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Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and 
destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. 
There are many β cell proteins that are targeted by autoreactive T cells in their native state. 
However, recent studies have demonstrated that many β cell proteins are recognized 
as neo-antigens following posttranslational modification (PTM). Although modified neo- 
antigens are well-established targets of pathology in other autoimmune diseases, the 
effects of neo-antigens in T1D progression and the mechanisms by which they are gen-
erated are not well understood. We have demonstrated that PTM occurs during endo-
plasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to 
the high rate of insulin production in response to dynamic glucose sensing. In the context 
of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens 
may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress 
and protein PTM do not cause T1D in every genetically susceptible individual, suggesting 
the contribution of additional factors. Indeed, many environmental factors, such as viral 
infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the 
mechanisms by which these factors lead to disease onset remain unknown. Since these 
environmental factors also cause ER stress, exposure to these factors may enhance 
production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells 
and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological 
ER stress and the stress that is induced by environmental factors may lead to breaks 
in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This 
Hypothesis and Theory article summarizes what is currently known about ER stress and 
protein PTM in autoimmune diseases including T1D and proposes a role for environmental 
factors in breaking immune tolerance to β cell antigens through neo-antigen formation.

Keywords: type 1 diabetes, β cell, environmental factors, endoplasmic reticulum stress, posttranslation 
modification, neo-antigen, autoimmunity

introdUCtion

Type 1 diabetes (T1D) is a chronic autoimmune disease in which insulin-producing pancreatic 
islet β cells are targeted and destroyed by autoreactive immune cells. Autoimmune recognition of 
β cell antigens leads to decreased β cell mass and to the subsequent decline of insulin-mediated 
regulation of glucose levels in the blood. Eventually, too few β cells remain to meet the demand for 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2017.00262&domain=pdf&date_stamp=2017-09-29
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
https://doi.org/10.3389/fendo.2017.00262
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jdp51@pitt.edu
https://doi.org/10.3389/fendo.2017.00262
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00262/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00262/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00262/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00262/abstract
http://loop.frontiersin.org/people/284417
http://loop.frontiersin.org/people/211872


table 1 | β Cell autoantigens identified in murine and human T1D.

autoantigen species reference

Preproinsulin Mouse (10)
Human (20)

Glutamic acid decarboxylase 65 Mouse (11)
Human (17)

IGRP Mouse (12)
Human (22)

Chromogranin A Mouse (13)
Human (19)

Islet amyloid polypeptide Mouse (14)
Human (18)

Zinc transporter 8 Mouse (15)
Human (21)

78 kDa glucose-regulated protein Mouse (16)
Human (23)

IA-2, IA-2β Human (24, 25)

Islet cell autoantigen 69 Human (26)
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insulin to maintain normal blood glucose levels. This insufficient 
insulin secretion leads to chronic hyperglycemia and T1D.

Type 1 diabetes is strongly associated with a genetic predis-
position to autoimmunity that is conferred by single-nucleotide 
polymorphisms (SNPs) and gene variants found at many genetic 
loci. In particular, SNPs and variants in genes associated with 
both the innate and adaptive branches of the immune system 
cause failures of central and peripheral tolerance that eventu-
ally lead to autoimmune targeting of β cells. Of these loci, 
polymorphisms in the major histocompatibility complex (MHC) 
locus are most strongly associated with T1D onset (1–3). MHC 
proteins are crucial to central tolerance, because the antigens 
they present during T cell development in the thymus determine 
which T cells survive selection. This process directly shapes the 
mature adaptive immune repertoire. Strongly autoreactive T cells 
should be deleted upon encountering self-antigen presented by 
MHC during selection (4), but in individuals expressing MHC 
polymorphisms associated with autoimmunity, autoreactive 
T cells successfully mature and exit the thymus (5, 6). If peripheral 
tolerance mechanisms also fail, these autoreactive T cells become 
activated when they encounter β cell antigens in pancreatic 
lymph nodes. This autoimmune response destroys pancreatic  
β cells and ultimately causes T1D.

To better understand the processes by which the autoimmune 
response leads to T1D, and to identify the β cell proteins that 
are targeted by autoreactive T cells, researchers have studied the 
non-obese diabetic (NOD) mouse. These mice develop a spon-
taneous autoimmune diabetes that is similar in many ways to the 
human disease. These similarities include genetic susceptibility 
at the MHC locus and other immune-related loci, intra-islet 
infiltration of autoreactive immune cells as disease progresses, 
and ultimate β cell destruction (7–9). The β cell autoantigens 
identified using this murine model include preproinsulin (10), 
glutamic acid decarboxylase 65 (GAD65) (11), islet-specific 
glucose-6-phosphatase catalytic subunit-related protein (IGRP) 
(12), chromogranin A (CHgA) (13), islet amyloid polypeptide 
(14), zinc transporter 8 (15), and 78  kDa glucose-regulated 
protein (GRP78) (16) (Table 1). Subsequent studies confirmed 

the relevance of these autoantigens to human T1D (17–23) 
(Table  1). In addition, several additional autoantigens have 
been identified in humans but not yet confirmed in NOD mice, 
including tyrosine phosphatase-like insulinoma antigen 2 and 
IA-2β (also known as phosphatase homolog of granules from 
rat insulinomas) (24, 25), and islet cell autoantigen 69 (26) 
(Table 1).

The immunogenicity of these β cell autoantigens has long been 
attributed to failures in the mechanisms that govern immune 
tolerance to self-peptides. While this likely remains true, seminal 
studies conducted by several laboratories demonstrated that 
many of these β cell peptides undergo posttranslational modifica-
tion (PTM). These studies propose that aberrant PTM of these 
β cell proteins generates so called “neo-antigens” that are then 
recognized as non-self by immune cells (16, 19, 23, 27–32), 
hastening the break in tolerance and exacerbating immune tar-
geting and destruction of β cells. However, most of these studies 
did not explore the cellular processes that lead to PTM of these 
proteins in the context of β cell function and biology.

