
September 2017 | Volume 8 | Article 2391

Review
published: 27 September 2017

doi: 10.3389/fendo.2017.00239

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Carol F. Elias,  

University of Michigan,  
United States

Reviewed by: 
Paul B. Higgins,  

Independent Researcher,  
Kunming, China  

Andrei Adrian Tica,  
University of Medicine and 

Pharmacy of Craiova, Romania  
Manu Vatish,  

University of Oxford,  
United Kingdom

*Correspondence:
Carlos Salomon 

c.salomongallo@uq.edu.au

Specialty section: 
This article was submitted to 

Systems and Translational 
Endocrinology,  

a section of the journal  
Frontiers in Endocrinology

Received: 31 May 2017
Accepted: 30 August 2017

Published: 27 September 2017

Citation: 
Jayabalan N, Nair S, Nuzhat Z, 

Rice GE, Zuñiga FA, Sobrevia L, 
Leiva A, Sanhueza C, Gutiérrez JA, 

Lappas M, Freeman DJ and 
Salomon C (2017) Cross Talk 

between Adipose Tissue  
and Placenta in Obese and 

Gestational Diabetes Mellitus 
Pregnancies via Exosomes. 

Front. Endocrinol. 8:239. 
doi: 10.3389/fendo.2017.00239

Cross Talk between Adipose Tissue 
and Placenta in Obese and 
Gestational Diabetes Mellitus 
Pregnancies via exosomes
Nanthini Jayabalan1, Soumyalekshmi Nair1, Zarin Nuzhat1, Gregory E. Rice1,2,  
Felipe A. Zuñiga3, Luis Sobrevia5,6,7, Andrea Leiva5, Carlos Sanhueza5,  
Jaime Agustín Gutiérrez4,5, Martha Lappas8,9, Dilys Jane Freeman10  
and Carlos Salomon1,2,3,11*

1 Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal 
Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia, 2 Maternal-Fetal Medicine, 
Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States, 3 Faculty of 
Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile, 4Cellular 
Signaling and Differentiation Laboratory (CSDL), Medical Technology School, Health Sciences Faculty, Universidad San 
Sebastian, Santiago, Chile, 5 Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, 
Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile, 6 University of Queensland 
Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia, 
7 Faculty of Pharmacy, Department of Physiology, Universidad de Sevilla, Seville, Spain, 8 Obstetrics, Nutrition and 
Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia, 
9 Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia, 10 Institute of Cardiovascular and 
Medical Sciences, University of Glasgow, Glasgow, United Kingdom, 11 Mater Research Institute-University of Queensland, 
Translational Research Institute, Woolloongabba, QLD, Australia

Obesity is an important public health issue worldwide, where it is commonly associated 
with the development of metabolic disorders, especially insulin resistance (IR). Maternal 
obesity is associated with an increased risk of pregnancy complications, especially 
gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production 
and the maintenance of essential cellular functions. Excess energy storage is predomi-
nantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue 
acts as the body’s major energy reservoir. The role of adipose tissue, however, is not 
restricted to a “bag of fat.” The adipose tissue is an endocrine organ, secreting various 
adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid 
metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there 
is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced 
insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic com-
plications. Similar to adipose tissue, the placenta is also an endocrine organ. During 
pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. 
In addition, the placenta plays an important role in metabolism and exchange of nutrients 

Abbreviations: ADSC, adipose tissue-derived stem cells; BAT, brown adipose tissue; BMI, body mass index; C19MC, chromo-
some 19 miRNA cluster; ENPP-1, ectonucleotide pyrophosphatase phosphodiesterase-1; ESCRT, endosomal sorting complex 
required for transport; EVs, extracellular vesicles; EVT, extravillous trophoblasts; FA, fatty acid; FABP4, fatty acid binding 
protein 4; GDM, gestational diabetes mellitus; GLUT, glucose transporter; HIF, hypoxia-inducible factor; HSP, heat shock 
protein; IFN-γ, interferon-γ; IL, interleukin; IR, insulin resistance; miRNA, microRNA; MSC, mesenchymal stem cells; MVB, 
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PLAP, placental alkaline phosphatase; ST, syncytiotrophoblast; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis 
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between mother and fetus. Inflammation at the placenta may contribute to the severity 
of maternal IR and her likelihood of developing GDM and may also mediate the adverse 
consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin 
sensitivity and secretion of placental hormones have not shown a positive correlation 
between these phenomena. Recently, a great interest in the field of extracellular vesicles 
(EVs) has been observed in the literature. EVs are produced by a wide range of cells and 
are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent 
evidence points to an association between adipose tissue-derived EVs and metabolic 
syndrome in obesity. In this review, we will discuss the changes in human placenta and 
adipose tissue in GDM and obesity and summarize the findings regarding the role of 
adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and 
the contribution of obesity to the development of GDM.

Keywords: adipose tissue, extracellular vesicles, adipose tissue-derived exosomes, obesity, gestational diabetes

iNTRODUCTiON

Globally, the incidence of obesity has increased tremendously 
over the years and become a significant and challenging issue to 
be addressed (1). Obesity is defined as a body mass index (BMI) 
of ≥30  kg/m2. Obesity-related diseases and health problems 
are wide-ranging and pose a substantial threat to healthcare 
services. Cardiovascular diseases (CVD), stroke, high blood 
pressure, type 2 diabetes (T2D), and certain forms of cancers 
are among the harmful effects of obesity (2). According to the 
Centres for Disease Control and Prevention (CDC), between 
2011 and 2014 over 36% of adults were considered obese and the 
prevalence was much higher in women (38.3%) compared to men 
(34.3%). Obese women have a higher risk of obstetric complica-
tions, especially gestational diabetes mellitus (GDM) (3), with  
population-based studies demonstrating that approximately 50% 
of GDM cases are caused by obesity (4). GDM is characterized 
as hyperinsulinemia and hyperglycemia in the maternal systemic 
circulation during gestation (5). Globally, GDM affects approxi-
mately 9–15% of all pregnancies and Australia is no exception 
(6). Although gestational glucose intolerance returns to normal 
postnatally, women with a history of GDM have a greater risk 
of developing T2D later in life. In addition, their babies are at 
an increased risk of becoming overweight with serious metabolic 
problems in their adult life (7). In fact, a female child of a GDM 
mother faces a higher possibility of developing GDM during her 
subsequent confinement, and the cycle continues (8). The need 
for early diagnosis of GDM is pressing given that the oral glucose 
tolerance test is the only available gold standard to diagnose GDM 
at 24–28 weeks of pregnancy (9). However, GDM pathology is 
mostly only established by the second trimester of pregnancy, 
meaning that the potential to reverse this condition is limited 
(10). Thus, understanding its pathophysiology is important in 
optimizing a treatment plan and achieving an optimal outcome.

Adipose tissue plays an important role in the development 
of obesity and its related diseases. An increase in the number 
and size of adipocytes are among the changes that can be 
observed in obesity (11). Besides these histological changes, 

adipose tissue undergoes functional changes in obesity that 
include deregulated secretion of pro-inflammatory cytokines 
(“adipocytokines”) which contribute to the development of 
insulin resistance (IR) (12).

