of diverse ethnic backgrounds. Although not as widely
studied, HLA class I alleles, HLA A*24 and HLA B*39, appear
to be associated with increased susceptibility for T1D, decreased
age of onset, and fulminant f cell destruction (48-50).

Numerous additional loci outside of the HLA region summate
the remaining genetic risk for diabetes development, although
the individual odds ratios conferred by these regions are modest
(11, 12). Several of these genes are thought to influence tolerance
mechanisms facilitating the escape of autoreactive T cells into
the periphery. For instance, variants within the INS gene are
known to modulate thymic INS expression, which comprises
about 10% of the genetic risk for T1D and carry an odds ratio of
2.2 (51-53). Extensive mapping of this region associates variable
number of tandem repeats in the 5" promoter of INS with diabe-
tes risk (53-55). Shorter class I alleles [23-63 repeats] predispose
for diabetes, while longer class III alleles [140-210 repeats] are
protective (55). The number of tandem repetitions determines
INS transcription in the thymus through interactions with the
autoimmune regulator, AIRE, which is essential for appropri-
ate T cell education and provides strong evidence that central
tolerance to INS, the primary autoantigen in T1D, is impaired in
patients who harbor this risk variant (56).

Protein tyrosine phosphatase non-receptor type 22 (PTPN22)
is another well-known example, as this locus confers the third
highest genetic association for TID and is also known to
be a regulator of signaling in a variety of immune cell types
including lymphocytes, monocytes, dendritic cells (DCs), and
neutrophils (57). Case-control and association studies show
that this coding variant causes a non-synonymous substitution
from an arginine to a tryptophan (R620W) located within the
protein-binding domain of PTPN22. Biochemical studies in
lymphocytes demonstrate the PTPN22*W620 allele behaves as
a gain-of-function mutant with dampened TCR signaling (58).
In contrast, the same variant in myeloid derived cell types is
highly controversial with some models demonstrating hyper-
responsive DC phenotypes with increased T cell activation
while others exhibit reduced function and selective impairment
of T1-IFN responses following TLR stimulation (59, 60). How
might seemingly paradoxical functions be contributing to onset
of T1D? On one hand, diminished TCR signaling by the risk
variant could impair central and peripheral T cell tolerance,
while reduced T1-IFN production by TLRs may hinder effec-
tive clearance of p-cell tropic viruses triggering self-reactivity
(61). Studies remain ongoing to determine the full gamut of
functional consequences induced by this variant.
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Like PTPN22, many T1D-associated genes play multiple roles
in immune sensing and signaling especially in response to envi-
ronmental ques, which supports the hypothesis that genetic risk
coupled to permissive environmental determinants collectively
contribute to diabetes progression. Diabetogenic viruses signify
a highly postulated candidate for initiation and potentiation of
islet autoimmunity. Critical for the innate immune response to
viral infection are T1-IFNs. Several identified genetic loci for
T1D also have prominent roles in the induction and signaling of
this pathway, including IFIH1 (rs1990760), TYK2 (rs2304256),
and STAT4 (rs7574865) (62-64). TYK2 is a tyrosine kinase
involved in proximal TI-IFN signal transduction as well as regu-
lation of IFNARTI surface expression (65-67). Similarly, STAT4
is a key mediator of T1-IFN signaling essential for the genera-
tion of Th1 responses, which contribute to the T cell-mediated
pathology observed in diabetes (68, 69). Also associated with
several other autoimmune disorders, protective variants for
each of these genes is associated with reduced T1-IFN signal-
ing (67, 70). IFIH1 encodes the protein MDAS5, a cytoplasmic
sensor of viral double-stranded RNA. The non-synonymous
SNP found in IFIH1 results in alanine to threonine amino acid
substitution at position 946 (A946T) and may diminish ATPase
activity of MDAS activity leading to deranged constitutive prov-
ocation of T1-IFN as well as blunted viral sensing (62, 71, 72).
Compelling evidence in primary human islets reveals that pres-
ence of the homozygous risk allele decreases the autonomous
innate response to Coxsackievirus B3 (73). Collectively, these
data suggest that the A946T risk variant in IFTH1 may act as a
double-edged sword, predisposing f cells to persistent enterovi-
ral infection while concurrently promoting deleterious T1-IFN
production in and around the islet microenvironment.

EVOLUTION OF ISLET DESTRUCTION
IN HUMAN DIABETES

Human p cells act as quintessential metabolic sensors working
to integrate environmental cues for rapid and efficient glycemic
control (74). Reports of decreased C-peptide responses and
reduced glucose tolerance in autoantibody positive individuals
suggest that ongoing inflammation precipitates the deterioration
of B cell function prior to diabetes onset (75-77). Additionally,
f cells are also widely believed to be active participants in pro-
moting a diabetogenic islet microenvironment. For example,
MHC-I is known to be hyperexpressed within the islets of T1D
patients, suggesting that f cells may be more visible to infiltrat-
ing CTL (1, 20, 21, 78). Increasing data insinuates that signals
arising from the islet microenvironment, such as T1-IFNs, could
trigger such disease promoting adaptations. Additionally, active
inflammatory signals within the islet microenvironment prompt
substantial variation in the p cell transcriptome and proteome
as well as augmenting the capacity for cytokine and chemokine
production by islet or f cells (79).