To address this question, our laboratory demonstrated that 
endoplasmic reticulum (ER) stress in the β cell leads to the acti-
vation of PTM enzymes and the modification of β cell proteins, 
which in turn leads to increased recognition of these β cells by 
diabetogenic T cells (32). ER stress in the β cell originates from 
various sources. For instance, the normal function of β cells  
(to produce and secrete insulin) causes ER stress (32–42).  
We demonstrated that this inherent physiological ER stress is suf-
ficient to activate PTM enzymes and to generate β cell immuno-
genicity (32) (Figure 1). In addition, many of the environmental 
factors associated with T1D onset such as viral infection (43–48), 
chemicals (32, 49–51), reactive oxygen species (ROS) (52–55), 
dysglycemia (56), and inflammation (57–59) may cause β cell ER 
stress (Figure 1). Therefore, any of these environmental factors has 
the potential to enhance autoimmune targeting of β cells through 
the generation of ER stress- and PTM-dependent neo-antigens  
(32, 60, 61). However, the mechanisms by which these factors 

Abbreviations: Aire, autoimmune regulator; APC, antigen-presenting cell; ATF6, 
activating transcription factor 6; ATP, adenosine triphosphate; Ca2+, calcium; 
CHgA, chromogranin A; DRiP, defective ribosomal product; EAE, experimental 
autoimmune encephalomyelitis; ER, endoplasmic reticulum; GAD65, glutamic 
acid decarboxylase 65; GFP, green fluorescent protein; GRP78, 78 kDa glucose-
regulated protein; IA-2, tyrosine phosphatase-like insulinoma antigen 2; IAPP, islet 
amyloid polypeptide; ICA69, islet cell autoantigen 69; IGF-2, insulin-like growth 
factor 2; IGRP, islet-specific glucose-6-phosphatase catalytic subunit-related 
protein; IFNγ, interferon gamma; IP3R, inositol 1,4,5-trisphosphate receptor; 
IRE1, inositol-requiring protein 1; JNK, c-jun N-terminal kinase; MAP, mitogen-
activated protein kinase; MHC, major histocompatibility complex; mTEC, medul-
lary thymic epithelial cell; NET, neutrophil extracellular traps; NF-κB, nuclear 
factor kappa-light-chain-enhancer of activated B cells; NOD, non-obese diabetic 
mouse; PAD2, peptidylarginine deiminase 2; PDI, protein disulfide isomerases; 
PERK, protein kinase RNA (PKR)-like ER kinase; Phogrin, phosphatase homolog 
of granules from rat insulinomas; PTM, posttranslational modification; ROS, 
reactive oxygen species; RyR, ryanodine receptor; SERCA, sarco/endoplasmic 
reticulum Ca2+ ATPases; SNP, single-nucleotide polymorphisms; T1D, type 1 
diabetes; Tgase2, tissue transglutaminase 2; UPR, unfolded protein response; 
ZnT8, zinc transporter 8.
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FigUre 1 | The roles of β cell physiology and environmental favors in the autoimmune targeting of β cells in type 1 diabetes (T1D). (a) Normal β cell secretory 
physiology causes inherent endoplasmic reticulum (ER) stress, which in turn results in a release of Ca2+ from the ER into the cytosol. We have previously 
demonstrated that ER stress and its Ca2+ efflux lead to increased activity of Ca2+-dependent posttranslational modification enzymes, formation of neo-antigens, and 
β cell immunogenicity (32). (b) In addition, many environmental factors are associated with T1D onset, such as viral infection, exposure to chemicals and reactive 
oxygen species, dysglycemia, and pancreatic inflammation. Although the mechanisms by which these factors lead to autoimmune targeting of β cells remain 
unknown, these environmental factors all cause β cell ER stress and Ca2+ efflux. Whether the ER stress and Ca2+ efflux caused by these environmental factors 
contributes to T1D onset, and whether this ER stress cooperates with physiological ER stress to generate neo-antigens, remain unknown.

3

Marré and Piganelli Environmental Factors and T1D Neo-Antigens

Frontiers in Endocrinology | www.frontiersin.org September 2017 | Volume 8 | Article 262

hasten T1D onset, and whether the ER stress they cause cooperates 
with that caused by β cell physiology, remain unknown (Figure 1).

Here, we review what is known about β cell ER stress, neo-
antigen formation, and the progression to pathology in T1D.  
We also review the role that the environmental factors associ-
ated with T1D may play in exacerbating β cell ER stress. Finally,  
we discuss the evidence supporting our novel hypothesis that 
environmental factors converge with β cell physiology to increase 
ER stress above a putative threshold. According to our “threshold 
hypothesis,” ER stress must be sufficiently severe or prolonged 
to allow for the generation of PTM-dependent neo-antigens.  
We hypothesize that the convergence between β cell physiology 
and exposure to environmental factors increases ER stress above 
this threshold, leading to neo-antigen formation, β cell immuno-
genicity, and ultimately to the onset of T1D.

er stress and tHe UnFolded 
protein response (Upr)

The ER is primarily responsible for the proper folding and 
modification of proteins that are membrane bound or destined 
for secretion. Therefore, the ER lumen contains the molecular 
chaperones and the environment necessary for protein folding 
and PTM, including sufficient levels of adenosine triphosphate, 
an oxidizing environment to support disulfide bond forma-
tion, and millimolar concentrations of calcium (Ca2+) (62). 
Proteins that are folded and modified properly exit the ER and 
are shuttled to their intended intra- or extracellular locations. 
However, proteins that become misfolded cannot exit the ER 

lumen. The accumulation of misfolded or aberrantly modified 
proteins causes ER stress.

Endoplasmic reticulum stress induces the UPR, which func-
tions in two main modes: the adaptive UPR and the terminal 
UPR (63, 64). The adaptive UPR occurs early in ER stress and 
functions largely to alleviate ER stress and restore normal cel-
lular homeostasis through three signaling cascades, each of 
which begins with the activation of protein sensors of stress in 
the ER membrane (65). First, protein kinase RNA (PKR)-like ER 
kinase (PERK) activates a signaling cascade that inhibits mRNA 
translation and reduces the protein burden in the lumen of the ER  
(66, 67). Second, activating transcription factor 6 signaling 
leads to increased production of new molecular chaperones to 
aid with the folding of accumulated misfolded proteins (68). 
And third, the signaling pathway initiated by inositol-requiring 
protein 1 increases expression of chaperones for protein folding 
and of proteins involved in lipid synthesis to increase ER volume 
(69, 70). Together, these branches of the UPR work to facilitate 
the proper folding of proteins that have accumulated, and also 
reduce the entrance of additional non-chaperone proteins into 
the ER lumen. In these ways, the adaptive UPR acts to allow the 
ER to return to normal homeostasis.

