
November 2017 | Volume 8 | Article 3201

Original research
published: 14 November 2017

doi: 10.3389/fendo.2017.00320

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Giacomina Brunetti,  

Università degli studi di Bari Aldo 
Moro, Italy

Reviewed by: 
Mehmet Muhittin Yalcin,  

Dr. Ersin Arslan Education and 
Research Hospital, Turkey  

Luisa Politano,  
Università degli Studi della Campania 

L. Vanvitelli Naples, Italy

*Correspondence:
Sabrina Corbetta 

sabrina.corbetta@unimi.it

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted  

to Bone Research,  
a section of the journal  

Frontiers in Endocrinology

Received: 22 August 2017
Accepted: 01 November 2017
Published: 14 November 2017

Citation: 
Dozio E, Passeri E, Cardani R, 

Benedini S, Aresta C, Valaperta R, 
Corsi Romanelli M, Meola G, 

Sansone V and Corbetta S (2017) 
Circulating Irisin Is Reduced in Male 

Patients with Type 1 and Type 2 
Myotonic Dystrophies. 

Front. Endocrinol. 8:320. 
doi: 10.3389/fendo.2017.00320

circulating irisin is reduced in Male 
Patients with Type 1 and Type 2 
Myotonic Dystrophies
Elena Dozio1†, Elena Passeri2†, Rosanna Cardani3, Stefano Benedini2, Carmen Aresta2,  
Rea Valaperta4, Massimiliano Corsi Romanelli1,5, Giovanni Meola1,6, Valeria Sansone1,7  
and Sabrina Corbetta1,2*

1 Department of Biomedical Sciences for Health, University of Milan, Milan, Italy, 2 Endocrinology and Diabetology Service, 
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy, 3 Laboratory of Muscle Histopathology and Molecular Biology, IRCCS 
Policlinico San Donato, Milan, Italy, 4 Research Laboratories, IRCCS Policlinico San Donato, Milan, Italy, 5 Laboratory of 
Medicine Unit SMEL-1, IRCCS Policlinico San Donato, Milan, Italy, 6 Neurology Unit, IRCCS Policlinico San Donato, Milan, 
Italy, 7 Centro Clinico Nemo, Neurorehabilitation Unit, Milan, Italy

context: Myotonic dystrophies (DM) are dominantly inherited muscle disorders charac-
terized by myotonia, muscle weakness, and wasting. The reasons for sarcopenia in DMs 
are uncleared and multiple factors are involved. Irisin, a positive hormone regulator of 
muscle growth and bone, may play a role.

Objectives: To investigate (1) circulating irisin in a series of DM1 and DM2 male patients 
compared with healthy controls and (2) the relationships between irisin and anthropo-
metric, metabolic and hormonal parameters.

Design and study participants: This is a cross-sectional study. Fasting blood samples 
for glucometabolic, gonadic, bone markers, and irisin were collected from 28 ambulatory 
DM1, 10 DM2, and 23 age-matched healthy male subjects. Body composition and bone 
mineralization [bone mineral density (BMD)] were measured by DEXA. Echocardiographic 
assessment and visceral adiposity, namely, liver and epicardial fat, were investigated by 
ultrasound. Irisin released from cultured myotubes derived from 3 DM1, 3 DM2, and 3 
healthy donors was assayed.

results: Plasma irisin levels were definitely lower in both DM1 and DM2 patients than 
in controls with no difference between DM1 and DM2. Irisin released from DM1 and 
DM2 myotubes was similar to that released from myotubes of the non-DM donors, 
though diabetic DM2 myotubes released more irisin than DM1 myotubes. There was 
no correlation between irisin and muscle strength or lean mass in both DM1 and DM2 
patients. In DM1 patients, plasma irisin levels correlated negatively with oxygen con-
sumption and positively with insulin resistance, while in DM2 patients plasma irisin 
levels positively correlated with fat mass at arms and legs levels. No correlation with 
visceral fat, left ventricular mass, and gonadal hormones could be detected. In both 
DM1 and DM2 patients, legs BMD parameters positively correlated with plasma irisin 
levels.
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conclusion: Plasma irisin is reduced in both DM1 and DM2 male patients likely reflect-
ing muscle mass reduction. Moreover, insulin resistance may contribute to modulation of 
plasma irisin in DM1 patients. The irisin-mediated cross talk muscle–adipose tissue–bone 
may be active also in the male myotonic dystrophies’ model.

Keywords: myotonic distrophies, myotubes, irisin, fat mass, insulin resistance, bone density

both fluorescence in situ hybridization on muscle frozen sections 
using a (CAGG) 5 probe and by Southern blot-based kit (15).