Recently, it has been shown that adipose tissue membrane-
derived vesicles termed EVs (13, 14) are produced. EVs have 
been extensively studied for their involvement in intercellular 
communication which usually occurs via the transfer of bioactive 
molecules, such as proteins, lipids, and RNAs, from their parent 
cells (15–18). Intercellular communication is an essential part 
of body processes and they allow for the proper coordination of 
biological functions as well as enabling the progression of various 
diseases. The role of adipose tissue EVs may, thus, contribute to 
the pathophysiology of GDM, particularly in those cases that are 
also complicated by obesity.

eXTRACeLLULAR veSiCLeS (evs)

Extracellular vesicles are membrane-derived vesicles, playing 
key roles in cell-to-cell communication and conveying molecu-
lar signals to cells at proximal as well as distal locations (19, 
20). Initially, EVs were regarded as “debris” generated by cells, 
however, substantial research in this area revealed that these 
membrane-derived vesicles interact with their target cells and 
perform crucial modulatory functions in their biological signal-
ing (21–23). EVs comprise a heterogeneous group of vesicles, 
classified on the basis of their origin, morphology and mode 
of release into the extracellular milieu. There are three major 
vesicle populations, namely apoptotic bodies, microvesicles 
(MV), and exosomes. Apoptotic bodies (0.8–5 µm in diameter) 
are released from cells undergoing programmed cell death (24). 
MVs (0.1–0.35  µm in diameter), also known as ectosomes, 
originate from external budding of the plasma membrane  
(25, 26). The main focus of the current review are the “exosomes” 
which are nano-sized vesicles (50–120 nm in diameter) formed 
from inward budding of late endosomal structures called multi-
vesicular bodies (MVB) and exocytosed via fusion of MVBs with 
the plasma membrane (26, 27). Exosomes are like “fingerprints,” 
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uniquely reflecting the phenotype of their parent cell. Emerging 
research reveals their key role in harmonizing and regulating 
molecular pathways in their recipient cells, shedding light on the 
pathophysiological mechanisms in various diseases. The initial 
biogenesis and release of these endocytic nano-sized vesicles 
are the initial and most critical steps in the exosome signaling 
pathway for exerting their biological functions in target cells.

exosomes Characteristics and Biogenesis
Exosomes are present in almost all biological fluids and have 
been isolated from a variety of these fluids as well as from cell 
culture media (28–39). Exosome isolation is an extensive area 
of research and can be performed by various methods, includ-
ing differential centrifugation, density gradient centrifugation, 
size exclusion chromatography, filtration, polymer-based pre-
cipitation, immunological separation, and isolation by sieving  
(40, 41). Each method has inherent advantages and disadvan-
tages depending on the downstream applications of the isolated 
exosomes (42–44).

Exosomes have been described as having a “cup-shaped” 
morphology in electron microscopy. In addition, exosomes 
equilibrate at densities between 1.13 and 1.19 g/ml on continuous 
sucrose gradients (39). Identification of exosome specific markers 
has a vital role in characterizing exosomes and differentiating 
them from other EVs. These markers are proteins that are spe-
cific to the endosomal pathway. These include proteins related 
to MVB biogenesis, such as Tsg101, Alix, and tetraspanins 
(CD-63, CD-9, and CD-81); membrane fusion proteins, such as 
RAB GTPases and Annexins; and signaling molecules, such as 
cell adhesion molecules, growth factor receptors, and heat shock 
protein (HSP)-70 and HSP-90 (45–47). The endosomal sorting 
complex required for the transport (ESCRT) pathway facilitates 
membrane remodeling and has been implicated in the formation 
of intraluminal vesicles (48). An ESCRT-independent pathway 
has also been described as MVBs can be produced in the absence 
of all four ESCRT complex subunits (49, 50). Finally, the release 
of exosomes to the extracellular milieu occurs by the fusion of 
the matured MVB with the plasma membrane, mediated by 
Rab GTPases (51, 52). Exosomes are enclosed by the phospho-
lipid bilayer of their parent cell and contain a small fraction of 
cytoplasm taken up from their cell of origin. Hence, exosomes 
are loaded with a wide variety of molecules, including proteins, 
RNAs, lipids, and fragments of genomic DNA (53–55) that are 
present in the parent cell. Exosomes, when released into the 
extracellular space, can act proximally but can also enter the cir-
culation and cross physiological barriers, eliciting their actions at 
distal locations (30, 56, 57). The biological function of exosomes 
relies primarily on the interaction between the exosome and its 
target cell.

exosome Signalling
In order to exert their biological functions, exosomes must 
be taken up and release their contents into the new host cells. 
Understanding of the mechanisms by which the signals are 
processed by target cells is still at its infancy. However, a number 
of key discoveries have been made that aid the understanding of 
exosome uptake and signaling in the target cells.

Endocytosis of exosomes is via the exosomal trafficking path-
way. The endocytosis process can occur via phagocytosis (58) or 
receptor and raft-mediated endocytosis (59, 60). The phagocy-
tosis mechanism occurs mainly in phagocytic cells. Feng et  al. 
(58) demonstrated that RAW 264.7 macrophages cells effectively 
internalized exosomes derived from K562 and MT4 cell lines. The 
internalization was actin-mediated and dependent on phosphati-
dylinositol 3-kinase (PI3K) and dynamin2. Similarly, Tian et al. 
(61) showed that pancreatic cancer cells internalized exosomes 
and the engulfed exosomes were shown to merge with endosomes 
of the recipient cell and potentially transported to neighboring 
cells (62).

By contrast, receptor-mediated endocytosis can occur via 
the classical or non-classical pathway. The former occurs via 
caveolin or clathrin membrane proteins. The exosomes derived 
from virus-infected cells were demonstrated to be internalized 
by target cells via caveolin-dependent endocytosis. Knockdown 
of the CAV1 gene lead to significantly reduced exosome uptake, 
proving caveolin-mediated endocytosis (63). Bone marrow-
derived mesenchymal stromal cells were shown to take up 
PC12 cell-derived exosomes via clathrin-mediated endocytosis 
and contributed to alterations in gene expression through the 
transfer of miR-21 (64). Similarly, an investigation of uptake of 
macrophage-derived exosomes by the BeWo cell line and human 
trophoblast cells showed that uptake is an endocytic process 
mediated by clathrin (62). In addition, the uptake of exosomes 
induced secretion of pro-inflammatory cytokines by the placental 
cells. This study demonstrates a change in placental phenotype 
induced by exosomes.

On the other hand, the non-classical endocytic uptake of 
exosomes can occur independent of membrane proteins. It has 
been reported that exosome uptake by glioblastoma cells occur 
via lipid raft-mediated endocytosis and is dependent on extracel-
lular signal-regulated kinase-1/2 and HSP27 (60).

Another form of exosome–cell interaction is the adhesion 
of exosomes to a potential docking site found on target cells. 
This mode of interaction is facilitated by the presence of trans-
membrane proteins on the surface of the exosomes. Dendritic 
cell-derived exosomes express intercellular adhesion molecule-1, 
major histocompatibility complex, and co-stimulatory molecules 
which enable the exosomes to interact with target cells via their 
respective signaling receptors (65–67).

By interacting with the recipient cells, exosomes potentially 
transfer their cargo which is capable of regulating the biologi-
cal function of the recipient cells. This then orchestrates diverse 
signaling pathways and mediates a broad range of physiological 
and pathological conditions. Cellular responses to the microen-
vironment have a decisive role in determining the concentration 
and content of exosomes. This has opened up new avenues for 
biomarker discovery and therapeutic interventions (68–70).

Trafficking of exosomes and exosomal 
MicroRNA (miRNA) between Cells
All cell types in the human body secrete exosomes, including 
adipose tissue, liver, pancreas, skeletal muscle and placenta dur-
ing pregnancy. Exosomes released from metabolically active cells 
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could effectively coordinate communication between tissues and 
initiate metabolic reprogramming in the end target organs. This 
represents a potential platform for the progression of metabolic 
disease.

Co-incubation of differentiated C2C12 (muscle cells) with 
exosomes isolated from C2C12 pre-treated with fatty acid (FA) 
induced alteration in the gene and proteins expressions in the 
muscle cells. This indicates that exosomes transfer the effects of 
FA between the muscle cells and this could disrupt homeostasis 
and lead to IR in muscle cells. In the same study, C2C12-derived 
exosomes were injected into mice and were found distributed in 
various tissues, including metabolic tissues (71).