Although the adaptive UPR aims to protect the cell from the 
negative effects of ER stress, ER dysfunction that is excessive 
or extended may overcome these cytoprotective mechanisms. 
Under these conditions, the terminal UPR activates proapoptotic 
processes (71–73) leading to death of the affected cell. However, 
long before apoptosis pathways are activated, even temporary ER 
stress and the adaptive UPR may have important consequences 
for cellular function and physiology.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FigUre 2 | Rising blood glucose increases misfolding of proinsulin and endoplasmic reticulum (ER) stress levels. When blood glucose levels are low, preproinsulin  
is translated, properly folded and modified in the ER, and secreted as mature insulin into the extracellular space. When blood glucose levels rise, β cells increase 
production of preproinsulin, flooding the ER lumen with one million molecules per minute that require folding and disulfide bond formation. This increased protein 
burden in the ER leads to misfolding of proteins and aberrant posttranslational modification, which further exacerbates ER dysfunction and activates the unfolded 
protein response (UPR).
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All cells undergo periods of increased protein production, 
which increases the ER burden, leading to misfolding or aberrant 
modification of nascent proteins, and ultimately to ER stress and 
UPR activation. However, secretory cells, due to their normal 
physiology, are uniquely susceptible to ER stress. These cells 
must produce not only the proteins necessary for normal cellular 
maintenance, but also the proteins to be secreted and the proteins 
that comprise the secretory pathway itself. Even with a larger ER 
volume and greater numbers of chaperones to account for this 
increased demand (74), the secretory function of these cells leads 
to significantly increased ER burden and stress.

Like other secretory cells, β cells undergo naturally high 
levels of ER stress due to their normal physiological role of 
insulin production and secretion (32–42). Indeed, increased 
ER stress, and its consequences for protein folding, occurs as a 
direct consequence of glucose sensing (37, 38). In response to 
increased glucose concentrations, β cells upregulate the transla-
tion of preproinsulin by 50-fold, reaching a production rate of one 
million molecules of preproinsulin per minute (75). These one 
million molecules of preproinsulin inundate the ER lumen for 
folding and the formation of three disulfide bonds per molecule, 
causing tremendous ER stress. Under these conditions, many of 
the insulin molecules produced by β cells become misfolded or 
incorrectly modified (75) (Figure 2). In addition to this inherent 
ER stress due to normal physiology, β cell ER stress may rise due 
to exposure to the environmental factors that are associated with 
T1D onset (32, 43–61) (Figure 1). Under these circumstances,  
β cell ER stress may rise above physiological levels.

Heightened β cell ER stress does not necessarily activate the 
terminal UPR or suggest β cell exhaustion or impending death 
as observed in some models (63, 76–80). Rather, β cells exhibit 
naturally high ER stress very early and activate the adaptive UPR 
long before β cell death. In a study using a reporter mouse in 
which green fluorescent protein is expressed with the activation 
of the UPR, the pancreas exhibited the highest ER stress of all 
tissues examined, and did so as early as day 16 of life (81). In spite 
of the observed ER stress and UPR activation, these mice (on the 
C57Bl/6 background) never succumbed to loss of β cell mass and 
diabetes (81). These data confirm that high levels of β cell ER 
stress does not necessarily activate the terminal UPR and lead 
to β cell failure and death. Indeed, the β cells in most individuals 
resolve ER stress through the proper function of the adaptive 
UPR and therefore maintain healthy and functional β cell mass 
throughout their lifetimes. Therefore, β cell death is not the only 
consequence of ER stress. We hypothesize that lower and more 
transient ER stress, and the activation of the adaptive UPR, may 
have consequences for β cell function and for the autoimmune 
targeting of β cells much earlier.

er stress aFFeCts Ca2+-dependent 
CellUlar FUnCtions

In addition to its role in the folding and modification of new 
proteins, the ER contains the largest store of intracellular Ca2+ 
and is an important organelle for regulating Ca2+ concentrations, 
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and therefore Ca2+-dependent processes, throughout the cell 
(82). One consequence of ER stress is the release of Ca2+ from 
the ER lumen into the cytosol. This Ca2+ efflux has important 
consequences for cellular physiology.

In the ER, millimolar concentrations of Ca2+ are necessary for 
proper protein folding and modification (62). Indeed, molecular 
chaperones that assist in protein folding and protein disulfide 
isomerases that facilitate the formation of disulfide bonds depend 
on these high Ca2+ concentrations (83, 84). These high concen-
trations of Ca2+ are maintained by sarco/endoplasmic reticulum 
Ca2+ ATPases (SERCA) pumps in the ER membrane that actively 
transport Ca2+ from the cytosol into the ER. When Ca2+ leaves 
the ER lumen during ER stress, the function of these proteins also 
decreases, further inhibiting protein folding and modification 
and contributing to greater ER dysfunction (85).

In the cytosol, Ca2+ is required for the regulation of normal cel-
lular processes such as metabolism, vesicular trafficking, protein 
secretion, mRNA transcription, and apoptosis (86). To achieve 
the necessary cytosolic concentrations, Ca2+ is released from the 
ER by the ryanodine receptor and inositol 1,4,5-trisphosphate 
receptor channels. Under conditions of ER stress, the efflux of 
Ca2+ from the ER lumen increases cytosolic concentrations above 
normal physiological levels. This increased cytosolic Ca2+ can 
be deleterious for cellular function. For example, increased 
cytosolic Ca2+ can initiate apoptosis through activation of 
caspase-dependent cell death pathways (87, 88) or mitochondria-
dependent pathways (89–92).