All the DM patients were ambulant. Patients aged <18 and 
>70 years, with heart, kidney, or liver failure, previous or current 
corticosteroid treatment, hormone replacement, anti-epileptic 
therapy were excluded. All the participants gave their written 
informed consent and the local ethical committee approved 
the study protocol. The study complied with the Declaration of 
Helsinki.

clinical, Biochemical, and hormonal 
assessment
Anthropometric measurements were investigated in all patients 
and healthy controls, including height, weight, and body mass 
index. Abdominal fat was evaluated as waist circumference, 
liver fat, and epicardic fat were evaluated by ultrasound imag-
ing, as previously described (16). Calculation of resting energy 
expenditure was performed by indirect calorimetry (VMAX 
Encore, VIASYS Healthcare, Inc., Yorba Linda, CA, USA). All 
DM patients were studied by routine ultrasound cardiac imaging 
for the evaluation of cardiac mass. Muscle strength was deter-
mined according to the modified 5-point MRC scale (Medical 
Research Council) in the upper and lower limbs for a total of 150 
maximum score (Medical Research). Stage of the disease for DM1 
patients was defined using Muscular Impairment Rating Scale 
(17). Mobility was assessed according to Rivermead Mobility 
Index (RMI) (18). A subgroup of 15 DM1 and 10 DM2 patients 
was further investigated by dual-energy X ray absorptiometry 
(DEXA) total body scanner for regional body composition and 
for the measurement of segmental bone mineral density (BMD) 
using a Hologic densitometer. Regarding the lower and upper 
limbs, we considered a mean value of the BMDs measured at left 
and right limbs. Participants were scanned in light clothing, while 
lying flat on their backs with arms at their sides.

Venous blood samples were collected after an overnight fasting 
in all patients for determination of glucose, total and HDL choles-
terol, triglycerides, albumin, HbA1c levels according to routinely 
used laboratory kits. To assess calcium and bone metabolism, 
calcium, phosphate, creatinine albumin and alkaline phosphatase 
were measured according to routinely used laboratory kits. Serum 
PTH levels were determined by ElectroChemiLuminescence on 
an Elecsys 2010 (Roche Diagnostics, Mannheim, Germany) and 
serum 25OHvitamin D (25OHD) was measured by a chemilu-
minescent assay (LIAISON® test, DiaSorin Inc., Stillwater, MN, 
USA). Gonadic function was assessed by measurement of serum 
total testosterone (T), SHBG, 17βestradiol, LH, and FSH levels by 
ECLIA assays (Roche Diagnostic, Milan, Italy). Free testosterone 
(free T) was calculated from T, SHBG and albumin according 

inTrODUcTiOn

Skeletal muscle is emerging as an endocrine organ. A number 
of biological active molecules are expressed and released from 
muscle cells known as myokines (1). Among them, irisin, the 
cleaved fragment of the transmembrane protein type-III domain 
containing protein 5 (FNDC5), was shown to induce adipocyte 
browning. Irisin acts on subcutaneous adipose tissue increasing 
thermogenesis and energy expenditure, therefore granting pro-
tection against obesity and insulin resistance (2). Moreover, irisin 
stimulates myogenesis (3). The circulating 22 kDa form of irisin 
has been quantitated in human plasma by mass spectrometry (4, 
5). Plasma irisin levels are increased in mice and humans after 
short-term exercise (6), and it is emerging as a sensitive marker 
for muscle weakness and atrophy (7).

Myotonic dystrophies (DM) are multisystemic disorders 
affecting skeletal muscles, with myotonia, muscle weakness and 
atrophy (8). Myotonic dystrophy type 1 (DM1) is the most com-
mon adult form of muscular dystrophy, while myotonic dystro-
phy type 2 (DM2) is rare. DM1 is due to a CTG repeat expansion 
in the DMPK gene on chromosome 19q13, while an expansion 
of CCTG repeat in the CNBP gene on chromosome 3q21 causes 
DM2 (9). Multiple organs are involved including pancreas, liver, 
gonads, thyroid, and bone. Insulin resistance, liver steatosis, 
hypogonadism, goiter, and vitamin D deficiency are common 
features. Sarcopenia is multifactorial, though it is likely that the 
endocrine abnormalities play a role (10). At the skeletal muscle 
level, still there is no mechanistic explanation for the observed 
muscle weakness and atrophy in DM patients (11–13).

Here, we tested the hypothesis that DM-related myopathic 
changes of skeletal muscle cells might impair their endocrine 
function, therefore contributing to the non-muscle phenotype 
of both DM conditions, namely, insulin resistance, lipid profile 
alterations, visceral fat distribution, and bone mineral impair-
ment. Therefore, we investigated the circulating and myotubes-
released irisin in DM patients compared with non-DM donors.

MaTerials anD MeThODs

study Population
Twenty-eight male patients (44.7  ±  11.6  years; mean  ±  SD) 
affected with adult-onset DM1, 10 male patients affected with 
DM2 (56.7 ± 9.3 years) and 23 age-matched, physically active, 
male healthy control subjects (49.5 ± 8.3 years) were consecu-
tively enrolled. We focused the study in male patients to avoid 
gender differences in the gonadal hormonal status. Clinical and 
bioptic diagnosis of DM1 was genetically confirmed by Southern 
blot-based kit (14). Clinical diagnosis of DM2 was confirmed by 
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to the method of Vermeulen et  al. (19). Serum anti-Müllerian 
hormone (AMH) and inhibin B concentrations were measured 
by a II generation ELISA kit (Beckman Coulter, Brea, CA, USA).