By utilizing pancreatic cancer-derived exosomes, Wang et al. 
(72) demonstrated that the exosomes entered skeletal muscle 
cells, initiated lipidosis, and inhibited glucose uptake. In addition, 
the exosomes downregulated the insulin and PI3K/Akt signaling 
pathway and impaired the activity of their downstream target, 
glucose transporter (GLUT)4. In a reciprocal experiment, it was 
shown that exosomes isolated from skeletal muscle of high fat 
diet fed mice were taken up by MIN6B1 cells and mouse islets. 
The release of the exosomal miRNA changed the expression of 
mRNAs and genes of the MIN6B1 cells as well as inducing the 
proliferation of MIN6B1 and islets (73). This suggests that skeletal 
muscle-derived exosomes could potentially provoke IR in distant 
cells via exosomes.

Similarly, IR in muscle cells was observed after co-incubation 
with macrophages treated with adipose tissue-derived exosomes 
(74). This suggests that adipose tissue-derived exosomes could 
act as a mediator for the onset of metabolic disease. The studies 
reviewed here suggest that exosomes secreted by cells from meta-
bolic tissues can coordinate metabolism among tissues and be 
an effective initiator of the onset of metabolic disease, including 
diabetes and GDM during pregnancy.

Although exosomes contained a wide variety of molecules, 
miRNAs has been the center of attention mainly due to its role in 
regulating gene expression. The exosomal miRNAs are trafficked 
from their parent cells and the exosomal profile varies accord-
ing to the physiological conditions of their parent cells. The 
chromosome 19 miRNA cluster (C19MC) is a unique group of 
58 miRNAs exclusively expressed in the human placenta and in 
undifferentiated cells (75, 76). Growing evidence highlights the 
presence of these placental-specific miRNAs in exosomes (77, 
78). Luo et al. (79) demonstrated that release of C19MC miRNAs 
is via exosomes and one of the C19MC-encoded miRNA is 
involved in tumor necrosis factor (TNF)-α signal transduction. 
miRNA profiling of whole blood and blood-derived exosomes 
obtained from patients with metabolic syndrome detected simi-
lar expression of miR-17, miR-197, miR-509-5p, miR-92a, and 
miR-320a (80). However, the proportion of exosomal miRNAs is 
higher than that in their parent cells (81). Interestingly, the exo-
somal miRNA profile can differ from those of their parent cells 
(15). The analysis of liver tissue and exosomes (and MV) isolated 
from a non-alcoholic fatty liver disease (NAFLD) animal model 
showed enrichment of miR-122 and miR-192 in the vesicles and 
relative deficiency in the tissue (82).

Hence, the shuttling of miRNAs from parent cells to exosomes 
involves selective mechanisms. However, there is a paucity of data 

defining the selective compartmentalization of miRNAs into 
exosomes.

The Microenvironment Modulates 
exosome Profile
Although exosomes are produced from cells in a constitutive 
manner, pathophysiological conditions and stress can modulate 
exosome biogenesis and release. Recent research provides insight 
into the selective sorting of proteins and miRNAs into exosomes 
in conditions of physiological change or pathological stimuli, 
leading to modification of exosome proteome and RNA profile 
and, thus, mirroring the microenvironment in the parent cell 
(83–85).

Hypoxia or low oxygen tension is a stress-induced physiologi-
cal condition and a classical phenotype in several diseases, such 
as ischemic CVD, malignancies of diverse origins, obesity, preec-
lampsia, and physiological challenges such as pregnancy. Hypoxia 
induces the activation of hypoxia-inducible factor (HIF) which is 
a key mediator in the cellular adaptation to low oxygen concen-
trations. HIF, a major modulator of exosome biogenesis and HIF-
mediated intercellular exosome signaling, has been identified in 
a vast array of physiological and pathological conditions (86, 87). 
Increased endothelial cell migration and angiogenesis is central 
to the cellular hypoxic response. Increasing evidence suggests 
the potential relevance of exosomes in mediating these vascular 
changes. Angiogenic ability has been attributed to exosomes 
derived from aggressive tumors.

The crucial role of exosomes in remodeling the hypoxia-
induced tumor microenvironment has been well elucidated 
(85, 88–91). Hypoxic tumor exosomes are loaded with unique 
proteins and have an enhanced capacity for invasiveness, 
stemness, and tumor progression (87, 92). Hypoxia-induced 
endothelial dysfunction, a major driver of cardiac disease, is 
mediated by exosomes (93, 94). During pregnancy, hypoxia 
triggered exosome signaling increases placental vasculogenesis 
and augments cytotrophoblastic invasiveness and proliferation 
as adaptive mechanisms to protect the fetus from oxidative 
stress (95, 96). In addition, in metabolic disorders such as 
obesity, exosomes derived from hypoxic adipocytes show an 
enrichment of lipogenic proteins modulating lipogenic path-
ways in neighboring adipocytes and pre-adipocytes, thereby 
transferring characteristics of adipocyte dysfunction (97).

In addition to oxygen tension, the biogenesis and release of 
exosomes is also affected by glucose concentration. Investigation 
of the effects of glucose on exosome release showed elevated 
number of exosomes from trophoblast cells cultured under 
both high and low glucose concentration (98, 99). Furthermore, 
the released exosomes induced secretion of pro-inflammatory 
cytokines from endothelial cells (99). This mechanism potentially 
mediates the maternal pro-inflammatory profile seen in pregnan-
cies with glucose intolerance. Comparison analysis of plasma 
exosomal miRNA showed upregulation of miR-326 in diabetic 
patients compared to controls and this increase negatively cor-
related with its target, adiponectin (100).

However, the exact mechanism of these alterations in exo-
some biogenesis and of exosomal miRNA profile under different 
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extracellular glucose concentration is not completely understood. 
The current body of data suggests that changes in intracellular 
Ca2+ concentration may play a vital role in membrane traffick-
ing, fusion, and retrieval and has intriguing roles in modulating 
exosome release in response to extracellular glucose (101–103).

THe HUMAN PLACeNTA

A healthy pregnancy outcome is highly reliant on tight physi-
ological regulation that is largely orchestrated by an extremely 
complex and multifunctional materno-fetal organ, the placenta 
(104). The human placenta is made up of trophoblast cells specifi-
cally the cytotrophoblast, syncytiotrophoblast (ST), and extravil-
lous trophoblast (EVT). The ST cells are in direct contact with the 
maternal circulation (105). Meanwhile, EVT are a specific type 
of cells with a high invasive capacity; these cells migrate to the 
maternal tissue to remodel the uterine spiral arteries (106).

The placenta is a highly multifunctional organ. It regulates the 
exchange of respiratory gases, provides protection for the fetus 
against maternal immunity, and removes carbon dioxide and 
excretions from the fetus through the mother. Furthermore, the 
human placenta acts as a nutrient sensor, controlling maternal– 
fetal nutrient transport (107, 108). It detects maternal–fetal 
nutrient status and alters nutrient transporter capacity to align to 
fetal growth and nutrient requirements (109, 110). In addition, 
the placenta is a transient endocrine organ secreting various 
hormones and cytokines that can directly affect both maternal 
and fetal metabolism.

Placenta in Obesity
Cytokines and hormones play major roles in the initiation and 
preservation of pregnancy. However, the endocrine functions 
of placenta are greatly affected by maternal obesity. Maternal 
metainflammation produces signals opposing the normal regu-
latory functions of the placenta and contributes to the adverse 
outcomes observed in obese pregnant mothers. The increase in 
maternal BMI has been positively correlated with an increase in 
placental weight (111). A population-based study showed that 
obese pregnant women had higher placental weight with higher 
plasma glucose and leptin than their non-obese counterparts at 
term (112).