The conceptual model proposed by George Eisenbarth for
the natural history of T1D has shaped theories regarding the
evolution of T1D pathogenesis (80, 81). Many facets of this
paradigm have been tested and updated over the past 3 decades.

The amalgamation of genetic pre-disposition and initiating
environmental triggers create the framework for models that
describe the insurgence of f cell autoimmunity. Though the
nature of the instigating insult is not completely understood,
once initiated, active immune-onslaught can be indicated by
the presence of autoantibodies and histological detection of the
pathognomonic lesion termed insulitis (82). Found in or around
the islets, insulitis is a heterogeneous inflammatory infiltrate
comprised of T lymphocytes, B lymphocytes, macrophages,
and DCs, however CD8* T cells form the primary constituent
[(1, 2, 83) and Figure 1A]. First noted by German pathologist
Martin Schmidt in the early 1900s, this lesion was not consid-
ered a prominent feature of T1D until the landmark paper by
Willy Gepts in 1965 where the presence of insulitic lesions were
observed in 15/22 recent onset T1D cases (82, 84, 85). Further
evaluation of these samples using immunohistochemical tech-
niques and additional data from subsequent studies revealed
that inflammation was primarily observed in islets with INS
immunoreactivity. Further, in cases with long-standing disease,
many islets appear to be devoid of INS containing f cells without
active insulitis, alluding to the role of these cells as the inciting
antigen in T1D (1, 2, 20, 82, 86-88).

Until recently, efforts aimed at characterizing the nature,
composition, and frequency of insulitis have been challenging.
This is due to the anatomical inaccessibility of the pancreas for
direct study in living subjects as well as a dearth of well-preserved
human cadaveric tissues for analysis (84, 89). The inception
of the Network for Pancreatic Organ Donors with Diabetes
(nPOD) has dramatically advanced our understanding of f
cell/Islet autoimmunity (89-92). Moreover, studies of human
pancreata have allowed for the emergence of new paradigms
in T1D, including the current consensus definition of insulitis,
defined as the presence of more than 15 peri- or intrainsulitic
CD45% cells within a minimum of three islets (93). The most
comprehensive screening and characterization of insulitis to date
was recently described using the nPOD collection where a total
of 159 pancreata were screened (61 controls, 18 autoantibody
positive cases without a diagnosis of T1D, and 80 T1D cases)
(88). Investigators presented confirmatory findings that insulitis
is present most frequently in recent-onset patients within INS-
containing islets and inversely correlates with disease duration.
The presence of adaptive-immune infiltration into the islets of
individuals with autoantibodies is a rare event, observed only in
individuals with multiple antibodies (94). Additionally, patients
with T1D display tremendous heterogeneity in terms nature,
distribution, and severity of insulitis in addition to the amount
of residual p mass present following diagnosis (88, 95).

A critical cell-to-cell interaction during the development of
T1D occurs when f cells and islet-antigen specific CTLs come into
contact. Strong evidence has supported a crucial role for CD8*
T cells in T1D. First reported by Bottazzo in 1985, histological
characterization of pancreas sections from T1D cases demon-
strated that CTL are the most abundant immune cell type found
in human insulitis [(20) and Figure 1A]. Additional studies have
confirmed that CD8* T cells have a prominent role in T1D as well
as recurrent T1D that occurs after transplantation of islets, pan-
creas (pancreas alone, or SPK recipients) into patients with T1D.
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FIGURE 1 | CD8 T cells are the major leukocyte component of the insullitis lesion in type 1 diabetes (T1D) as well as recurrent disease. Pancreatic sections [courtesy
of Network for Pancreatic Organ Donors with Diabetes (nPOD)] were examine histologically for the presence of islet invading immune cells. (A) Section taken from a
pancreas organ donor with T1D (nPOD case 6052). The tissue section was immunofluorescently stained for glucagon (yellow) to identify the islet, CD4

T lymphocytes (red), and CD8 T lymphocytes (green). Within this islet cytotoxic CD8* T lymphocytes (CTLs) are the predominant T cell type observed. Image
courtesy of Martha Campbell-Thompson, DVM/PhD (University of Florida). (B) Section taken from a pancreas transplant biopsy, from an simultaneous pancreas and
kidney (SPK) recipient who had developed recurrence of T1D. Tissues were stained for insulin (red), CD4 T lymphocytes (blue), and CD8 T lymphocytes (teal). Within
the insulitic lesions, CTLs represented the dominant T cell found. Figure shows islets with both CD8 than CD4 T cells, but most islets were primarily infiltrated by
CD8 T cells. Green/yellow bright stains represent non-specific fluorescence from red blood cells. Image courtesy of Alberto Pugliese, MD, Francesco Vendrame,

MD, and George Burke, lll, MD, University of Miami.

Biopsy and histological examination of the transplanted pancreas
demonstrate the accumulation of high numbers of CD8* T cells
into INS positive islets in patients who are undergoing active islet
autoimmunity (Figure 1B).