It is clear, then, that ER stress greatly affects Ca2+-dependent 
cellular functions. While the adaptive UPR works to relieve ER 
stress, cytosolic Ca2+ still increases before ER homeostasis is 
regained. β cells, which are particularly susceptible to ER stress, 
are therefore also prone to the dysregulation of cellular processes 
following even a temporary efflux of Ca2+ from the ER. In addi-
tion, the environmental factors associated with T1D onset  also 
lead to increased cytosolic Ca2+ (32, 43–61) (Figure 1). Therefore, 
we propose that the combination of physiological ER stress and 
that derived from environmental factors, even if transient, may 
have consequences for β cell health and function.

er stress aCtiVates CytosoliC  
ptM enZyMes

Transient ER stress and increased cytosolic Ca2+ concentrations 
can activate cytosolic Ca2+-dependent enzymes, including those 
that mediate PTM. Activation of these PTM enzymes can have 
significant implications for proteins being folded in the ER.  
In particular, two such PTM enzymes reside in the cytosol and 
are activated during the ER stress Ca2+ flux: tissue transglutami-
nase 2 (Tgase2) and peptidylarginine deiminase 2 (PAD2).

Tissue transglutaminase 2 is ubiquitously expressed and 
resides in the cytosol (93). When activated, Tgase2 translocates 
to several intracellular compartments (94), including the ER 
(95–97) and secretory granules (98) to modify proteins through 
two mechanisms (99): first, Tgase2 crosslinks proteins through 
the formation of ε(γ-glutamyl) isopeptide bonds between 
glu tamine and lysine residues, and second, Tgase2 mediates 

the deamidation of glutamine residues. Tgase2 plays important 
roles in the regulation of apoptosis (100, 101), gene expression  
(93, 102, 103), and cellular adhesion and wound healing (104–107).  
Of relevance to T1D, Tgase2 is expressed in and functions in  
β cells (32, 60).

Of the five mammalian PAD isoforms, PAD2 is the most widely 
expressed and is the isoform expressed in the pancreas (108). 
PAD2 also resides in the cytosol (109), and, similar to Tgase2, 
activated PAD2 is recruited to various subcellular compartments 
for the modification of proteins (110). PAD2 mediates the conver-
sion of arginine to citrulline. This amino acid conversion alters the 
overall charge and hydrophobicity of the protein (111), causing 
changes in protein folding and conformation (112). PAD2 plays 
roles in many cellular functions, including the negative regula-
tion of nuclear factor kappa-light-chain-enhancer of activated 
B cells activation (113), cytoskeleton disassembly (114), and in 
the formation of neutrophil extracellular traps (115).

While Ca2+-dependent activation of these enzymes is neces-
sary for normal cellular function, these enzymes also contribute 
to pathology in many diseases.

ptM generates neo-antigens  
in aUtoiMMUne diseases

Protein PTM is necessary for cellular viability and function. 
However, autoantigens in many different autoimmune diseases 
such as celiac disease (116), collagen-induced arthritis (117), 
multiple sclerosis/experimental autoimmune encephalomyelitis 
(118–121), rheumatoid arthritis (122–127), and systemic lupus 
erythematosus (128–131) contain PTM, suggesting that these 
modifications may contribute to breaks in tolerance that exac-
erbate disease.

Central tolerance is established during T  cell development 
in the thymus. In the thymus, medullary thymic epithelial cells 
(mTECs) express peptides normally found in peripheral tissues 
through the function of autoimmune regulator (132–134). When 
these peptides are presented to developing T cells in the context 
of MHC molecules, T  cells that respond too strongly to these 
self-peptides are deleted and are thus absent from the mature 
T cell population (4, 135–137). However, if self-proteins undergo 
PTM in peripheral tissues, as in the autoimmune diseases listed 
above, these proteins may be processed and presented differ-
ently by peripheral antigen-presenting cells (APCs) than by 
the mTECs (138). If such modified epitopes were not expressed 
and presented by mTECs, T cells that recognize these modified 
epitopes escape negative selection and are present in circulation 
as mature T  cells. When these T  cells encounter these neo-
antigens in peripheral tissues, they become activated and lead 
the autoimmune targeting of peripheral tissues.

As with all peripheral tissues, peptides from β cell proteins, 
including insulin and insulin-like growth factor 2, are presented 
by mTECs to developing T cells in the thymus (5, 6, 139–142). 
However, the presence of T cells in the periphery that recognize 
islet proteins and target β cells suggests the failure of crucial 
tolerance mechanisms. This failure in central tolerance mecha-
nisms may be explained by the growing body of literature that 
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table 2 | Posttranslational modification (PTM)-mediated neo-antigen formation 
in type 1 diabetes.

autoantigen ptM reference

Proinsulin Oxidation (28, 143)
Formation of hybrid insulin 
peptides

(23, 144, 145)

Chromogranin A (WE14) Crosslinking/isopeptide bond (19, 29)
Preproinsulin Deamidation (30)
Islet cell autoantigen 69 Deamidation (30)
Zinc transporter 8 Deamidation (30)
Phosphatase homolog of 
granules from rat insulinomas

Deamidation (30)

IA-2 Deamidation (30)
IGRP Deamidation (30)
Glutamic acid decarboxylase 65 Citrullination (31)

Deamidation (30, 31)
78 kDa glucose-regulated 
protein

Citrullination (16, 23)

Insulin Defective ribosomal product (146)