Obese pregnancies have a dysregulated maternal cytokine 
profile with a significant rise in pro-inflammatory cytokines 
(113, 114). In addition to changes in the plasma, changes to the 
inflammatory profile of the placenta are also observed in obese 
pregnancies. An increase in TNF-α turnover in obesity is a well-
known phenomenon. Similarly, reports of a significant elevation 
of TNF-α in the circulation and placenta of obese mothers are 
consistent (115–119). The placental production of leptin leads 
to maternal hyperleptinemia with downregulation of placental 
leptin receptors and resultant leptin resistance in obese mothers 
(120–122). The analysis of placentae from obese mothers also 
showed increases in other pro-inflammatory cytokines, such as 
interleukin (IL)-1β and IL-6 (115, 117). A sequencing study of 
placental RNA highlighted that levels of IL-12Rβ2, IL-21R, and 
CX3CR1 were increased while IL-R1, IL-1RAP, CXCR1, CXCR2, 
CCR3, and ADIPOR1 gene were decreased in placentae of obese 
women (123).

As a whole, obesity in pregnancy has profound effects, 
causing systemic inflammation. The increase in circulating 
pro-inflammatory cytokines from adipose tissue may provoke 
increased inflammatory cytokines secretion by the placenta and 
alter placental function. The obesity associated with GDM may 
have similar or enhanced negative consequences for the placenta.

Placenta in GDM
Pathologically, GDM is characterized by the onset of glucose 
intolerance of variable severity that is first recognized during 
pregnancy (124) and a fasting glycemia level ≥92 mg/ml (125). 
An increase in IR is commonly due to changes in pregnancy-
related hormones that occur during early gestation (126). The 
mother’s inability to secrete sufficient insulin to counteract the 
IR induced by the gluconeogenic placental hormones may cause 
the development of GDM (127).

The human placenta is at the materno–fetal interface. Due to 
its position, the placenta is greatly exposed to various adverse 
intrauterine conditions and can easily be affected by any changes 
in its milleu. Glucose is the primary placental energy substrate. 
Materno–fetal glucose exchange is vital for fetal survival and 
is observed throughout pregnancy. The gestational changes in 
maternal glucose metabolism and increased blood glucose level 
reflect the maternal metabolic adaptations to fulfill the nutrition 
requirements of the developing fetus. However, this phenomenon 
is exacerbated in GDM.

The hyperglycemic condition affects trans-placental glucose 
transport and dysregulation of GLUT activity. In GDM preg-
nancies, the expression of GLUT1 at the basal membrane was 
increased twofold with a 40% increase in glucose uptake (128). 
GLUT1 and mTOR signaling were significantly increased in 
placentae from GDM pregnancies when compared to normal 
pregnancies. Interestingly, these changes were associated with a 
50% reduction in mitochondrial respiration in trophoblast cells 
isolated from GDM placentae when compared to the control (i.e., 
cells from normal placentae) (129). Similarly, utilizing GDM 
placental explants, a study demonstrated a twofold to threefold 
increase in glucose uptake (130).

Interestingly, the overexpression of pro-inflammatory cyto-
kines seen in obesity is also observable in GDM placenta. The 
prominent increase in TNF-α seen in obese pregnancies has also 
been observed in the maternal circulation and placenta in GDM. 
The overexpression of TNF-α in GDM placenta is associated with 
increased fetal adiposity (131, 132). Similarly, Kuzmicki et  al. 
(133) and Lepercq et  al. (131) reported an increased IL-8 and 
leptin expression in GDM placenta, respectively.

The current body of literature suggests that maternal inflam-
mation leads to the over-production of inflammatory cytokines 
by the placenta that would normally be expressed at significantly 
lower levels in healthy pregnancies. It is proposed that this 
enhanced inflammation is associated with the metabolic changes 
seen in GDM pregnancies. Although these data demonstrate an 
interaction between maternal obesity and the development of 
GDM, strikingly, the underlying mechanism that could explain 
why obesity-associated inflammation is transferred or enhanced 
in obese-GDM placenta is not understood. Therefore, it can be 
postulated that other factors mediate the development of GDM 
by influencing placental function.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABLe 1 | Summary of studies of EVs derived from placental experimental designs.

ev types Sample types isolation method Findings Reference

Exosomes Plasma Centrifugation miRNAs are released via exosomes Luo et al. (79)

STMB Plasma Centrifugation Presence of high level of EVs in late onset preeclampsia Dragovic et al. (142)

Exosomes Plasma Centrifugation + density 
gradient

Placental exosomes increase from 6 to 12 weeks Sarker et al. (135)

Exosomes Plasma Centrifugation + density 
gradient

Presence of high levels of placental exosomes in preeclampsia Pillay et al. (232)

Exosomes Plasma Centrifugation + density 
gradient

Exosome profile changes with gestation change Salomon et al. (137)

STBM Plasma Time-resolved 
fluoroimmunoassay

STBM increase in preeclampsia Knight et al. (233)

Exosomes Plasma Centrifugation + density 
gradient

Presence of high levels of placental exosomes in GDM Salomon et al. (144)

Exosomes Plasma Centrifugation + density 
gradient

Exosome concentration increases with maternal BMI and induce 
the release of cytokines from the endothelial cells

Elfeky et al. (145)

EVs Primary trophoblast cells Centrifugation Protein and mRNA profile varies between different classes of EVs 
and possess antiviral activity

Ouyang et al. (136)

Exosomes Primary trophoblast cells and 
villous explant

Centrifugation + density 
gradient

Exosomes modulate maternal immune response Kshirsagar et al. (140)

Exosomes Villous explants Centrifugation + density 
gradient

Exosomes modulate trophoblast syncytium formation Tolosa et al. (141)
Primary trophoblast cells and 
BeWo cells

Exosomes Primary trophoblast cells Centrifugation + density 
gradient

Hyperglycemia induces release of exosomes and alters their 
bioctivity

Rice et al. (99)

Exosomes Primary trophoblast cells Centrifugation + density 
gradient

Under hypoxia exosomes mediate trophoblast migration Salomon et al. (95)

Exosomes Primary trophoblast cells Centrifugation + density 
gradient

C19MC is the predominant miRNA species from placenta Donker et al. (76)
JEG-3
BeWo

Exosomes BeWo cells Centrifugation + density 
gradient

Differential expression of C19MC in GDM Almohammadi et al. (78)

STBM Villous explant Ultracentrifugation Protein profile is different in preeclampsia Baig et al. (234)

STBEV Dual placental perfusion Ultracentrifugation Platelet activating ability of EVs in preeclamsia Tannetta et al. (235)

STBM Primary syncytiotrophoblast cells Ultracentrifugation Pro-inflammatory and anti-angiogenic activity of MVs in 
preeclampsia

Tannetta et al. (236)
Dual placenta perfusion system

STBM Dual placenta perfusion system Ultracentrifugation Differential expression and pro-inflammatory activity of MV 
proteins in preeclampsia

Tannetta et al. (237)

STBEV Dual placenta lobe perfusion 
model

Ultracentrifugation Differential enrichment of EVs from placental perfusate Dragovic et al. (41)

STBM Dual placenta perfusion system Ultracentrifugation Cell-free fetal hemoglobin can change miRNA profile in STBM Cronqvist et al. (238)

STMB, syncytiotrophoblast-derived vesicles; EVs, extracellular vesicles; STBEV, syctiotrophoblast-derived extracellular vesicles; MV, microvesicles; GDM, gestational diabetes 
mellitus.
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Placental exosomes in Understanding 
Pregnancy Pathologies
Besides secreting hormones and cytokines, the placenta extrudes 
large quantities of EVs (Table 1) constitutively throughout gesta-
tion originating mainly from the syncytiotrophoblastic layer 
(134, 135). EVs, especially exosomes, are packed with a vast rep-
ertoire of proteins, miRNAs and phospholipids that play crucial 
roles in maintaining feto–maternal communication for healthy 
pregnancy outcomes (136). These exosomes can be identified 
through their molecular features. In particular, human placental 
alkaline phosphatase (PLAP) is an allosteric enzyme synthesized 

in the placenta. Exosomes isolated from the circulation of preg-
nant women carried PLAP on their membranes; hence, a PLAP+ 
phenotype can be used to identify placental origin (137, 138).