Regarded as the final executioner in T1D, CTLs mediate
direct P cell destruction through the recognition of epitopes
from proteins that are selectively expressed in B cells and are
presented by these INS-producing cells the context of MHC-I.
Following recognition of cognate antigen, CTLs create a close
contact with the target B cell by forming an immunological
synapse, where several cytotoxic mechanisms are employed to
induce death of B cells. These include the induction of molecules
involved in the granule exocytosis pathway such as perforin,
granzyme, or granulysin as well as increased surface expression
of death ligands such as Fas Ligand and TNF-related apoptosis
inducing ligand (96-98). The presence of CTLs specific for well-
known autoantigens such as IGRP, preproinsulin, and IA-2, have
been documented in islets with augmented MHC-I expression
(1, 2, 88). CD8" T cells bearing TCR that are specific for § cell
antigens have been detected in circulation of patients. These
TCRs imbue CTL with the ability to destroy human p cells
in vitro (99-102). In patients undergoing recurrent autoimmun-
ity following islet transplantation, autoreactive CD8* T cells are
associated with p cell destruction resulting in graft failure (103).
This evidence for an essential role of CTL in T1D in humans is
further bolstered by studies in mice. Spontaneous diabetes fails
to develop in non-obese diabetic (NOD) mice lacking MHC-I or
2 microglobulin (4, 6), while diabetes onset can be accelerated
by adoptive transfer of diabetogenic CTL (104, 105).

Mounting evidence suggests that stimuli from the diabetic
islet microenvironment likely contribute to autoreactive CTL-
mediated f cell cytotoxicity. For example, using NOD adoptive
transfer systems with IGRP-specific NY8.3 CD8* T cells, it has
been demonstrated that CD8* T cells acquire greater cytolytic

capacity and an effector-memory phenotype upon migration
into the NOD islet (106-108). As T1-IFNs are linked to increased
HLA expression in the pancreatic islets of patients with T1D,
suggesting that these cytokines contribute to autoimmune
surveillance and promote insulitis. While the effect of T1-IFNs
on human islets have only recently begun to emerge, evidence
suggests that T1-IFNs are involved in the cross talk between the
adaptive immune effectors and the microenvironment of the
diabetic islet (16, 17, 31-36, 109, 110).

TYPE 1 INTERFERONS

Type 1 interferons belong to a large family of cytokines that were
originally described by Alick Issacs and Jean Lindenmann in
1957 as soluble factors responsible for mediating viral interfer-
ence following a primary virus exposure (111-113). Since then,
this large family of cytokines has been further categorized into
three distinct classes that play essential roles in cellular-mediated
defense against viral and microbial infections as well as in auto-
immunity (113-116). Differing in structural homology and sign-
aling receptor complexes, these categories include the T1-IFNs
as well as the type 2 interferon [interferon gamma (IFNy)] and
the recently identified type III IFNs including IFNA1 (IL-29),
IFNA2 (IL-28A), TENA3 (IL-28B), and IFNA4 (114, 117-121).
T1-IFNs signal through the heterodimeric IFNARI-IFNAR2
receptor [IFNAR] and comprises the largest class of IFN includ-
ing thirteen IFNa subtypes in addition to IFNp, IFNe, IFNk,
and IFNw. Though multiple TI-IFN subtypes may appear
redundant, these distinct entities display unique binding affini-
ties to the IFNAR that result in diverse functional outcomes with
respect to antiviral, immunomodulatory, and growth inhibitory
activity (122-128). While all T1-IFN subtypes contain several
conserved “anchoring” residues that are important for receptor
binding, the contribution of residues flanking these anchor
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points determine the overall binding of these polypeptides to
IFNAR1/2 (126-130). As such, IFNp exhibits the strongest
interaction with the receptor out of all T1-IFN subtypes (130).

Type 1 interferons represent an early line of defense against
viral infection and can be produced by virtually every cell in the
body (131-134). Induction of T1-IFNs are initiated by stimula-
tion of pattern recognition receptors (PRRs) that recognize
conserved motifs found on viruses, including toll-like recep-
tors (TLR3, TLR4, TLR7, and TLRY), cytosolic RNA helicases
(RIG-Tand MDA-5), and cytosolic DNA sensors (131, 133, 134).
Following activation of these distinct pathways, the adaptor
molecules MAVS (cytosolic RNA sensors), STING (cytosolic
DNA sensors), TRIF (TLR3/4), and MyD88 (TLR7/8/9) trans-
duce signals that converge on the activation of TBK-1, which
phosphorylates IRF-3 leading to transcription of T1-IFN and
IRF-7 that engage in a positive feedback loop for amplification
of this response (134-136).