FigUre 3 | Endoplasmic reticulum (ER) stress increases the immunogenicity 
of several β cell autoantigens. The immunogenicity of NIT-1 insulinoma cells 
treated with 5 µM thapsigargin or control for 1 h was assessed by T cell 
assay. Briefly, T cells (2 × 104), NOD.scid splenocytes as antigen-presenting 
cells (4 × 105), and NIT-1 cells as antigen (1 × 103) were combined in 200 µl 
in triplicate in 96-well flat-bottom tissue culture plates and incubated at 37°C 
for 72 h. TH1 effector function was determined by measuring interferon 
gamma (IFNγ) secretion by enzyme-linked immunosorbent assay. Data are 
mean IFNγ secretion ± SD and are from one representative experiment of 
three independent experiments. For all specificities examined, NIT-1 cells 
undergoing ER stress elicited higher effector responses from the T cells, 
suggesting that ER stress contributes to the modification and greater 
immunogenicity of each of these proteins.
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abnormal PTM increases the immunogenicity of β cell peptides 
in both murine and human models of T1D (Table  2). These 
studies have demonstrated that some β cell proteins undergo 
various modifications including oxidation (28, 143), Tgase2-
mediated crosslinking by isopeptide bond (19, 29), Tgase2-
mediated deamidation (30–32), PAD2-mediated citrullination 
(16, 23, 31), the formation of hybrid peptides (144, 145), and the 
formation of a defective ribosomal insulin gene product (146). 
Furthermore, the neo-antigens formed by these PTM elicit 
stronger immune responses than the native proteins (16, 19,  
23, 28–31, 143, 145), suggesting an important role for these 
neo-antigens in precipitating disease onset. These findings have 
been of great importance to the understanding of T1D patho-
genesis, because these studies identified novel autoantigens that 
are targeted in T1D. However, the mechanisms by which these 
neo-antigens arise in β cells was not examined.

β Cell neo-antigens arise dUring 
er stress

To begin to elucidate how PTM neo-antigens might arise in β cells, 
our laboratory examined the consequences of β cell ER stress for  
β cell immunogenicity, since β cells inherently undergo high lev-
els of ER stress (32–42, 60, 81). To do so, we used a model system 
of β cell recognition by diabetogenic BDC2.5 CD4+ T cells. These 
particular T cells were chosen because they recognize a Tgase2-
modified peptide of CHgA (29) and secrete interferon gamma 
(IFNγ) when they encounter their PTM-dependent antigen.

Our studies demonstrated that, in primary murine islets, ER 
stress induced by thapsigargin [a widely accepted chemical inducer 
of ER stress (96, 147, 148)] contributed to heightened cytosolic 
Ca2+ concentrations, increased Tgase2 activity, and increased β 
cell immunogenicity (32). In fact, murine islets undergoing ER 
stress elicited greater IFNγ secretion from BDC2.5 T cells (32) 
and by all other β cell antigen-specific T cells examined (Figure 3), 
suggesting a role for Ca2+-dependent PTM in immunogenicity of 
many other β cell antigens. This increased immunogenicity was 
dependent upon both Ca2+ and Tgase2-mediated PTM, since 

chelation of cytosolic Ca2+ or decreased expression of Tgase2 
reduced this consequence of ER stress (32). These data show that 
β cell ER stress leads to β cell immunogenicity through Ca2+-
dependent PTM of endogenous proteins.

Since ER stress is inherent to β cell physiology and function 
(32–42, 60), we hypothesized that ER stress induced by normal 
physiology [e.g., dynamic glucose sensing and secretory function 
(33–42, 60)] may be sufficient to cause Ca2+- and PTM-dependent 
β cell immunogenicity. Indeed, a murine insulinoma (NIT-1) 
that exhibited low ER stress and immunogenicity was exposed 
to physiological milieu by transplantation into NOD.scid mice. 
After transplant, these cells exhibited insulin secretion, ER stress, 
Tgase2 activity, and immunogenicity (32). These data confirm 
that β cell physiology and insulin secretion contributes to the 
autoimmune targeting of β cells (60).

Many groups have demonstrated an increase in β cell ER stress 
long before β cell death and T1D onset (79, 81, 149, 150). In fact, 
relief of ER stress has been proposed as therapeutic opportunity 
for preventing β cell death and maintaining euglycemia (63, 80, 
151, 152). However, most researchers conclude that ER stress 
leads to β cell death through the terminal UPR and activation 
of apoptosis pathways (76, 77, 80). Ours was the first study to 
demonstrate that normal, physiological β cell ER stress and 
the adaptive UPR contribute to T1D through the formation of  
β cell neo-antigens. In doing so, we became the first to propose 
a mechanism by which β cell neo-antigens (Table 2) may occur 
(Figure 4).
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FigUre 4 | Endoplasmic reticulum (ER) stress increases the activation of Ca2+-dependent posttranslational modification (PTM) enzymes and the formation of 
PTM-dependent β cell neo-antigens. (1) Under homeostatic conditions, proteins are translated, folded, and packaged into secretory granules. Cytosolic Ca2+ and 
PTM enzyme activity remain low. (2) During β cell ER stress, Ca2+ stores are released from the ER, increasing cytosolic Ca2+. (3) Increased Ca2+ concentrations 
activated Ca2+-dependent enzymes tissue transglutaminase 2 (Tgase2) and peptidylarginine deiminase 2 (PAD2). (4) Active PTM enzymes modify nascent proteins.  
If presented to autoreactive T cells by antigen-presenting cell, modified β cell proteins break tolerance and facilitate immune recognition of β cells.
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β Cell iMMUnogeniCity reQUires  
a tHresHold oF er stress

Endoplasmic reticulum stress occurs along a gradient. The bur-
den of unfolded proteins in the ER lumen can vary from mild 
to severe, resulting in varying degrees of ER dysfunction and 
stress. This variance in levels of ER stress has important implica-
tions for the cellular consequences of ER stress. As discussed 
earlier, the strength and duration of ER stress-induced UPR 
signaling is a major factor in determining whether the adaptive 
UPR or terminal UPR is initiated (63, 64). One explanation 
may be that the severity and duration of ER stress affects the 
strength of the Ca2+ efflux from the ER lumen and determines 
whether cytosolic Ca2+ concentrations cross a putative threshold. 
Differ ences in cytosolic Ca2+ concentrations may significantly 
alter PTM enzyme activity, neo-antigen generation, and β cell 
immunogenicity.

This “threshold hypothesis” is further supported by literature 
that demonstrates that Tgase2 and PAD2 remain largely inactive 
in the cytosol, and activation requires significantly increased 
concentrations of cytosolic Ca2+. In fact, the activation of both 
enzymes requires Ca2+ concentrations up to 100-fold higher than 
what is necessary for normal cellular physiology and function. 
Therefore, these enzymes generally become activated only under 
conditions of cellular distress or dysfunction, such as ER stress 
(96, 97, 108, 109, 147, 153, 154). Since these PTM enzymes 
require particular levels of cytosolic Ca2+ to become activated,  

it follows that a particular level of ER stress must be achieved 
before PTM-dependent neo-antigen formation can occur.