Maternal plasma is an excellent source for placenta-derived 
exosomes with their appearance reported as early as 6  weeks 
of gestation (138, 139) with concentrations varying in accord-
ance with the stage of gestation (135, 137, 138). The presence 
of immune molecules such as HLA-G and B7 family in PLAP+ 
exosomes demonstrates their role in maternal immunomodula-
tion. This counteracts allograft rejection of the fetus and sustains 
cellular adaptation in the face of the physiological changes 
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associated with pregnancy (136, 140). Placenta-derived exosomes 
carry Synctin-1 that mediates trophoblastic syncytialisation (141) 
and regulates endothelial cell migration, thereby sculpting the 
maternal–fetal circulation (137). Thus, the involvement of PLAP+ 
exosomes in various processes, such as immunomodulation and 
vascular changes, can explain their several fold increase in the 
early stages of pregnancy (137). In general, the concentration 
of EVs is higher in pregnancy compared to non-pregnant states 
(142). Furthermore, the concentration of EVs varies in the pres-
ence of pathophysiological conditions such as preeclampsia (143) 
and GDM (144). Recent evidence suggests that individuals with 
GDM, in particular, may have a distinct exosomal profile when 
compared to those from healthy pregnancies. The total number 
of exosomes in maternal plasma between 11 and 14  weeks of 
gestation is up to twofold greater in women who later developed 
GDM (diagnosis at 22–28 weeks) compared to those who had a 
normoglycaemic pregnancy (144).

In GDM, an environment of hyperglycemic and oxidative 
stress induces exosome release (99). Interestingly, the elevation 
in total exosome concentration in maternal plasma significantly 
correlates with maternal BMI, whereas the ratio of PLAP+ to total 
exosome number decreases with higher maternal BMI across ges-
tation (145). In GDM, the augmentation in exosome numbers is 
due to an increase in total exosomes other than PLAP+ exosomes 
(144). However, the source of these extra circulating exosomes 
present in obese and GDM mothers remains unknown.

Hypoxia and elevated glucose concentrations are the hallmarks 
of GDM, and this alters the exosome profile and bioactivity. 
Cytotrophoblasts cultured under different oxygen tensions (1, 3, 
and 8%) showed an increased production of exosomes under low 
oxygen tension (1%), which promoted increased invasion and 
proliferation of the cells (95). Co-incubation of exosomes with 
endothelial cells in  vitro upregulated the cellular secretion of 
cytokines. Plasma exosomes isolated from obese and GDM sub-
jects induced the secretion of pro-inflammatory cytokines from 
endothelial cells from normal and lean pregnancies (144, 145). 
These findings provide some interesting insights into the role of 
exosomes in the inflammatory phenomena typically associated 
with GDM.

Exosomal-mediated miRNA signaling is another fascinating 
scenario of feto-maternal communication, absolutely essential 
to maintain the physiological and metabolic harmony between 
the mother and fetus (79). The dysregulated expression of 
placental-specific C19MC miRNAs is associated with pathologi-
cal pregnancies including GDM (146–148). Consistent with this, 
an increase in the expression of C19MC miRNAs in placental 
exosomes in the presence of high extracellular glucose was 
reported (78). Therefore, exosomal miRNA may potentially be 
involved in placental–maternal signaling.

ADiPOSe TiSSUe

Adipose tissue is an inert connective tissue comprised primarily 
of adipocytes which functions as a fat reservoir. There are two 
types of adipose tissue, white adipose tissue (WAT) and brown 
adipose tissue (BAT). Fats are stored as triglycerides and released 
as free FA whenever the body requires energy. Despite functional 

differences, the formation of both WAT and BAT is regulated 
by the process of adipogenesis, which can be divided into two 
phases. First, this involves the commitment of mesenchymal stem 
cells (MSC) to becoming preadipocytes followed by the terminal 
differentiation of preadipocytes into adipocytes (149–152).

Brown adipose tissue is made up of multilocular thermogenic 
brown adipocytes. The enrichment of iron containing mitochon-
dria and high expression of Uncoupling Protein 1 provides for 
the thermogenic role of BAT (153). BAT is abundantly present in 
infants and recent reports demonstrate the presence of function-
ally relevant BAT in adults (154–156). Interestingly, a high level of 
BAT activity was associated with low BMI (157, 158). This reflects 
the probable involvement of BAT in energy metabolism, which is 
seemingly higher in lean individuals.

On the other hand, WAT is made up of unilocular white adi-
pocytes each containing a single lipid droplet. Besides adipocytes, 
WAT also comprises stromal cells such as preadipocytes, fibro-
blasts, macrophages, and endothelial cells (159, 160). Importantly, 
WAT is involved in energy storage and there are different depots 
based on its location in the body. Adipose tissue located beneath 
the skin is known as the subcutaneous adipose tissue, while vis-
ceral adipose tissue (VAT) refers to the fat surrounding internal 
organs. The link between obesity and metabolic disease is most 
commonly observed with accumulation of VAT.

Besides its function as a thermal regulator and fat-storage 
site, adipose tissue is the largest endocrine organ and regulates 
homeostasis by coordinating intercellular communication with 
other body systems. Adipose tissue readily modulates various 
biological functions by producing an array of bioactive peptides 
known as adipocytokines, which are capable of exerting various 
metabolic effects including those on glucose and lipid metabo-
lism (161–163).

The discovery of leptin gives adipose tissue the status of an 
endocrine organ. Leptin, the “satiety hormone,” has anorexigenic 
effects and acts on food intake and fat mass. Leptin, which is 
involved in energy metabolism, significantly increases in obesity 
and is present in its free form (164, 165). Adiponectin is an adi-
pose tissue-specific adipokine (166) and is well known for its role 
in energy homeostasis as well as anti-obesity, anti-inflammatory, 
and anti-diabetic properties (167–169). Adiponectin promotes 
glucose utilization and fatty acid oxidation (FAO), which 
enhances insulin sensitivity (170, 171). Activation of the AMP-
activated protein kinase signaling pathway by adiponectin acts as 
a central regulator of glucose and lipid metabolism (170).

The imbalance between energy intake and expenditure leads 
to expansion of adipose tissue. The two possible growth mecha-
nisms are hyperplasia and hypertrophy (172). The hyperplastic 
expansion generates new adipocytes. Meanwhile, hypertrophy 
beings about an increase in the size of adipocytes (173, 174). 
The finding that significant weight loss in humans is marked by 
a reduction in adipocyte volume but not number suggests that 
adipose tissue hypertrophy is strongly associated with obesity.

ADiPOSe TiSSUe iN OBeSiTY

Obesity is associated with inflammation, elicited by metabolites 
which lead to systemic IR. This pro-inflammatory environment 
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in obesity, known as “metainflammation,” (metabolically induced 
inflammation) is associated with a reduced metabolic rate, 
maintained by adipose tissue (175). The adipose tissue of obese 
individuals is known to comprise a greater fraction of fat as the 
adipose tissue has the ability to adapt to the nutrient environment 
and store excess energy.