Following production, T1-IFNs signal in an autocrine or
paracrine fashion through IFNAR. Engagement of the receptor
leads to trans-phosphorylation as well as activation of the tyros-
ine kinases TYK2 and JAKI that are constitutively associated
with the IFNAR subunits, IFNAR1 and IFNAR?2, respectively.
Signaling downstream of IFNAR can lead to the activation
of several pathways that contribute to the widespread range
of effects by T1-IFNs depending upon the cell type and the
context in which the TI-IFN signal was received (117, 133,
137, 138). Classically, T1-IFN signaling invokes the activa-
tion of STAT1-STAT2 heterodimers that rapidly translocate
to the nucleus and complex with IRF9 to form the interferon-
stimulated gene factor 3 (ISGF3) complex. Formation of ISGF3
leads to binding of the interferon response element (consensus
sequence: TTTCNNTTTC) for the transcription of interferon-
stimulated genes (ISGs) that mediate a diverse range of functions
(117, 133, 139). Alternatively, T1-IFNs are capable of activat-
ing all seven members of the STAT family that can manifest as
homodimers or heterodimers to induce downstream signal-
ing and transcription. For instance, T1-IFN induced STAT1
homodimers are known to bind IFNYy activated sequences (GAS;
consensus sequence: TTCNNNGAA) to initiate proinflamma-
tory programs similar to IFNYy, whereas T1-IFN induced STAT3
homodimers have been reported to interact with the corepressor
complex SIN3A to indirectly counteract inflammatory responses
(133, 140-142). Utilization of these alternative T1-IFN signaling
pathways is partially determined by the expression of individual
STAT family members (143). This concept is clearly evident in
lymphocytes. The balance between STAT1 and STAT4 dictates
T cell responses following T1-IFN exposure (144). This is highly
dependent upon STAT4 expression within the T cell, which is ini-
tially induced through activation of TCR signaling. This induces
a switch from the “classical” anti-proliferative and proapoptotic
actions of STAT1 signaling to STAT4 that promotes T cell prolif-
eration, differentiation, and survival (143-145).

In addition to JAK-STAT signaling, several other non-
canonical pathways are known to be induced by T1-IFNs. For
example, activation of JAK1 and TYK2 after T1-IFN engagement
has been shown to induce the PI3K-AKT pathway that leads
to activation of mTOR, which leads to downstream control of

protein translation, regulation of cellular division, and prolifera-
tion, in addition to activation of IKK resulting in NF-kB activity
(117, 137). In lymphocytes, the MAPK pathway mediates cross-
talk between T1-IFN signaling and the TCR complex resulting
in growth inhibition (117). While studies are still ongoing to
unmask the complex signaling networks induced by T1-IFNs,
the ability of these cytokines to induce a wide array of signaling
pathways explains their pleiotropic and sometimes paradoxical
biological activities.

Type 1 interferons signaling culminates in the induction of
a robust antiviral program. Several key components required
for T1-IFN signaling, including STAT1 and IRF9, are also well-
known ISGs that act to reinforce and amplify the IFN response.
T1-IFNs also act to enhance host defense and pathogen detection
by increasing the expression of several PRRs involved in viral
sensing, expression of 2,5 oligoadenylate synthetase (OAS) that
facilitates eradication viral RNA, as well as upregulation of pro-
teins that interfere at various steps of the viral life cycle, including
viral entry, replication, and viral egress from infected cells (146).

Type 1 interferons dynamically regulate the actions of innate
and adaptive immune cells, including the ability to enhance
NK cell cytotoxicity as well as the production of IL-1f and IL-18
by macrophages (147). These cytokines are also well known for
directly and indirectly influencing T cell responses that assist
in the eradication of invading pathogens or malignant cells
(132, 138, 147, 148). IFNa/p promote the differentiation and
maturation of DCs by enhancing the expression of MHC-I and II
along with costimulatory molecules (CD40, CD80, CD83, CD86,
4-1BBL) required for efficient CD4* and CD8" T cell priming
(138, 149-151). These cytokines promote trafficking of DCs to
lymphoid organs, stimulate expression of adhesion molecules,
and induce the secretion of chemoattractant molecules that
promote communication between DCs and T lymphocytes
(138, 152-154). In line with their effects on DCs, T1-IFNs
promote the activity of antigen-exposed CD8" T cells, by incit-
ing proliferation, enhancing survival, and increasing effector
function. Conversely, in antigen-inexperienced CD8* T cells the
T1-IFNs prevent growth and differentiation in an effort to direct
a specific T cell response toward the inciting pathogen (138).
While T1-IFNs act to implement numerous mechanisms aimed
at thwarting the spread of infection, aberrant activation of this
pathway, as seen in autoimmunity, can lead to overactivation of
immune cells and perpetuation of tissue damage.