Previous work in our laboratory examined whether varying 
levels of ER stress lead to different degrees of β cell PTM-dependent 
immunogenicity. NIT-1 cells were incubated with increasing 
doses of thapsigargin, which increases ER stress and cytosolic 
Ca2+ by inhibiting the SERCA pumps that transport Ca2+ from the 
cytosol into the ER. As expected, thapsigargin induced ER stress 
and UPR activity in a dose-dependent manner (Figure 5A). The 
immunogenicity of these cells was examined by the BDC2.5 
T cell clone, and T cell effector function was measured by IFNγ as 
previously described (32). Only the highest dose of thapsigargin 
elicited detectable IFNγ secretion from the T cells (Figure 5B). 
Therefore, although lower doses of thapsigargin induced ER 
stress, the stress (and consequences thereof) at these lower doses 
was not sufficient to result in β cell immunogenicity.

Tunicamycin is another chemical inducer of ER stress that 
blocks the initial steps of glycoprotein synthesis in the ER and thus 
increases the burden of unfolded proteins in the ER lumen (148). 
Increasing doses of tunicamycin increased ER stress in NIT-1 
cells (Figure 6A), but to lesser degrees compared with thapsigar-
gin (Figure 5A). Also, as with lower doses of thapsigargin, the 
lower ER stress induced by tunicamycin was not sufficient to elicit 
effector responses from BDC2.5 T  cells (Figure  6B). Together, 
these data serve as further evidence that a particular threshold 
of ER stress must be reached to achieve PTM-dependent β cell 
immunogenicity.
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FigUre 5 | Endoplasmic reticulum stress must increase above a threshold to induce posttranslational modification-dependent immunogenicity. (a) NIT-1 insulinoma 
cells were incubated with increasing concentrations of thapsigargin for 1 h and washed extensively. Cell lysates were analyzed for the phosphorylation of UPR 
proteins—protein kinase RNA (PKR)-like ER kinase (PERK) and eIF2α. Data are representative of two independent experiments. Densitometry data are 
phosphorylation levels normalized by total protein and relative to that in control (0 µM) treated cells. (b) The immunogenicity of NIT-1 cells treated with increasing 
concentrations of thapsigargin for 1 h was measured by BDC2.5 T cell assay. Data are mean interferon gamma (IFNγ) secretion ± SEM. *p < 0.05.
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enVironMental FaCtors assoCiated 
WitH t1d indUCe HeigHtened β Cell 
er stress

Every pancreas undergoes ER stress (32, 81), but this stress does 
not lead to T1D in every individual. In fact, even in those with 
a genetic predisposition to autoimmunity, T1D may never occur 

(155) or may occur much later than expected (156, 157). These 
observations suggest that environmental factors may precipitate 
disease onset. Indeed, T1D onset is associated with several 
environmental factors such as viral infection (43–48), chemicals 
(49–51), ROS (52–55), dysglycemia (56), and inflammation 
(57–59). Although these environmental factors are thought 
to exacerbate the autoimmune targeting of β cells and hasten 
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FigUre 6 | Endoplasmic reticulum stress below a threshold does not induce posttranslational modification-dependent immunogenicity. (a) NIT-1 insulinoma cells 
were incubated with increasing concentrations of tunicamycin for 4 h and washed extensively. Cell lysates were analyzed for the phosphorylation of UPR  
proteins—protein kinase RNA (PKR)-like ER kinase (PERK) and eIF2α. Data are representative of two independent experiments. Densitometry data are 
phosphorylation levels normalized by total protein and relative to that in control (0 µg/ml) treated cells. (b) The immunogenicity of NIT-1 cells treated with  
increasing concentrations of tunicamycin for 4 h was measured by BDC2.5 T cell assay. Data are mean interferon gamma (IFNγ) secretion ± SEM.
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FigUre 7 | Model. (a) Normal β cell secretory physiology causes inherent endoplasmic reticulum (ER) stress, which in turn results in a release of Ca2+ from the  
ER into the cytosol. This ER stress and Ca2+ efflux lead to increased activity of Ca2+-dependent posttranslational modification (PTM) enzymes, formation of 
neo-antigens, and β cell immunogenicity (32). However, neo-antigen formation and immunogenicity due to inherent physiological ER stress may not be enough to 
cause type 1 diabetes (T1D). (b) The environmental factors associated with T1D onset cause β cell ER stress and Ca2+ efflux. The ER stress induced by these 
environmental factors cooperates with the physiological ER stress to raise cytosolic Ca2+ concentrations above a threshold to activate PTM enzymes, generate 
neo-antigens, cause autoimmune targeting of β cells, and precipitate T1D onset.
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disease onset, the mechanisms by which these environmental 
factors advance pathology, and whether these factors contribute 
to PTM-mediated neo-antigen formation, remain unknown 
(Figure 1).

As discussed earlier, β cell ER stress and Ca2+ flux into the 
cytosol must cross a threshold before Tgase2 and PAD2 can 
modify β cell proteins to generate neo-antigens and elicit effec-
tor responses from diabetogenic T cells. While β cell physiology 
causes ER stress (32–42) and this ER stress can, under some cir-
cumstances generate neo-antigens and immunogenicity (32, 60)  
(Figure  1), the discrepancy in disease onset in those geneti-
cally predisposed to autoimmunity (155–157) suggests that 
this physiological stress alone may not be sufficient to generate 
neo-antigens. Interestingly, each of the environmental factors 
associated with T1D also lead to an increase in β cell ER stress 
and cytosolic Ca2+.