The hypertrophic expansion of adipocytes causes dysregula-
tion of cytokine secretion and is responsible for the low-grade 
inflammation and several comorbidities seen alongside obesity. 
In obese individuals, the production of adiponectin decreases 
with an expansion of the adipose tissues (176). This has been 
attributed to the failure of transcriptional regulation (177). 
Hypermethylation of the adiponectin promoter induced by DNA 
methyltransferase-1 is ascribed to the hypoadiponectinemia 
seen in obesity (178). The decreased expression of adiponectin 
is seen in conjunction with effects on glucose metabolism and an 
increase in IR (176, 179). Besides adiponectin, the expression of 
adiponectin receptors, ApoR1 and ApoR2, is reduced in obesity, 
hence enhancing IR (180, 181). Similarly, the abnormal produc-
tion of leptin in obesity leads to leptin resistance and supresses 
insulin-stimulated glucose metabolism (182).

In addition, hypertrophic adipocytes secrete elevated amounts 
of pro-inflammatory cytokines such as TNF-α, IL-6, IL-8, and 
monocyte chemoattractant protein (MCP) (183–185). The 
increased secretion of pro-inflammatory cytokines and the rela-
tive hypoxia and cell death promoted by hypertrophic adipocytes 
promotes a high infiltration rate of monocytes into visceral 
adipose tissue and activation of macrophages (186). Overall, the 
increase in release of pro-inflammatory cytokines and infiltration 
of macrophages leads to development of IR (187).

Adipocytokines are known to regulate cellular signaling in 
various tissues through endocrine mechanisms. However, there 
is lack of a positive correlation between BMI, adipocytokines, 
and the development of diabetes in obese pregnancies. In order 
to further understand these interrelationships, it is necessary to 
interrogate the potential involvement of adipose tissue-derived 
exosomes in overall glucose regulation.

Adipose Tissue in GDM
Maternal body fat mass increases throughout the pregnancy, 
with accumulation of fat observed on the trunk (188, 189). 
During pregnancy, appropriate expansion of adipose tissue is 
vital in order to support nutrient supply to the fetus. However, 
the hypertrophic growth of adipose tissue is closely associated 
with metabolic abnormalities and IR (190–192). The ectonu-
cleotide pyrophosphate phosphodiesterase-1 (ENPP-1) is a 
protein known to induce adipocyte IR. In a recent study, it was 
demonstrated that adipose tissue from obese patients with GDM 
expresses high level of ENPP-1 that correlates with the expres-
sion of GLUT4 and with insulin receptor substrate-1 serine 
phosphorylation (193).

Hypertrophy of adipocytes in adipose tissue can impair the 
functions of adipose tissue, overall. Hypertrophic adipose tis-
sue is associated with excess amount of adiposity and results 
in a dysregulated secretory profile (194). A higher level of pro-
inflammatory cytokines, especially TNF-α and IL-6 has been 
reported in obese pregnancies (195, 196). The abnormal secretion 

of adipocytokines is implicated as an essential factor in the devel-
opment of GDM (197, 198).

Studies to date are suggesting that the relationship between 
hypertrophic growth of adipose tissue and inflammation is a piv-
otal factor that causes IR. However, the underlying mechanism by 
which these adipocytokines affect GDM is not fully understood. 
While our current understanding of GDM is limited to inflamma-
tion induced by adipocytokines, a wide variety of adipose tissue 
functions may be regulated by adipose tissue-derived exosomes. 
Therefore, the involvement of adipose tissue-derived exosomes in 
the development in GDM is possible and understanding of this 
mechanism is essential.

Adipose Tissue-Derived exosomes
In addition to soluble factors, exosomes are also involved in vari-
ous functions of adipose tissue (Table 2). Adipose tissue-derived 
exosomes have been isolated from culture medium of adipose 
tissue, adipocytes, and adipose tissue-derived stem cells (ADSC) 
(74, 199–202). A recent study demonstrated that both 3T3-L1 
adipocytes and primary adipocytes secrete large proportions of 
exosomes (203). In addition, exosomes secreted by adipocytes were 
reported to be more abundant compared to exosomes secreted by 
melanoma cells (204). This suggests the probable participation of 
adipose tissue/adipocyte-derived exosomes in various biological 
functions.

Although most studies report adipose tissue-derived exo-
somes within the proposed size range of exosomes (203, 205),  
Katsuda et  al. (206) reported ADSC-derived exosomes that 
were larger. This indicates that the size range of the exosomes 
may differ based on the cellular source of isolation. In addition 
to the identification of exosomal markers, adipose tissue-derived 
exosomes can be characterized based on the presence of adipose 
tissue-specific markers, such as fatty acid binding protein 4 
(FABP4; adipocyte differentiation marker) and adiponectin 
(205, 207, 208).

Interestingly, the characterization of exosomes released pre-  
and post-adipogenesis showed differences in the protein con-
tent. Pref-1 and FABP4 were decreased while adiponectin was 
increased in the post-adipogenesis exosomes. However, there 
were no changes in the exosomal markers, such as CD9, CD63, 
TSG101, and Alix (13). This shows that proteins, which are com-
monly used for bio-marking exosomes, can be used to identify 
the adipose tissue-derived exosomes.

The release of exosomes has been reported to vary depending 
on body weight. The concentration of exosomes differs between 
adipose tissue from lean and obese individuals. The quantifica-
tion of exosomes isolated from subcutaneous and omental 
ADSC of lean and obese donors showed that ADSC from obese 
individuals secretes higher concentrations of exosomes (202). 
Similarly, the primary adipocytes of obese animals secreted more 
exosomes when compared to lean animals (204). Surprisingly, 
exosomes isolated from adipose tissue explants derived from 
lean and obese individuals showed a higher number of exosomes 
released by lean adipose tissue (205). The secretion of a higher 
amount of exosomes by lean adipose tissue may be attributed 
to the fact that there is a higher number of adipocytes in lean 
adipose tissue. However, a larger proportion of adipose tissue in 
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TABLe 2 | Summary of studies of EVs derived from adipose tissue.

evs Source isolation method Findings Reference

Exosomes Ad-MSC Centrifugation The exosomes showed inhibitory effect in the differentiation and activation of 
T cells and reduced the proliferation and IFN-γ release

Blazquez  
et al. (220)

Exosomes Ad-MSC Not specified Graft-versus-host disease patients treated with the exosomes showed 
reduction in the symptoms

Ludwig et al. (221)

Exosomes Primary culture of 
rat adipocytes

Centrifugation + filtration A total of 509 proteins were identified, some of which are known to express in 
the adipocytes.Comparison of the exosomes derived from obese diabetic and 
obese non-diabetic showed differential expression of 200 proteins

Lee et al. (215)

Exosomes and 
microvesicles

Ad-MSC Centrifugation Comparison between MSCs and EVs showed a total of 128 proteins were 
selectively enriched in the EVs

Eirin et al. (213)

Exosomes and 
microvesicles

Ad-MSC Centrifugation Comparison between MSC and EVs showed enrichment of 4 miRNAs, 255 
mRNAs, and 277 proteins enriched in EVs

Eirin et al. (214)

Exosomes Human adipose 
tissue

Centrifugation The exosomes are capable of impairing insulin signaling in the end target 
organ depending on the contents

Kranendonk  
et al. (207)

Exosomes and 
microvesicles

3T3-L1 cells Centrifugation The concentration of EVs was higher, pre-adipogenesis and the exosomal 
proteins content differ between pre- and post-adipogenesis EVs

Connolly et al. (13)

Exosomes Mice visceral 
adipose tissue

Centrifugation + density 
gradient

The exosomes released from obese adipose tissue induced the differentiation 
of monocytes to macrophages and development of insulin resistance in lean 
mice

Deng et al. (74)

Exosomes Ad-MSC Centrifugation The exosomes promoted migration and upregulation of cancer-related 
signaling pathways in MCF7

Lin et al. (201)

Exosomes 3T3-L1 Commercial kit The exosomes reduced the accumulation of mHtt aggregates, improved 
mitochondrial dysfunction, and increased the survival of the cells