Plasma irisin levels were measured by an irisin/FNDC5 
(extracellular domain molecule: epitope 16-127) assay kit 
(Phoenix Pharmaceuticals, CA, USA; sensitivity 1.3 ng/ml, range 
0.1–1,000 ng/ml and linear range between 1.29 and 27.5 ng/ml) 
(20, 21). Antibody used in this kit recognizes recombinant full 
length irisin, irisin (42–112) (100%) and recombinant FNDC5, 
isoform 4 (9%), but not the irisin precursor C-terminal 48-mer 
FNDC5 (165–212) and irisin (42–95). Irisin concentrations in 
conditioned media were determined using the same kit.

Primary human skeletal Muscle cell 
cultures
Human satellite cells were isolated from biceps brachii muscle 
biopsies from 3 DM1, 3 DM2 patients and from three subject with 
no sign of neuromuscular disease used as controls, as previously 
described (22). Myoblasts were grown in HAM’s F10 medium 
(Sigma-Aldrich) supplemented with 15% FBS (Euroclone), 
0.5 mg/mL albumin from bovine serum (BSA, Sigma-Aldrich), 
0.5 mg/mL fetuin (Sigma-Aldrich), 0.39 µg/mL dexamethasone, 
10 ng/mL epidermal growth factor, 0.05 mg/mL insulin, 3 mg/
mL glucose, 100 U/mL penicillin, and 100 µg/mL streptomycin 
(proliferative medium). For this study, cells from DM and con-
trol patients were plated at a density of 60,000 cells per 35 mm 
dishes. When myoblasts reached 80% of confluence, proliferative 
medium was replaced by differentiative medium (DMEM/High 
Glucose supplemented with 7% FBS, in presence of 100 U/mL 
penicillin, 100 µg/mL streptomycin, and 0.01 mg/mL insulin) to 
allow myoblasts fusion. Myotubes and conditioned media were 
harvested after 5 days of differentiation (T5) and irisin concentra-
tion was determined after 6 h of incubation in serum and fetuin-
free conditioned media.

immunofluorescence, Myogenic Purity, 
and Differentiative capability
Immunofluorescence has been performed on proliferating 
myoblasts and on T5 myotubes Muscle cell cultures were fixed 
in 4% paraformaldehyde for 15 min at 4°C. After fixation, cells 
were washed several times in PBS and then permeabilized in 0.4% 
Triton X 100 in PBS for 5 min. After washing in PBS, non-specific 
binding sites were blocked with NGS (Dako-Cytomation) at a 
dilution 1:20 in PBS + 2% BSA for 20 min at room temperature. 
Myoblast and T5 myotubes were then incubated, respectively, 
with a primary antibody mouse monoclonal anti-desmin (CD33, 
Dako, 1:100 in PBS  +  2%BSA) and a mouse monoclonal anti 
MHC-fast (Sigma- Aldrich, 1:600 in PBS + 2%BSA) for 1 h at 
room temperature. After washing in PBS 3× 5  min, cells were 
incubated for 1 h at room temperature with secondary antibodies 
(goat anti mouse Alexa 488-labeled; Molecular Probes, Eugene, 
OR, USA; 1:400 in PBS + 2%BSA). After washing in PBS 3× 5 min, 
nuclei were stained with 165 nM 4,6-diamidino-2-phenylindole. 
Cells were finally mounted with Mowiol and examined using 
a fluorescence microscope. Myogenic purity was evaluated on 
desmin immunostained myoblasts. The percentage of desmin 

positive myoblasts was calculated as the number of positive cells 
vs the total number of cells observed. Differentiative capability 
was evaluated as fusion index on T5 myotubes MHC-fast myosin 
immunostained. Fusion index was determined as number of 
nuclei in multinucleated myotubes expressed as a percentage of 
the total number of nuclei. At least 100 nuclei were counted in at 
least 10 different optical fields randomly chosen.

statistical analysis
Continuous variable are presented as mean  ±  SD; normal 
distribution of continuous variables was tested: plasma irisin, 
insulin and HOMA-IR levels failed to pass normality test, 
therefore irisin values were normalized by log2 transformation 
for further statistical analysis. Simple correlation analyses were 
performed using Pearson correlation. Categorical data are 
presented as percentages. Fisher exact test or χ2 test were also 
used to compare the categorical variables among the different 
groups. Groups were compared using T test for normal vari-
ables or Mann–Whitney U-test for non-parametric variables. 
A P value less than 0.05 was considered significant. Statistical 
analysis was performed using Prism 6.0.

resUlTs

circulating irisin in DM1 and  
DM2 Male Patients
At rest, plasma irisin levels detected in male healthy physically 
active subjects ranged from 1.8 to 5.6 ng/mL [3.0 (2.4–3.5) ng/mL, 
median, range interquartile]. Plasma irisin levels in DM1 patients 
ranged 0.68 to 2.52 ng/mL; median plasma irisin level in DM1 
patients was 1.4 (1.1–1.5) ng/mL, and it was significantly lower 
than the median level detected in healthy controls (P < 0.0001) 
(Figure 1A). Plasma irisin levels detected in patients with DM1 
did not differ significantly from levels detected in patients with 
DM2 [1.1 (1.0–1.5) ng/ml], which were definitely lower than 
levels detected in controls (Figure 1A).