Coxsackie Virus
Coxsackie virus infection is associated with T1D onset. Recent 
onset T1D patients have viral RNA in their pancreas and higher 
titers of antibodies against Coxsackie virus (158, 159). Also, 
Coxsackie virus infection accelerates disease onset in NOD 
mice with established insulitis (46, 160–162), suggesting a role 
for Coxsackie virus in breaking immune tolerance. Studies with 
BDC2.5 TCR transgenic NOD mice attributed this acceleration 
to activation of bystander immune cells (46). These data provide 
a strong link between pancreatic viral infection and broken 
tolerance. Since BDC2.5 T cells do not recognize a viral protein 
(29) but rather modified CHgA, activation of BDC2.5 T cells in 
these mice suggests that Coxsackie virus infection may lead to 
PTM of endogenous β cell proteins and neo-antigen formation. 
Indeed, viruses cause neo-antigen generation and exacerbate 
pathology in other models of autoimmunity (163).

Moreover, Coxsackie virus protein 2B disrupts the ER mem-
brane (164–166), releasing Ca2+ from the ER into the cytosol 
and causing ER stress. We have shown that β cell ER stress 
contributes to neo-antigen formation and immunogenicity (32). 
Therefore, it is plausible that Coxsackie virus may raise β cell ER 
stress and cytosolic Ca2+ concentrations above the levels attrib-
uted to normal physiology, increasing neo-antigen production 
through Ca2+-dependent PTM.

exposure to Chemicals
Exposure of β cells to chemicals such as alloxan and streptozo-
tocin cause the loss of insulin secretion and β cell death (167). 
For each of these chemicals, β cells experience DNA damage, 
protein ADP ribosylation (168), and ROS generation (169–171), 
all of which ultimately lead to apoptosis and significant loss of 
β cell death. However, before apoptosis pathways are activated, 
ADP ribosylation and ROS cause misfolding and accumulation 
of nascent proteins in the ER lumen. As discussed earlier, the 
accumulation of misfolded and abnormally modified proteins 
leads to ER stress and release of Ca2+ into the cytosol (172, 173).

reactive oxygen species
Reactive oxygen species, which have the potential to cause irre-
versible damage to cellular proteins and organelles (174–176), are 
generated both during normal β cell function (52) and when β cells 
are exposed to other insults such as Coxsackie virus (177–179). 
Although antioxidant defenses work to prevent ROS-mediated 
damage, β cell mitochondria express very low levels of antioxidant 
enzymes (180–182), making these cells particularly susceptible 
to ROS-mediated damage. When ROS exceeds the capacity of 
the cell to scavenge these species, oxidative stress leads to β cell 
death (183, 184) and ultimately to T1D (52, 54, 180, 185–190). 
However, before the loss of β cell mass, ROS leads to oxidative 
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modification of proteins and lipids (191), and to the release of 
Ca2+ from the ER into the cytosol (192–194). Therefore, ER stress 
and Ca2+ efflux caused by ROS may lead to protein PTM and the 
formation for neo-antigens in β cells.

dysglycemia
As discussed earlier, increased glucose sensing by β cells during 
times of dysglycemia increases insulin production and secretion 
(75). Normal insulin secretion raises β cell ER stress (32–42), 
but when blood glucose rises too high, or the hyperglycemia is 
too prolonged, so called “glucotoxicity” further enhances β cell 
ER stress. At later stages of T1D, ER stress induced by glucotox-
icity is thought to be a major contributor to β cell death through 
the terminal UPR. However, fluctuation in blood glucose levels 
as β cell mass is gradually lost may also induce the adaptive 
UPR. In this way, glucotoxicity may, long before β cell death, 
contribute to Ca2+- and PTM-dependent neo-antigen forma-
tion and therefore to autoimmune targeting of β cells.

inflammation
As autoreactive immune cells infiltrate the islets to target their 
antigens, these activated immune cells secrete pro-inflammatory 
cytokines. In addition, β cells themselves release additional pro- 
inflammatory cytokines during viral infection (195), and cellular 
stress (196). These inflammatory mediators initiate signaling 
cascades in the β cells. For example, pro-inflammatory cytokines 
activate NF-kB in β cells, which inhibits the expression of 
other transcription factors necessary for normal β cell function 
(197). Also, inflammatory cytokines activate c-jun N-terminal 
mitogen-activated protein kinase signaling, which is associated 
with ER stress and Ca2+ release (198, 199). Finally, inflammatory 
cytokines reduce SERCA expression, effectively preventing the 
return of Ca2+ from the cytosol to the ER and further exacer-
bating ER stress (197, 200). Therefore, pancreatic inflammation  
may lead to β cell neo-antigen formation and exacerbate auto-
immune targeting of β cells.

Therefore, we hypothesize that the ER stress generated by these 
environmental factors may converge with the stress caused by 
normal physiology to allow cytosolic Ca2+ to cross the necessary 
threshold to activate PTM enzymes and generate neo-antigens 
long before the terminal UPR initiates apoptosis pathways. In this 
way, ER stress-mediated neo-antigen formation may be a com-
mon mechanism by which these environmental factors augment 
autoimmune targeting of β cells and hasten T1D onset.

ConClUsion

Type 1 diabetes is caused by the autoimmune targeting and 
destruction of pancreatic β cells. The autoreactive immune cells 
target many β cell proteins (Table 1) when central and peripheral 
tolerance fail. The mechanisms by which tolerance fails are still 
being elucidated, but a growing body of literature demonstrates 
that β cell peptides modified by Ca2+-dependent PTM elicit 
stronger responses from autoreactive T  cells than their native 
counterparts (16, 19, 23, 28–31, 143, 145). However, the mecha-
nisms by which these β cell peptides become modified during  
β cell physiology is only beginning to be explored (32, 60).

We have previously demonstrated that β cell ER stress leads 
to PTM-dependent immunogenicity (32). Although this ER 
stress may be derived from the natural secretory physiology of 
the β cell (32–42), inherent, physiological ER stress alone may 
not sufficient to precipitate T1D onset even in those individuals 
harboring a genetic predisposition to autoimmunity (155–157). 
We therefore propose a model in which β cell ER stress leads to 
neo-antigen formation and immunogenicity of β cells when this 
ER stress reaches a critical threshold. The ER stress induced by 
the environmental factors associated with T1D may combine 
with physiological ER stress to raise cytosolic Ca2+ above this 
putative threshold, allowing for the activation of PTM enzymes 
and the generation of PTM-dependent neo-antigens (Figure 7). 
This convergence of with physiological stress may explain how 
environmental factors hasten T1D onset.