T1-IFNs AND PATHOGENESIS OF T1D

Evidence in Humans

The characterization of insulitis in seminal studies by Gepts and
Foulis altered the landscape regarding the pathogenesis of T1D
to one of an immune etiology. Soon after, it was reported that
there was a striking genetic association between the HLA DR
locus and T1D onset (155). These findings, along with the notion
that class II antigens could be expressed abnormally in other
organ-specific autoimmune diseases prompted investigators
to hypothesize that altered antigen presentation by pancreatic
B cells in T1D might explain activation and infiltration of
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autoimmune T cells found within insulitic lesions (156-158).
In 1985, Bottazzo et al. reported that residual § cells found
in a 12-year-old recent onset donor were selectively positive
for HLA-DR. In addition to noting enhanced expression of
HLA-DR, this was also the first report to note enhanced HLA
class I expression in insulitic islets the same donor (20). Since
the aberrant expression of MHC-II molecules could be induced
by IFNYy on thyroid follicular cells in autoimmune thyroiditis, it
was postulated that IFNy could be acting in a similar manner
to induce this uncharacteristic expression in pancreatic f cells.
While subsequent studies showed that interferons were incapable
of directly inducing ectopic expression of MHC-II on pancreatic
B cells, they were found to be potent inducers of MHC-I expres-
sion (21). Subsequent analyses confirmed that MHC-I expres-
sion was a prominent phenotype found in patients undergoing
islet autoimmunity, especially in normal appearing or inflamed
islets containing residual p cells (1, 78, 159-162). Based on the
heterogeneity of insulitis in T1D, it was hypothesized that { cells
could be actively generating soluble mediators that are capable of
acting in a paracrine manner to exert affects within the diabetic
microenvironment. IFNa represented a prime candidate, as it
was known to induce MHC-I in islet tissue and was known to be
produced by a wide range of cells (21). The first report to correlate
the presence of IFNa in the islets of patients with recent-onset
T1D diabetes was published in 1987. Investigators examined
37 pancreata from cadaveric donors with T1D and found that
34 of 37 samples displayed MHC-I hyperexpression. Further,
97% of patients displaying this feature concurrently exhibited
positivity for IFNa by immunocytochemistry (18). Transcript
expression of various cytokines, including IFN«, IFNp, IFNy,
IL-1B, TNFa, were compared in diabetic and control pancreata.
Among the panel of cytokines tested, only IFNa displayed a clear
and consistent pattern of augmented expression in patients (19).

Additional lines of evidence implicate a pathogenic role for
T1-IFNs in human autoimmune diabetes. The presence of f
cell-specific autoantibodies signifies the preclinical phase of T1D
and serves as an essential biomarker for identifying at-risk indi-
viduals (163). Long-term follow up of at risk children enrolled
in the BABYDIET and DIPP longitudinal studies reveal T1-IFN
inducible signatures in the peripheral blood, which was positively
correlated with episodes of upper respiratory infections. The
signature was strongest immediately prior to seroconversion and
began to decline after the detection of autoantibodies. This time
course suggests that activation and production of T1-IFNs may
be involved in the early stages of islet autoimmunity (16, 17).
In accordance with these findings, IFN in the plasma of patients
with T1D was shown to be elevated when compared to controls
(10.1 U/mL; 69.6% positivity vs. 0.4 U/mL, 0% positivity, respec-
tively) and plasmacytoid dendritic cells (pDCs), well known for
producing T1-IFNs, were observed in the peripheral blood of
new-onset patients during diagnosis (164, 165). Furthermore,
enterovirus RNA, particularly Coxsackievirus B, was identified
in 50% of patients who displayed positivity for IFNo (165).

The half-life of cytokines within the T1-IFN family is relatively
short (IFNa: 4-16 h; IFNf 1-2 h) and serum levels of IFN begin
to decline very rapidly once secreted (166, 167). Due to rapid
clearance, detection of IFNs in circulation can prove challenging.

To circumvent this, investigators have attempted to use T1-IFN
induction pathways, such as Poly(I:C), or the measurement
of ISGs in PBMC as surrogate markers for T1-IFN activation
when comparing patients and controls (168, 169). For example,
patients display a higher basal expression of the ISG OAS, as well
as increased sensitivity to IFNa exhibited by maximal induction
at lower IFNa concentrations when compared to control subjects
(168). T1-IFN production was higher from PBMC isolated from
patients with T1D compared to controls, whereas IFNy produc-
tion by isolated PBMC in response to concanavalin A was not
different between control and T1D patient samples (169). With
respect to the IFNa response, there was no correlation to blood
glucose levels, HbAlc, age of onset, disease duration, or ICA
positivity, which may point to the importance of genes associated
with T1D that are involved in signaling of this pathway (169).

Initiation of islet autoimmunity has been noted in individuals
following T1-IFN therapy for chronic hepatitis, multiple sclero-
sis, as well as hematologic malignancies (23, 24). First reported
in 1992, T1-IFN-induced autoimmune diabetes was described
in a patient with Hepatitis C, who was seropositive before treat-
ment for autoantibodies against both GAD and INS (30). While
this complication occurs in a minor subset of patients, half of
all cases reporting T1D following IEN therapy were positive
for autoantibodies. This suggests that T1-IFNs may precipitate
loss of tolerance and self-reactivity in at-risk patients (170).
Studies investigating B cell function in these patients suggest
that T1-IFNs can reduce INS secretion, impair carbohydrate
metabolism during an oral glucose challenge, and induce INS
dependency over the course of treatment (171, 172). Patients
who incur T1-IFN-induced autoimmune diabetes to not exhibit
normoglycemia when T1-IEN therapy is arrested suggesting that
in these patients [} cell mass is lost to an extent that metabolic
control cannot be reestablished.

Evidence in Animal Models of T1D
Animal models have been indispensable for ascertaining
knowledge regarding the cellular and molecular events involved
in T1D pathogenesis. Likewise, these models have also been
instrumental in elucidating how T1-IFNs contribute to diabetes
pathogenesis. One example includes the diabetes prone bio-
breeding rat (BB-DP rat). These animals emulate some patho-
logic features observed in human diabetes including polygenic
inheritance [including the MHC], peripubescent onset, and
B cell destruction characterized by mononuclear infiltration
(173, 174). Initial studies conducted in this model demonstrate
a dose dependent stimulation of IFNa production by Poly(I:C)
that correlates with accelerated diabetes incidence and severity
(175, 176). Conversely, elevation of serum IFNa in non-diabetes
prone Wistar rats did not instigate diabetes, suggesting that
T1-IFNs are not pathogenic without an inherent risk for diabetes
(175, 176). Additionally, investigation into the natural history
of diabetes in BBDP rats revealed spontaneous expression of
IFNa in the islets of Langerhans prior to insulitis proposing that
induction of T1-IFNs in the islet microenvironment may disrupt
self-tolerance in this preclinical model (177).