irisin release from Myotubes of DM1  
and DM2 Male Patients
All starting cell populations used in this study had a myogenic purity 
higher than 80% (data not shown). All cultured myotube prepara-
tions from DM1, DM2 patients and control donors showed a fusion 
index of about 60% (data not shown). The DM2 myotubes were 
from patients with diet-treated diabetes, while both DM1 and con-
trol donors myotubes were from normoglycemic patients. Cultured 
myotubes derived from DM patients’ biopsies released detectable 
amounts of irisin in the medium (Figure 1B). Irisin released from 
DM1 myotubes was significantly lower than that released from the 
DM2 myotubes (0.22 ± 0.07 vs 0.41 ± 0.07 ng/ml; P = 0.03), though 
they both did not significantly differ from that released from healthy 
controls myotubes (0.33 ± 0.18 ng/ml; Figure 1B).

correlations between Plasma irisin levels 
and Metabolic Parameters in DM1 Patients
There was any significant correlation between plasma irisin levels 
and the age of patients at time of clinical evaluation or with the 
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FigUre 1 | (a) Plasma irisin levels in DM1, DM2 male patients and 
age-matched, physically active, male healthy controls. *P < 0.0001 by 
ANOVA. (B) Surnatant irisin levels from 5 days-differentiated myotubes 
derived from DM1, DM2 patients and healthy controls; *P = 0.03.
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entity of triplet expansions. Any correlation could be detected 
between plasma irisin and parameters of muscle strength and 
performance, namely MRC and RMI (Table 1). Both total and 
segmental lean masses did not show any significant correlation 
with plasma irisin levels. Cardiac muscle mass has also been 
evaluated in DM patients by measurement of left ventricular 
mass by routine echocardiography (Table S1 in Supplementary 
Material): plasma irisin levels did not show any significant corre-
lation with the left ventricular mass. Moreover, all the parameters 
describing fat mass (Table  1) were not correlated with irisin 
levels in DM1 patients, while a negative correlation was detected 
between plasma irisin levels and VO2 consumption (r = −0.429, 
P = 0.029).

In normoglycemic DM1 patients (n  =  27), plasma irisin 
levels positively correlated with insulin (r  =  0.457; P  =  0.017; 
Figure  2A) and HOMA-IR (r =  0.428; P =  0.026; Figure  2B). 
Any significant correlation was detected between plasma irisin 

and serum glucose as well as with lipid profile, namely serum total 
cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides 
levels (Table  1). Similarly, there was any correlation with both 
Sertoli and Leydig cell hormones, namely, serum total and free 
testosterone, serum inhibin B and AMH levels (Table 1).

Plasma irisin levels were positively correlated with serum 
25OHD in DM1 patients (r  =  0.451; P  =  0.018); indeed, after 
adjustment for the fat mass, the correlation was no longer signifi-
cant suggesting that it is mediated by the known correlation with 
the fat mass (23). Finally, in normoglycemic DM1 patients plasma 
irisin positively correlated with pelvis BMD (r = 0.622, P = 0.041) 
and mean legs BMD (r = 0.569, P = 0.045) (Table 2).

correlations between Plasma irisin levels 
and Metabolic Parameters in DM2 
Patients
Plasma irisin levels in DM2 patients did not correlate with age, 
and parameters of muscle strength and performance, MRC and 
RMI, as observed in DM1 patients (Table 1). Though total and 
segmental lean masses, as well as cardiac left ventricular mass, 
did not show any significant correlation with plasma irisin levels 
in DM2 patients (Table 1; Table S1 in Supplementary Material), 
total fat mass (Figure 3A), and fat mass at arms and legs levels 
positively correlated with plasma irisin levels (Table 3).

At variance with DM1 patients, any significant correlation 
could be detected with parameters of insulin resistance and glu-
cose metabolism as well as with lipid profile, gonadal function, 
and vitamin D status in normoglycemic DM2 patients (Table 1). 
Plasma irisin positively correlated with both T-score (r = 0.679, 
P  =  0.031; Figure  3B and Table  2) and Z-score (r  =  0.719, 
P = 0.019) at femur neck level in DM2 patients. Indeed, consider-
ing normoglycemic DM2 patients (n = 6) in order to exclude the 
effect of diabetes, the correlation could not be further detected, 
likely due to the small sample size.

DiscUssiOn

Myokines modulate processes related to energy metabolism and 
muscle regenerative capacity in active muscle; moreover, they 
modulate plasticity of other organs and tissues as a part of the 
adaptive response to acute and/or regular exercise. The discovery 
of irisin raised great interest in the scientific community for its 
role as mediator of the cross talk between muscle and fat (24) and, 
more recently, between muscle and bone (25, 26). Nonetheless, 
some Authors claimed that the poor antibodies specificity against 
irisin give artifacts in measuring human irisin; indeed, by using 
an unbiased assay, human irisin has been demonstrated and 
quantitated in human plasma samples (5). The ELISA assays used 
in the present study detected irisin concentrations in the plasma 
samples from the male healthy controls similar to those detected 
by tandem mass spectrometry in sedentary males (5).