It is important to note that, although physiological and 
environmental factor-derived ER stress likely occurs in the  
β cells of all individuals, autoimmunity predominantly occurs 
in the context of genetic predisposition to autoimmunity. For 
patients who express the MHC molecules that predispose them 
to autoimmunity, β cell neo-antigens generated during ER 
stress are presented by these MHC molecules and activate the 
T cells that escaped negative selection during development. The 
activation of these T cells ultimately leads to the autoimmune 
destruction of the β cells and to T1D onset. However, in those 
without this MHC predisposition, β cell ER stress may still result 
in the modification of β cell proteins without leading to disease. 
In these patients, these neo-antigens may not be presented by 
APC or may not be recognized if autoreactive T cells are cor-
rectly deleted from the repertoire during negative selection 
in the thymus. Therefore, β cell ER stress and the subsequent 
neo-antigen formation likely still require genetic predisposition 
to autoimmunity to lead to T1D.

Our model proposes a “threshold hypothesis” according to 
which cytosolic Ca2+ must cross a particular threshold to allow  
for the generation of PTM-dependent β cell neo-antigens. 
Additional studies are necessary to confirm the cooperation 
between physiological ER stress and that derived from exposure 
to environmental factors to reach this threshold. These studies 
will further advance our understanding both of how neo-antigens 
are formed in the β cell and the mechanisms by which environ-
mental factors hasten disease onset. Such studies may reveal novel 
opportunities for therapeutic intervention to prevent or delay 
T1D onset in at-risk patients.

Materials and MetHods

Mice
Mice were bred and housed under specific pathogen-free con-
ditions at Rangos Research Center of Children’s Hospital of 
Pittsburgh of University of Pittsburgh Medical Center. All experi-
ments were approved by Institutional Animal Care and Use Com-
mittee of the University of Pittsburgh.

Cell Culture
The NIT-1 insulinoma cell line was a gift from Clayton Mathews 
(University of Florida) and were maintained at 37°C in a 5% CO2 
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humid air incubator, in DMEM (Invitrogen) supplemented with 
10% heat-inactivated fetal bovine serum (Mediatech), 10  mM 
HEPES buffer (Gibco), 4 mM l-glutamine (Gibco), 200 µM non-
essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 
61.5  µM β-mercaptoethanol (Sigma-Aldrich), and 100  µg/ml 
gentamicin (Gibco).

CD4+, MHC class II-restricted BDC2.5, BDC5.2.9, PD12.4.4, 
and BDC6.9 T cells were a gift from Kathryn Haskins (University 
of Colorado). T  cell clones were maintained in supplemented 
DMEM as described previously (32, 201–203).

OT-II splenocytes were harvested and prepared in supple-
mented DMEM as described previously (204–208).

induction of er stress
NIT-1 cells were cultured in 25 cm2 tissue culture flasks (Greiner 
Bio-One) with various concentrations of thapsigargin or control 
for 1 h at 37°C or with various concentrations of tunicamycin 
or control for 4 h at 37°C. Before downstream analysis, the cells 
were washed extensively (50,000× original volume) to remove 
residual thapsigargin or tunicamycin, and removed from the 
flask with 0.05% trypsin–EDTA (Gibco).

t Cell assays
T cells (2 ×  104), NOD.scid splenocytes as APC (4 ×  105), and 
antigen (1 × 103 dispersed NIT-1 cells) were combined in 200 µl 
supplemented DMEM in triplicate in 96-well flat-bottom tissue 
culture plates (Greiner Bio-One) and incubated at 37°C for 72 h. 
TH1 effector function was determined by measuring IFNγ secre-
tion by enzyme-linked immunosorbent assay (ELISA).

splenocyte assay
OT-II splenocytes (1  ×  106) were combined with antigen 
(1 × 103 dispersed NIT-1 cells) in 200 µl supplemented DMEM 
in triplicate in 96-well flat-bottom tissue culture plates (Greiner 
Bio-One) and incubated at 37°C for 72 h as described previously 
(204–208). TH1 effector function was determined by measuring 
IFNγ secretion by ELISA.

enzyme-linked immunosorbent assay
Interferon gamma from T cell assays was measured with murine 
IFNγ ELISA antibody pairs (BD Biosciences) as described previ-
ously (32, 202–204, 208). Absorbance was measured at 450 nm 
with a SpectraMax M2 microplate reader (Molecular Devices). 
Data were analyzed with SoftMax Pro (Molecular Devices).

preparation of Cell lysates
Cells were lysed by sonication in 50 mM Tris pH 8.0, 137 mM 
NaCl, 10% glycerol, 1% NP-40, 1 mM NaF, 10 µg/ml leupeptin, 
10  µg/ml aprotinin, 2  mM Na3VO4, and 1  mM PMSF. Protein 

concentration was determined by bicinchoninic acid protein 
assay (Thermo Fisher Scientific).

Western blotting
Lysates were separated by SDS-PAGE with 10% polyacrylamide 
gels and transferred to PVDF membranes. Membranes were 
blocked in 5% BSA in TBST for 1 h, and probed with antibodies 
to phosphorylated PERK (Cell Signaling Technology; 1:200), 
phosphorylated eIF2α (Cell Signaling Technology; 1:1,000), total 
PERK (Cell Signaling Technology; 1:1,000), and total eIF2α (Cell 
Signaling Technology; 1:1,000) overnight at 4°C. Membranes 
were washed and incubated with HRP-conjugated goat anti-rabbit 
(Cell Signaling Technology; 1:2,000) for 1 h. Chemiluminescence 
was detected with Luminata Crescendo Western HRP Substrate 
(Millipore) and analyzed with Fujifilm LAS-4000 imager and 
Multi Gage Software (Fujifilm Life Science).

statistical analysis
For ELISA, data are mean IFNγ secretion  ±  SD or SEM  
(as indicated). For Western blotting, data are representative of 
two experiments. Densitometry data are phosphorylation levels 
normalized by total and relative to that in control-treated cells. 
Statistical significance was determined by Student’s t-test, and 
statistically significant differences are shown for *p < 0.05.
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