The NOD mouse model has served as the principal animal
model for the investigation of causative mechanisms leading
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to autoimmune diabetes (178). Several lines of evidence in the
NOD support an association for T1-IFNs in T1D. One of the
most striking is the presence of a T1-IFN signature in NOD islets
prior to diabetes onset, reminiscent of the signature observed in
humans and BBDP rats (31). In 4- to 6-week-old NOD females,
T1-IFNs serve as one of the first distinctive signs of pathol-
ogy in these animals followed by lymphocytic infiltration and
synchronized elevation of activation markers in the islet tissue
(31). Elevated levels of IFNa and pDC in the pancreatic drain-
ing lymph nodes are also reported in 2- to 3-week-old NOD
mice (36). This argues that aberrant activation of pDCs, a DC
subset that specializes in T1-IFN production, may contribute to
the development of this signature, perhaps through ineffective
clearance of islet cell debris (36, 179, 180). Moreover, innate
sensing by TLRs represents an essential pathway for the stimula-
tion of T1-IFNs. Accordingly, ablation of MDA-5 (encoded by
Ifih1) in NOD mice results in protection from spontaneous T1D
development, while NOD mice carrying a single allele of MDA-5
experience slowed progression and reduced incidence (181).
MDA-5%~ animals also displayed protection from Coxsackie B4
virus-induced T1D when compared to MDA-5** littermates that
developed disease despite being able to efficiently clear the virus
(181). Further investigations have revealed that CB4 infection
of MDA-5%~ mice resulted in a transient increase in IFNp that
returned to baseline by 7 days postinfection, while IFNf levels
in MDA-5** mice remain consistently elevated after infection
(181). These data suggest that protective allotypes of MDA-5
may act in a similar manner to tightly regulate IFN produc-
tion while keeping antiviral defense mechanisms intact (181).
Accordingly, stimulation of TLR7, which recognizes ssRNA to
promote T1-IFN production, results in accelerated T1D onset in
NOD animals, whereas abrogation of TLR9 signaling, important
for the response to unmethylated DNA, retards progressive islet
destruction (182, 183). Inhibition of T1-IFN signaling through
the heterodimeric IFNAR has presented conflicted results.
Incidence in NOD and NOD.IFNAR1~'~ was indistinguishable,
however short-course administration of an IFNARI blocking
antibody to NOD animals 15-25 postpartum significantly
delayed the onset of diabetes (36, 184, 185). Recently, CRISPR-
Cas9 deletion of the IFNARI subunit in LEW.IWRI rats, a
newly described animal model for T1D, caused delayed onset
and frequency of Poly(I:C) induced diabetes (186, 187). Taken
together, these data support the idea that coordinated activa-
tion of T1-IFN is an early event in autoimmune diabetes but
its role in disease progression is likely heavily influenced by the
immune response to environmental cues and inheritance of
risk/resistance alleles in genes that impact T1-IFN production
or signaling.

Utilization of transgenic model systems during the late 20th
century provided strong evidence that T1-IFNs may act to accel-
erate diabetes pathogenesis. Overexpression of IFNa or IFNk in
pancreatic p cells of mice not normally prone to T1D leads to onset
of diabetes with severe insulitis, hypoinsulinemia, and diabetes
(35, 188). Transgenic mice expressing of IFN under the control
of the rat INS promoter display various phenotypes depending
on genetic background. For example, C57BL6/SJL mice with the
RIP-IEN( transgene do not develop overt diabetes, but display

mild hyperglycemia with decreased glucose-stimulated INS
secretion and impaired glucose tolerance characteristic of a pre-
diabetic state (34). However, overexpression of IFN in the islets
of other mouse strains that are not prone to developing T1D,
including the non-obese diabetes resistant, induced spontane-
ous diabetes development (34, 189). Moreover, NOD RIP-IFNf
mice had accelerated and fulminant onset of T1D (189). Taken
together, these data demonstrate that T1-IFNs can act as a spark
leading to autoimmunity but only in individuals that possess
an inherent risk for development of T1D. Further, these data
demonstrate that T1-IFNs in the islet microenvironment result
in deleterious effects on p cell function and viability by promot-
ing islet inflammation.