Though the role of irisin in clinical diseases is almost unknown, 
its functional characteristics suggest it may be involved in muscle 
dystrophies. Patients with DM1 and DM2 have muscle wasting 
and sarcopenia, involving proximal or distal segments of the 
extremities, respectively. In the present study, we first investigated 
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TaBle 1 | Clinical, anthropometric, hormone, and metabolic parameters in DM1, DM2, patients, and healthy controls.

Parameters DM1 (n = 28) DM2 (n = 10) P-value* controls (n = 23)

Age 44.7 ± 11.5 56.7 ± 9.3 0.005 45.6 ± 14.5
BMI (kg/m2) 25.1 ± 4.1 26.8 ± 4.4 0.267 25.6 ± 3.06
Normal weight, % 18 < BMI ≤ 25 57 60 1.000 62
Overweight, % 25 < BMI ≤ 30 36 20 0.453 23
Obesity, % 30 < BMI ≤ 35 7 20 0.279 15

MRC scale 128.8 ± 14.9 145.4 ± 4.6 0.002
MIRS scale 12.4 ± 3.4 14.5 ± 1.0 0.063

Waist, cm 95.8 ± 10.2 97.2 ± 13.9 0.744
Hip, cm 98.5 ± 8.4 98.1 ± 11.5 0.912
Waist/hip 0.97 ± 0.05 0.99 ± 0.05 0.355
VO2, mL/kg/min 2.5 ± 0.5 2.6 ± 0.3 0.754
REE 1,351.7 ± 224.4 1,358.2 ± 280.7 0.942
EF, systolic, mm 5.99 ± 2.90 6.00 ± 1.15 0.994
Hepatic steatosis, % 57.1 70.0 0.269

Glucose, mg/dL 79.6 ± 9.9 91.8 ± 24.3 0.033
Insulin, microU/mL 10.7 ± 15.4 15.1 ± 11.7 0.422
HOMA-IR 2.09 ± 2.78 3.73 ± 3.33 0.136
Insulin resistance, % 14.3 60.0 0.010
Diabetes mellitus, % 3.5 40.0 0.012
HbA1c, % 5.29 ± 0.42 6.05 ± 1.38 0.014
Total-C, mg/dL 203.6 ± 39.8 218.7 ± 41.3 0.314
HDL-C, mg/dL 49.2 ± 11.6 52.6 ± 13.8 0.461
LDL-C, mg/dL 125.9 ± 34.1 137.6 ± 34.7 0.363
TG, mg/dL 145.9 ± 67.2 142.5 ± 94.7 0.902
Dyslipidemia, % 53.6 80.0 0.259

Testosterone, ng/dL 400.3 ± 147.6 344.2 ± 156.5 0.317
Free-T, ng/dL 7.33 ± 3.31 5.78 ± 1.79 0.168
17β-estradiol, pg/mL 46.4 ± 12.4 52.8 ± 11.5 0.180
SHBG, nmol/L 42.6 ± 17.0 42.4 ± 22.4 0.976
LH, mUI/L 8.5 ± 5.0 12.3 ± 5.8 0.057
FSH, mUI/L 17.6 ± 13.1 31.9 0.011
AMH, ng/mL 3.09 ± 3.42 0.64 ± 0.38 0.055
Inhibin B, pg/mL 90.67 ± 107.64 37.51 ± 24.54 0.181
Hypogonadism, % 25.0 50.0 0.235

BMI, body mass index; MRC, modified 5-point Medical Research Council scale; MIRS, muscular impairment rating scale; REE, resting energy expenditure; EF, epicardial fat; C, cholesterol; 
TG, triglycerides; free-T, free testosterone; SHBG, sex-hormone binding globuline; LH, luteinizing hormone; FSH, follicle-stimulating hormone; AMH, anti-Müllerian hormone.
*Comparison between DM1 and DM2 patients.
Bold means “statistically significant differences”.
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circulating levels of the myokine irisin in male DM patients in 
resting conditions and reported that plasma irisin was definitely 
decreased in both DM1 and DM2 patients compared with age-
matched male healthy controls. We investigated whether this 
reduction was related to muscle mass reduction or to an impaired 
muscle endocrine function in DM patients. The amount of irisin 
released from cultured myotubes derived from DM1 and DM2 
patients was unexpectedly similar to that detected in the medium 
of the myotubes derived from healthy donors, suggesting that the 
decreased plasma irisin levels likely reflect the skeletal muscle 
mass reduction rather than an impaired endocrine function of the 
muscle fibers. Indeed, irisin release from DM2 myotubes, whose 
patients had overt diabetes mellitus, was significantly higher 
than the amount released from DM1 non-diabetic myotubes. It 
is worth noting that myotubes from patients with type 2 diabetes 
expressed and secreted the highest levels of FNDC5 mRNA and 
irisin, respectively (27), resembling our finding in DM2 patients.