Lee et al. (217)

Exosomes and 
microvesicles

3T3-L1 Centrifugation Perilipin A is enriched in adipocyte-derived EVs, especially from obese 
adipocytes. The expression decreased with reduced calorie diet intervention

Eguchi et al. (212)
Primary culture of 
rat adipocytes
Plasma

Exosomes 3T3-F442A Centrifugation + density 
gradient

The exosomes promoted the migration of the tumor cells through fatty acid 
oxidation

Lazar et al. (204)
Mice adipose tissue

Exosomes and 
microvesicles

Ad-MSC Filtration + centrifugation The EVs decreased the apoptosis of the neuronal cells and increased 
remyelination and activation of neuroglial precursors

Farinazzo  
et al. (218)

Exosomes Ad-stromal cells Commercial kit The exosomes protected the NSC-34 cells from oxidative damage and 
increased their survival

Bonafede  
et al. (219)

Exosomes Ad-MSC Commercial kit The miR-122 in the exosomes increased the sensitivity of the hepatocellular 
carcinoma cells to chemotherapeutic agents

Lou et al. (18)

Exosomes Human adipose 
tissue 

Commercial kit The miRNAs were differentially expressed between lean and obese exosomes 
and the obese exosomes induced TGF-β pathway dysregulation in HepG2 
cells

Koeck et al. (200)

Exosomes SGBS Centrifugation + density 
gradient

The exosomes differentiated the monocytes into macrophages. The 
macrophages pre-treated with exosomes from adipose tissue inhibited Akt-
phosphorylation and insulin resistance in adipocytes

Kranendonk  
et al. (222)Human adipose 

tissue 

Exosomes Human adipose 
tissue

Commercial kit The exosomes from obese adipose tissue suppressed the phosphorylation of 
Akt in both lean and obese skeletal muscle

Park et al. (14)

Exosomes Human adipose 
tissue

Commercial kit Differentially expressed miRNAs between lean and obese adipose-derived 
exosomes targets the TGF-β signaling and Wnt/β-catenin signaling pathways

Ferrante et al. (205)

Exosomes Urine Not specified The exosomes contained mRNAs targeting the TGF-β signaling which is 
associated with airway remodeling

Epstein et al. (228)
Serum 

Exosomes Plasma Commercial kit The miRNA profile of exosomes changed subsequent to gastric bypass and 
improved the insulin resistance

Hubal et al. (229)
Serum 

Exosomes 3T3-L1 Centrifugation + filtration The hypoxic adipocyte-derived exosomes showed altered expression and 
increased secretion of proteins compared to normal adipocyte-derived 
exosomes

Sano et al. (97)

Ad-MSC, adipose tissue-derived mesenchymal stem cell; EVs, extracellular vesicles; MSC, mesenchymal stem cells; 3T3-L1, preadipocyte cell line; MCF-7, human breast 
adenocarcinoma cell line; mHtt, mutant Huntington protein; 3T3-F442A, preadipocyte cell line; Ad-stromal cells, adipose tissue-derived stromal cells; NSC-34, motor neuron-like 
cells; HepG2, human liver cancer cell line; SGBS, Simpson–Golabi–Behmel syndrome preadipocyte cell strain.
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obese individuals may explain the isolation of higher number of 
exosomes from obese individuals (205). In addition, the release of 
adipose tissue-derived exosomes is influenced by the extracellular 
milieu. Adipose tissue hypoxia is one of the dysfunctional pro-
cesses seen in adipose hypertrophy which can cause dysregulated 
secretion of adipocytokines (209). 3T3-L1 adipocytes cultured 
under hypoxic conditions released a higher amount of exosomes 
(97). Thus, the nature or condition of their parent cell determines 
exosome secretion.

Composition of Adipose Tissue-Derived Exosomes
The contents of adipose tissue-derived exosomes are similar to 
their parent cell. The characterization of adipose tissue-derived 
exosomes demonstrated the presence of various adipocytokines, 
such as adiponectin, leptin, resistin, TNF-α, and various ILs 
that can be found in the adipose tissue (210). Adipose tissue-
derived exosomes are also enriched with enzymes, such as 
acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, 
FA synthase, and lipids (13, 97, 211). Interestingly, the levels 
of these enzymes were found to be upregulated in obesity (97). 
Comparison of the circulating vesicles from adipose tissue 
before and after a reduced calorie diet intervention showed 
a decreased enrichment of perilipin-A in the vesicles (212). 
Thus, analysis of the composition of adipose tissue-derived 
exosomes will be an effective reflection of the metabolic state 
of the adipose tissue.

Besides reflecting their parent cell, the contents of exosomes 
act as an important component in coordinating functions and 
influencing the behavior of the end target cells. In addition, their 
contents can reflect the microenvironment of the exosomes.  
In relation to this, the analysis of the composition of overall 
adipose tissue MSC-derived EVs showed selective enrichment of 
128 proteins compared to the adipose tissue MSC (213). Another 
study demonstrated selective enrichment of 4 miRNAs, 255 
mRNAs, and 277 proteins enriched in these EVs (214). Exosomes 
isolated from hypoxic conditions showed upregulated expression 
of lipogenic enzymes (97). The proteomic analysis of adipose 
tissue-derived exosomes isolated from obese-diabetic and obese-
non-diabetic rats showed the presence of 509 proteins. Among 
these proteins, 200 proteins were dysregulated in exosomes 
isolated from adipose tissue of obese-diabetic rats (215). The dys-
regulated proteins have been shown to be similarly dysregulated 
in T2D (215, 216). The changes in proteomic content of adipose 
tissue-derived exosomes reflect the condition of obesity and its 
related comorbidities. Therefore, characterization and quantifica-
tion of the contents of the exosomes will provide insight into the 
health status of the adipose tissue and reflect their involvement in 
various biological functions.

Biological Properties of Adipose Tissue-Derived 
Exosomes
Adipose tissue-derived exosomes are heterogeneous in func-
tion and act in both an autocrine and a paracrine manner. 
Based on these roles, recent findings demonstrate that adipose 
tissue-derived exosomes may be an underlying mechanism for 
the regulation of various biological functions and progression of 
various diseases.

The treatment of the Huntington’s disease cell line with 
ADSC-derived exosomes reduced the mHtt aggregates and saved 
the cells from apoptosis (217). The exosomes were also shown to 
be involved in nerve regeneration. The exosomes inhibited neu-
ronal cell death and promoted re-myelination and re-genesis of 
neurons (218). In addition, the exosomes increased the viability 
of the neuron-like cells expressing amyotrophic lateral sclerosis 
mutation (219). Hence, adipose tissue-derived exosomes have 
complex functions in the regulation of nerves and neurons, and 
more broadly, are implicated in progression disease states. This is 
also supported by the role of adipose tissue-derived exosomes in 
immune regulation. Exosomes from ADSC impaired the prolif-
eration rate of T cells and inhibited the activation by reducing the 
secretion of IFN-γ (220). Meanwhile, the exosomes from MSC 
temporarily improved the symptoms in graft-versus-host disease 
patients (221). Overall, the current body of literature highlights 
multifaceted roles for adipose tissue-derived exosomes and 
multiple key areas in which these exosomes regulate biological 
function.

Adipose tissue-derived exosomes have been reported to pro-
mote tumor growth. The treatment of the MCF7 breast cancer cell 
line with exosomes derived from ADSC showed greater migration 
via activation of the Wnt signaling pathway (201). The melanoma 
cells incubated with exosomes secreted by the 3T3-F442A cells 
exhibited enhanced migration capacity. The exosomes, which 
were enriched with trifunctional enzyme subunit α, mitochon-
drial and hydroxyacyl-coenzyme-A-dehydrogenase, escalated 
FAO regulating tumor progression (204). Given the involvement 
of adipose tissue-derived exosomes in the progression and 
development of tumors, targeting this will be an essential aspect 
in cancer treatment. Cancer therapy is a key area of interest, as 
adipose tissue-derived exosome have also been used as carriers 
of specific cargo. Exosomes from miR-122 transfected adipose 
tissue MSC showed expression of the miRNA. The exosomes 
then delivered the miRNA to carcinoma cells, increasing their 
sensitivity to chemotherapeutic agents (18).