T1-IFNs ARE MAJOR PLAYERS IN T1D

Although T1-IFNs have been associated with the induction
of T1D and have been identified as a consistent component of
the islet autoinflammatory milieu, the direct impact of these
cytokines on the pancreatic f cell, cytotoxic T-lymphocytes, and
other cellular constituents within the islet that facilitate ongoing
isletautoimmunity have only recently been studied using human
systems (18, 19, 160, 190). The defining feature observed in T1D
is the hyper expression of MHC-I in the islets of patients with
T1D, suggesting enhanced f cell immunogenicity and increased
susceptibility for targeting by CTLs (1, 2, 18, 19, 190). T1-IFN
represent a likely candidate within the local microenvironment
capable of mediating this effect, as IFNo/p have been shown
to directly induce MHC expression on primary human islet
cells [Figure 2 and (21, 109)]. Recent findings by Marroqui
et al. demonstrate that IFNa induced HLA is dependent upon
canonical T1-IFN signaling, with TYK2, STAT2, and IRF9 being
critically required for induction of HLA class I (109). Another
notable finding within the islets of new onset T1D patients is
elevated levels of the chemoattractant, CXCL10 (191, 192).
Touted as a well-known ISG, CXCL10 is induced by IFNa in
primary human islets (109). Our laboratory has corroborated
these data, showing that exposure of primary islets to T1-IFN
results in significant increases in cell surface Class I HLA by flow
cytometry as well as increased mRNA expression of MHC-I and
CXCL10 by transcriptome analysis (193). Furthermore, we also
find upregulation of transcripts critically required for the MHC-I
antigen processing and presentation. Enhanced expression of
immunoproteasome subunits PSMB8 and PSMB9 (Figure 2)
along with proteasome activator subunits PSME1 and PSME2
by T1-IFN suggests an increased efficiency of peptide genera-
tion under conditions of inflammatory stress and ATP depletion
(194-196). Analysis of constituents of the peptide loading com-
plex following T1-IFN exposure reveal a significant increase
in TAP1, TAP2, TAPBP, chaperones, and the editing enzyme
ERAP1 suggesting increased transport, stable processing, and
loading of peptides onto MHC-I within the endoplasmic reticu-
lum (ER) [(196) and Figure 2]. Additionally, there is a global
augmentation of antigen processing and enhanced surface
MHC-I with functional reductions in f cell mass, as priming of
B cells with T1-IFN results in enhanced CTL-induced lysis by
chromium release assay [(193) and Figure 2].
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FIGURE 2 | Type 1 interferons (T1-IFNs) are a catastrophic feature of the islet microenvironment in type 1 diabetes (T1D). Based on previous literature and current
findings, T1-IFNs are consistently found in the islet autoinflammatory milieu and represent a viable signal that may precipitate diabetogenicity in T1D. With respect to
B cells, these cytokines can impair insulin secretory function, possibly through the induction of endoplasmic reticulum (ER) stress as well as by impairing
mitochondrial bioenergetics. Whole transcriptome analysis reveals decreased expression of genes involved in the regulation of ATP production and transport,
including ATP5A (1), SLC25A3 (2), and SLC25A5/6 (3). Reduction in these transcripts likely lead to decreases in the cytosolic ATP/ADP ratio (4) that is required for
glucose-stimulated insulin secretion by B cells (5). T1-IFNs also enhance the autoimmune surveillance of pancreatic p cells through induction of the
immunoproteasome (6), de novo synthesis of MHC class | and genes responsible for the peptide loading complex (7 and 8), as well as enhanced surface expression
of MHC class | (9). This increased capacity for antigen presentation results in a functional ability of cytotoxic CD8* T lymphocyte (CTL)-mediated f cell destruction,
which is further augmented by the ability of T1-IFN to amplify infiltrating CTL cytotoxic capacity through STAT4-induced granzyme B production (10 and 11).
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Two recent studies have noted the impact of IFNa on f cells.
Using IFNa both groups determined that this cytokine induced
the unfolded protein response (UPR) leading to ER stress.
However, neither publication reported negative impacts on 3
cell viability, suggesting that ER stress induced by IFNa did not
impact cell death, and there was no reported functional changes
(109, 110). While these two studies demonstrate increased
expression of markers that signal ER stress, the induction of this
response differed in timing and severity, which likely points to
differences in experimental design and methodology (109, 110).
Indeed, these reports utilized different culture conditions
including different media formulations as well as very different
time courses of study. For instance, Marroqui et al. revealed
an elevated expression of ATF3 and CHOP in primary human
islets following 24 h of IFN« (2,000 U/mL) exposure (109). The
study conducted by Lombardi and Tomer more widespread
induction of the UPR and also assessed INS secretory function
in primary human islets and EndoC-BH1 cells after 2 days of
exposure to 1,000 U/mL of IFNa. They detected no alterations
in glucose stimulated INS secretion, but did correlate the induc-
tion of ER stress with reductions in INS content, increased
proinsulin to INS ratio, in addition to reduced expression of
prohormone convertases, PC1, and PC2 (110). Although ER

stress has been a frequently hypothesized explanation for f cell
dysfunction in TID, the idea that IFNa elicits expression of
genes involved in the UPR presents a conundrum (197, 198).
Previous reports demonstrate that ER stress actually impairs
MHC-T expression. These differences in findings of these two
recent publications with the discordance of coexisting ER stress
and enhanced ER antigen processing highlight the need for a
greater understanding of how the numerous signals provoked
by T1-IFN alter the p cell in T1D (199-201). Further inspection
of metabolic pathways responsible for coordinating INS secre-
tion in P cells by transcriptome analysis revealed a decreased
expression ATP5A1, a subunit required for ATP production
by ATP synthase; decreased expression of adenine nucleotide
translocases 2 and 3 (SLC25A5 and SLC25A6), responsible for
regulating mitochondrial ATP export, and decreased expression
of the mitochondrial phosphate carrier, SLC25A3 [(193) and
Figure 2]. A reduction in these genes will likely have major
implications on regulation of glucose-stimulated secretion as
they directly alter ATP/ADP ratios that are required to trigger
islet cell depolarization that leads to release of INS secretory
granules.