Although DM1 and DM2 have similar symptoms, they present 
dissimilarities making them clearly distinct diseases (28). Distal 
muscle weakness, facial weakness, and wasting are the core 

features in adult-onset DM1, while DM2 patients experience 
varying grip myotonia, thigh muscle stiffness, and muscle pain, 
as well as proximal muscle weakness (28). Besides myotonia and 
progressive muscle weakness, DM1 and DM2 are multisystemic 
syndromes and multiple metabolic functions are impaired. The 
analysis of the correlations between plasma irisin levels and 
anthropometric and metabolic parameters showed a distinct 
pattern in DM1 and DM2 patients, respectively, in DM1 patients, 
plasma irisin levels correlated negatively with oxygen consump-
tion and positively with insulin resistance, while in DM2 patients 
plasma irisin levels positively correlated with fat mass at arms 
and legs levels.

To discuss in detail our finding, it has to be considered that 
the main sources of circulating irisin are skeletal muscle, cardiac 
muscle (29) and white adipose tissue. First, despite in a cohort 
of sedentary middle-aged men, circulating irisin was positively 
associated with muscle mass and muscle strength (30), both 
DM1 and DM2 patients did not present any significant correla-
tion with muscle strength, muscle mass, or measures of disease 
severity. Second, knockdown of irisin in zebrafish decreased heart 
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TaBle 3 | Significant correlations between plasma irisin levels and regional and 
total fat measured by DEXA in non-diabetic DM2 patients.

Parameters r P-value

Fat left arm 0.934 0.020
Fat right arm 0.976 0.005
Fat left leg 0.981 0.003
Fat right leg 0.991 0.001
Fat total body 0.830 0.041

TaBle 2 | Bone metabolism parameters and regional bone mineral densities 
evaluated by DEXA in DM1 and DM2 patients.

DM1 (n = 15) DM2 (n = 10) P-value

Bone metabolism parameters
Alb-corrected calcium, mg/dL 9.3 ± 0.4 9.3 ± 0.5 0.887
Phosphate, mg/dL 2.96 ± 0.58 3.29 ± 0.43 0.113
ALP, U/L 85.8 ± 35.2 64.8 ± 11.7 0.075
PTH, pg/mL 51.9 ± 41.5 57.2 ± 24.0 0.704
25OHD, ng/mL 16.4 ± 13.2 16.7 ± 10.4 0.960

Bone mineral density (BMD)
BMD mean arms, g/cm2 0.84 ± 0.08 0.76 ± 0.06 0.037
BMD mean ribs, g/cm2 0.77 ± 0.27 0.67 ± 0.09 0.390
BMD T spine, g/cm2 0.90 ± 0.28 0.91 ± 0.12 0.904
BMD L spine, g/cm2 1.14 ± 0.13 1.08 ± 0.14 0.391
BMD pelvis, g/cm2 1.27 ± 0.18 1.05 ± 0.08 0.008
BMD mean legs, g/cm2 1.28 ± 0.14 1.17 ± 0.08 0.069
BMD subtotal, g/cm2 1.10 ± 0.11 0.97 ± 0.06 0.014
BMD head, g/cm2 2.12 ± 0.49 1.88 ± 0.24 0.243
BMD total, g/cm2 1.21 ± 0.13 1.09 ± 0.06 0.039

Alb-corrected calcium, albumin corrected calcium; ALP, alkaline phosphatase activity; 
PTH, parathormone; 25OHD, 25 hydroxyvitamin D; T spine, thoracic spine; L spine, 
lumbar spine.
Bold means “statistically significant differences”.

FigUre 3 | Log2-transformed irisin levels positively correlated with total 
body fat (a) and with femoral neck T-score values in the whole series of DM2 
patients (n = 10) (B). Darker circles indicate DM2 patients with diabetes 
mellitus; continuous lines represent media values, dashed lines represent the 
95% confidence intervals.

FigUre 2 | Log2-transformed irisin levels positively correlated with log2 
serum insulin levels (a) and with log2 HOMA-IR values in non-diabetic DM1 
patients (n = 27) (B); continuous lines represent media values, dashed lines 
represent the 95% confidence intervals.
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rate, diastolic volume, and cardiac output (29). DM1 and DM2 
patients suffer from cardiac damage including abnormalities of 
the conduction system (31) and myocardial fibrosis (32, 33); 

though left ventricular mass was reduced in more than 60% of 
DM patients, in agreement with previous reports (33), plasma 
irisin did not correlate with left ventricular mass in both DM1 
and DM2 patients. Third, adipose tissue expresses the FNDC5 
gene and secretes irisin, but less than skeletal muscle (34) and 
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circulating irisin levels are positively associated with fat mass 
(20, 35–38), while negatively correlate with visceral adiposity 
in men (30). In our cohort, both DM1 and DM2 patients were 
characterized by a fat redistribution with increasing visceral fat 
mass, namely abdominal, liver, epicardial fat, while subcutaneous 
fat was reduced (16, 39). Similar to what reported in healthy sub-
jects, DM2 patients were characterized by a positive correlation 
between plasma irisin levels and the arms and legs fat measured by 
DEXA, while in DM1 patients, no correlation could be detected 
with the total body and regional fat mass as well as with visceral 
adiposity parameters, such as waist circumference, liver steatosis, 
and epicardial fat thickness.