Similar to adipose tissue, adipose tissue-derived exosomes 
are involved in metabolic regulation. Incubation of monocytes 
with adipocyte-derived exosomes resulted in differentiation 
of the monocytes into macrophages with upregulation of pro-
inflammatory genes. The macrophages also inhibited phospho-
rylation of Akt in the adipose tissue (222). The inflammatory 
role of adipose tissue-derived exosomes is exaggerated in 
obesity and plays a major role in development of obesity-related 
diseases, mainly in systemic IR. The injection of adipose tissue-
derived exosomes into mice showed uptake by monocytes, dif-
ferentiation into activated macrophages, and secretion of higher 
amounts of pro-inflammatory cytokines. In the same study, the 
C2C12 culture treated with adipose tissue-derived exosomes-
conditioned media showed impaired activation of the insulin 
response (74). The exosomes derived from obese adipose tissue 
suppressed Akt-phosphorylation in both lean and obese skeletal 
muscle cells.

Intriguingly, the effects of adipose tissue-derived exosomes 
can be cell specific. Stimulation of HepG2 and C2C12 cells 
with adipose tissue-derived exosomes caused IR by inhibiting 
Akt-phosphorylation. However, this effect was more prominent 
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FiGURe 1 | Schematic diagram of intercellular communication between adipose tissue and placenta mediated by adipose tissue-derived exosomes. Obesity refers 
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elevated amount of pro-inflammatory cytokines, causing systemic inflammation. This is known as metabolically induced inflammation. The marked increase in 
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diagnosed for the first time during pregnancy. Placental morphological changes as well as altered placental metabolic status are observed in GDM. The placental 
dysfunction seen in GDM represents an adaptation of the placenta to increased maternal inflammation and results in increased secretion of inflammatory cytokines, 
further exacerbating inflammation. This potentially causes impairment in insulin sensitivity and development of GDM. However, the evolving concept of maternal 
obesity and inflammation may not be the full story in the development of GDM. This is due to insufficient data supporting a role for inflammatory cytokines as an 
initiator of insulin resistance in pregnancy. Interestingly, the various functions of adipose tissue are also orchestrated by the exosomes. Exosomes are mediators of 
intercellular communication and are capable of regulating cellular mechanisms. Exosomes from adipose tissue are known to regulate the metabolic activity of various 
cells via paracrine mechanisms. In obesity, adipose tissue-derived exosomes cargo profiles are dysregulated and mediate obesity-associated diseases, including 
insulin resistance. Thus, it is fair to speculate that the adipose tissue-derived exosomes potentially mediate the communication between adipose tissue and 
placenta, playing an important role in the development of GDM.
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in the liver cells. Furthermore, the adipocytokine content of 
the adipose tissue-derived exosomes determined the degree 
of Akt inhibition (207). The activation of transforming growth 
factor (TGF)-β is related to the development of NAFLD (223). 
Co-incubation of exosomes from obese adipose tissue-derived 
exosomes with HepG2 cells caused hyperstimulation of  
TGF-β (200).

Overall, these data support a role of adipose tissue-derived 
exosomes in mediating signaling in the end organ. Since the 
regulation of the signaling pathways are mediated by miRNAs, 
profiling of adipose tissue-derived exosome miRNA contents is 
essential in further understanding in this unique mode of cell–
cell communication.

Adipose Tissue-Derived Exosomal miRNA
Exosomal miRNAs have been identified as novel and promising 
biomarkers for the diagnosis and prognosis of various diseases. 
miRNA in adipose tissue-derived exosomes plays a major role in 
regulating gene expression in adipose tissue as well as in distant 
cells. A previous study showed the presence of 143 adipocyte-
specific miRNAs in adipose tissue-derived exosomes isolated 
from mice adipose tissue (199). In a recent study, the profiling 
of adipose tissue-derived exosomes isolated from mice serum 

detected 653 miRNAs. In addition, fat transplantation from 
wild-type mice to ADicer knock out mice showed restoration 
of approximately 50% of circulating miRNAs (224). This shows 
that miRNAs in adipose tissue-derived exosomes contribute to a 
large amount of circulating exosomal miRNAs. This also points to 
involvement in regulating various biological functions in adipose 
tissue and distant cells.

The miRNAs involved in adipogenesis are among the abun-
dant miRNAs in adipose tissue-derived exosomes. Among the 
adipogenic miRNA found in adipose tissue-derived exosomes 
are miR-103, miR-146-b, and miR-148-a (225–227). However, 
obesity and its related diseases influence the expression of 
exosomal miRNAs. The profiling of the adipose tissue-derived 
exosomes isolated from lean and obese individuals showed the 
differential expression of 88 miRNAs with significant upregula-
tion of miR-23-b and miR-4429. These miRNAs were shown to 
activate the TGF-β and Wnt/β-catenin signaling pathways in 
the end target organs, causing obesity-related conditions (205). 
Adipose-derived exosomes isolated from serum and urine of 
obese youths with physician-diagnosed asthma showed dif-
ferential expression of miRNAs (miR-15a-5p, miR-153-3p, and 
miR-138-5p) which target TGF-β signaling and is associated 
with poor asthma outcome (228). Adipose tissue exosomal 
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miRNAs are also associated with development of IR. The 
analysis of adipose tissue-derived exosomal miRNA content 
pre- and post-gastric bypass showed upregulation of miR-
103-3p which is known to target the insulin receptor signaling 
pathway and was previously found to be downregulated in 
diabetes (229–231).

These studies demonstrate that adipose tissue-derived exo-
somes and their content can mediate gene regulation and func-
tioning in distant cells. Therefore, in obese pregnancies, adipose 
tissue-derived exosomes may communicate with the placenta and 
induce changes in its function which may contribute to the devel-
opment of GDM. Thus, it is possible that adipose tissue-derived 
exosomes are the primary factor in the pathogenesis of GDM.

CONCLUSiON

Exosomes are currently a prominent research interest owing to 
their unique role in intracellular communication and signaling. 
In addition, exosomes transport bioactive molecules, such as pro-
teins, lipids, mRNAs, and miRNAs. Exosomal miRNA is a notable 
feature of exosomes that results in the transfer of the genetic 
material from one cell to another. This functional mechanism 
has important relevance in the pathogenesis of various diseases, 
particularly obesity and GDM (Figure 1).

The IR seen in obesity is maintained by adipose tissue. The 
dysregulated secretion of bioactive molecules by hypertrophic 
adipose tissue contributes to the development of IR in obese 
patients. Besides adipocytokines, the adipose tissue also releases 
exosomes, which are known to mediate IR and various metabolic 
disorders associated with obesity. Obesity is an underlying 
mechanism for the development of GDM. In addition, adipose 
tissue-derived exosomes are altered in metabolic disorders. 
Hence, we can postulate that the dysregulated secretion of adipose 

tissue-derived exosomes plays a pivotal role in the development 
of GDM in obese mothers.

Hypertrophic adipose tissue may cause differential expression 
of exosomal miRNA. This may further contribute to the systemic 
inflammation and IR seen in obese GDM pregnancies. This may 
also alter placental metabolism and nutrient uptake status by 
deregulating the placental nutrient signaling pathways. Overall, 
investigating the adipose tissue-derived exosomes present in 
maternal circulation of obese GDM pregnancies will provide a 
novel approach to further elucidate the pathophysiology of GDM.
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