Another very important component of the islet microenvi-
ronment is vascular endothelial cells that facilitate delivery of
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oxygen and enable the rapid exchange of nutrients and hormones
between the blood and the endocrine pancreas. These cells also
actas a barrier to intricately regulate trafficking and extravasation
of autoreactive immune cells into the islet microenvironment.
Several studies have shown that endothelial cells in and around
the islets display an activated phenotype that likely contributes to
increased homing and recruitment of autoreactive T cells (202).
Immunohistochemical studies examining endothelium within
the pancreata of recent onset patients with T1D reveal elevated
expression of ICAM-1 as well as hyperexpression of MHC-I and
-IT (83, 190, 203). Expression of these molecules has also been
associated with concomitant expression of IFNa (190). In line
with these studies, IFNa is known to directly induce MHC-I and
expression of ICAM-1 in endothelial cells, suggesting that these
cytokines may increase the capacity for antigen presentation
required for autoreactive CTLs to gain entry into the islet (204,
205). Additionally, human pancreatic islet endothelial cells are
able to be infected by coxsackievirus B resulting in the production
of IFNa, induction of adhesion molecules, and increased interac-
tion with immune cells (206). Mounting evidence suggest that the
crosstalk between P cells and the endothelium is important for
INS secretory function (207). However, more investigation into
the role of T1-IFNs in modulating this interaction is warranted.
It is well known that tissue microenvironments are key determi-
nants in driving local immune responses models of cancer and infec-
tious disease. While armed with the ability to modulate the innate and
adaptive arms of the immune system, the impact of T1-IEN within
the islet microenvironment has not been fully elucidated. Known to
contribute to T cell priming and activation through their effects on
DCs, T1-IFNs have been directly shown to mediate DC maturation
and migration even in the absence of PPR engagement (208, 209).
Specifically, they facilitate the metabolic switch from oxidative phos-
phorylation to glycolysis through regulation of the transcription fac-
tor HIF-1a, inducing the upregulation of MHC-I in these cells as well
as costimulatory molecules (208, 209). In the case of the autoimmune
diabetogenic microenvironment, the presence of T1-IFNs may act
to promote DC immunogenicity skewing toward proinflammatory
immune activation in addition to augmenting the function of islet
infiltrating immune cells, such as CD8" T cells. Studies completed in
our laboratory suggest that T1-IFN drastically augment cytotoxicity
elicited by human islet-reactive CTLs. Extensive characterization
of T1-IFN signaling mechanisms within these cells show that these
cytokines can induce a remarkably rapid acquisition of effector func-
tion through induction and direct binding of pSTAT4 to the promoter
of Granzyme B (Figure 2). In accordance with studies exhibiting full
acquisition of autoreactive CTL effector function within the pancreatic
microenvironment, these novel studies implicate T1-IFN as a putative
innate signal capable of driving CTL differentiation in the islet (106).

CONCLUSION AND MODEL DETAILING
HOW IFNa CAN WREAK HAVOC IN THE
DIABETIC MICROENVIRONMENT

Several determinants predict an individual’s susceptibility to
T1D. It is well appreciated that the immune system plays a
critical role in diminishing P cell mass, precipitating the onset

of persistent hyperglycemia. Critical to this destruction is
the presence of CD8" T cells within the diabetic microenvi-
ronment. These cells enter the pancreas where they directly
target and kill p cells through interactions of the TCR with
elevated MHC-I expression on f cells. Soluble factors, such
as T1-IFNs, act to promote islet autoimmunity. In addition
to being linked to the hallmark HLA class I hyper-expression
observed in islets of patients with T1D, T1-IFNs are also
well known for their wide-ranging effects including modula-
tion of innate and adaptive immune responses, especially in
T lymphocytes. However, until now, few studies to date have
focused on elucidating how T1-IFN signaling transforms the
islet to an environment that promotes diabetogenicity. The
work reviewed here demonstrates that T1-IFNs are stimuli
that promote dysfunction and increased visibility of target
cells alongside enhanced CTL effector function leading to
cell destruction.

Association of T1-IFN with T1D reported in previous stud-
ies together with our current findings makes a strong case that
these cytokines play some role in the complexity of the diabetes
puzzle (summarized in Figure 2). It is likely that a genetic pre-
disposition skewed toward dysfunctional T1-IFN responses
create an islet environment permissive to enhanced autoantigen
presentation, augmented human B cell-specific cytotoxicity by
autoreactive CTLs and resulting p cell dysfunction. While the
pleiotropic actions of T1-IFNs are designed to strengthen the
immune response to viral pathogens, this response proves detri-
mental in the case of autoimmunity where the immune response
is misdirected toward self and in this way can promote f cell death
in T1D.
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