Secreted irisin targets different tissues, mainly white adipose 
tissue and bone. In white adipose tissue, irisin induces browning, 
increases thermogenesis and energy expenditure. Oxygen con-
sumption is reduced in DM1 patients (16), and here we reported 
that it negatively correlated with plasma irisin levels, suggesting 
that irisin does not exert the expected thermogenic effect on adi-
pose tissue in DM1 patients. Bone is a recently described target 
of irisin, which plays a role in the control of bone mass. Irisin 
exerts its effect mainly on osteoblast lineage by enhancing dif-
ferentiation and activity of bone-forming cells (40). In humans, 
an inverse correlation between irisin levels and vertebral fragility 
fractures was described in overweight subjects, though BMD 
or lean mass were not correlated with irisin levels (41, 42). In 
both DM1 and DM2 patients, we observed positive correlations 
between plasma irisin and bone densities at pelvis and legs and at 
the femoral neck levels, respectively. Though the effect of diabetes 
could not be excluded in DM2 patients, this finding support the 
irisin-mediated cross talk between muscle and bone.

Finally, male DM1 and DM2 patients are metabolically 
unhealthy; in particular, they are hypogonadic, insulin resistant, 
and dyslipidemic. Hypogonadism frequently occurs in DM1 and 
DM2 patients (16), nonetheless plasma irisin levels were not cor-
related with parameters of gonadal hormone function. The finding 
is in agreement with experimental evidence reporting that orchi-
ectomy in rats does not affect serum irisin levels and testosterone 
treatment in orchiectomized rats does not affect muscle Fdnc5 
expression as well as serum irisin levels (43). Insulin resistance 
occurs in 25.0% of DM1, while overt diabetes was diagnosed in 
3.5% of DM1. Recently, in sedentary subjects and in non-diabetic 
adults, plasma irisin was found to positively correlate with insulin 
and HOMA-IR (44, 45). Similarly, we observed a positive correla-
tion between plasma irisin and insulin and HOMA-IR values in 
non-diabetic DM1 patients, while insulin resistance, which could 
be detected in 60.0% of non-diabetic DM2 patients, did not show 
any significant correlation with plasma irisin levels.

In conclusion, DM1 and DM2 male patients were characterized 
by reduced plasma irisin, which likely reflects muscle wasting as 

DM1 and DM2 muscle fibers conserve the ability to secrete irisin. 
Admittedly, though the series of DM1 and DM2 patients are well 
characterized about the endocrine and metabolic phenotype, the 
small sample size prevents to define the role of insulin resistance 
and hyperglycemia in regulating plasma irisin levels. However, 
though mainly based upon correlations, our results suggest 
that muscle endocrine function may be more impaired in DM1 
patients than in DM2 patients.

Based on recently reported results in mice (26), we speculate 
that replacement with recombinant irisin in young DM patients 
might improve their functional and metabolic profile; these pro-
spective view is also sustained by in vitro data showing that irisin 
stimulates myogenesis, as suggested by increased myocyte cell 
proliferation, higher myogenin/MYOG mRNA levels together 
with lower transcripts of myostatin/MSTN and dystrophin/DMD, 
and the muscle atrophy-related factors MuRF1 and MAFbx (5, 
46). Considering that during differentiation DM1 and DM2 
myotubes do not increase myogenin (47), treatment with recom-
binant irisin may be of interest in DM1 and DM2 management.

eThics sTaTeMenT

All the participants gave their written informed consent and the 
local ethical committee approved the study protocol. The study 
complied with the Declaration of Helsinki.

aUThOr cOnTriBUTiOns

EP, SB, CA, and VS enrolled and collected clinical data, serum 
samples, and muscle biopsies from patients and controls; RV per-
formed genetic diagnosis; RC realized myotubes characterization 
and cultures and collected supernatant samples; ED performed 
ELISA assays; MC, GM, and SC supervised and checked all the 
experiments; SC and VS conceived the protocol, ensured the 
accuracy and the integrity of the work, and wrote the manuscript. 
All the Authors critically reviewed and approved the manuscript 
draft.

FUnDing

The study was partially supported by Ricerca Corrente from 
IRCCS Policlinico San Donato and from IRCCS Istituto 
Ortopedico Galeazzi (L4080).

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online 
at http://www.frontiersin.org/article/10.3389/fendo.2017.00320/
full#supplementary-material.

reFerences

1. Gamas L, Matafome P, Seiça R. Irisin and myonectin regulation in the insulin 
resistant muscle: implications to adipose tissue: muscle crosstalk. J Diabetes 
Res (2015) 2015:359159. doi:10.1155/2015/359159 

2. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-
dependent myokine that drives brown-fat-like development of white fat and 
thermogenesis. Nature (2012) 481:463–8. doi:10.1038/nature10777 

3. Rodriguez A, Becerril S, Méndez-Giménez L, Ramìrez B, Sainz N, Catalan V,  
et  al. Leptin administration activates irisin-induced myogenesis via nitric 
oxide-dependent mechanisms, but reduces its effect on subcutaneous fat 
browining in mice. Int J Obes (Lond) (2015) 39:397–407. doi:10.1038/
ijo.2014.166 

4. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et  al. Irisin 
and FGF21 are cold-induced endocrine activators of brown fat function in 
humans. Cell Metab (2014) 19:302–9. doi:10.1016/j.cmet.2013.12.017 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/article/10.3389/fendo.2017.00320/full#supplementary-material
http://www.frontiersin.org/article/10.3389/fendo.2017.00320/full#supplementary-material
https://doi.org/10.1155/2015/359159
https://doi.org/10.1038/nature10777
https://doi.org/10.1038/ijo.2014.166
https://doi.org/10.1038/ijo.2014.166
https://doi.org/10.1016/j.cmet.2013.12.017


8

Dozio et al. Irisin in Patients with Myotonic Distrophies

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 320

5. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, 
et al. Detection and quantitation of circulating human irisin by tandem mass 
spectrometry. Cell Metab (2015) 22:734–40. doi:10.1016/j.cmet.2015.08.001 

6. Ahima RS, Park H-K. Connecting myokines and metabolism. Endocrinol 
Metab (Seoul) (2015) 30:235–45. doi:10.3803/EnM.2015.30.3.235 

7. Chang JS, Kim TH, Nguyen TT, Park KS, Kim N, Kong ID. Circulating irisin 
levels as a predictive biomarker for sarcopenia: a cross-sectional communi-
ty-based study. Geriatr Gerontol Int (2017). doi:10.1111/ggi.13030 

8. Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernandez-Torron R, Garcia-
Puga M, Matheu A, et  al. Muscle wasting in myotonic dystrophies: a 
model of premature aging. Front Aging Neurosci (2015) 7:125. doi:10.3389/
fnagi.2015.00125 

9. Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and 
therapeutic challenges. Lancet Neurol (2012) 11:891–905. doi:10.1016/
S1474-4422(12)70204-1 

10. Boirie Y. Physiopathological mechanism of sarcopenia. J Nutr Health Aging 
(2009) 13:717–23. doi:10.1007/s12603-009-0203-x 

11. Bassez G, Chapoy E, Bastuji-Garin S, Radvanyi-Hoffman H, Authier FJ, Pellisser JF,  
et al. Type 2 myotonic dystrophy can be predicted by the combination of type 
2 muscle fibre central nucleation and scattered atrophy. J Neuropathol Exp 
Neurol (2008) 67:319–25. doi:10.1097/NEN.0b013e31816b4acc 

12. Pisani V, Panico MB, Terracciano C, Bonifazi E, Meola G, Novelli G, et al. 
Preferential central nucleation of type 2 myofibers is an invariable feature of 
myotonic dystrophy type 2. Muscle Nerve (2008) 38:1405–11. doi:10.1002/
mus.21122 

13. Vihola A, Bassez G, Meola G, Zhang S, Haapasalo H, Paetau A, et  al. 
Histopathological differences of myotonic dystrophy type 1 (DM1) and 
PROMM/DM2. Neurology (2003) 60:1854–7. doi:10.1212/01.WNL. 
0000065898.61358.09 

14. Valaperta R, Sansone V, Lombardi F, Verdelli C, Colombo A, Valisi M, et al. 
Identification and characterization of DM1 patients by a new diagnostic 
certified assay: neuromuscular and cardiac assessments. Biomed Res Int (2013) 
2013:958510. doi:10.1155/2013/958510 

15. Valaperta R, Lombardi F, Cardani R, Fossati B, Brigonzi E, Merli I, et  al. 
Development and validation of a new molecular diagnostic assay for detection 
of myotonic dystrophy type 2. Genet Test Mol Biomarkers (2015) 18:703–9. 
doi:10.1089/gtmb.2015.0135 

16. Passeri E, Bugiardini E, Sansone VA, Pizzocaro A, Fulceri C, Valaperta R, et al. 
Gonadal failure is associated with visceral adiposity in myotonic dystrophies. 
Eur J Clin Invest (2015) 45:702–10. doi:10.1111/eci.12459 

17. Medical Research Council. AIDS to the Examination of the Peripheral Nervous 
System. London: Pendragon House (1976).

18. Mathieu J, Boivin H, Meunier D, Gaudreault M, Begin P. Assessment of a 
disease-specific muscular impairment rating scale in myotonic dystrophy. 
Neurology (2001) 56:336–40. doi:10.1212/WNL.56.3.336 

19. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple 
methods for the estimation of free testosterone in serum. J Clin Endocrinol 
Metab (1999) 84:3666–72. doi:10.1210/jcem.84.10.6079 

20. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, 
et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations 
in serum and plasma and II. mRNA expression and circulating concentra-
tions in response to weight loss and exercise. Metabolism (2012) 61:1725–38. 
doi:10.1016/j.metabol.2012.09.002 

21. Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS. 
Irisin in patients with nonalcoholic fatty liver disease. Metabolism (2014) 
63:207–17. doi:10.1016/j.metabol.2013.09.013 

22. Cardani R, Baldassa S, Botta A, Rinaldi F, Novelli G, Mancinelli E, et  al. 
Ribonucler inclusions and MBNL1 nuclear sequestration do not affect 
myoblast differentiation but alter gene splicing in myotonic dystrophy type 2. 
Neuromuscul Disord (2009) 19:335–43. doi:10.1016/j.nmd.2009.03.002 

23. Passeri E, Bugiardini E, Sansone VA, Valaperta R, Costa E, Ambrosi B, et al. 
Vitamin D, parathyroid hormone and muscle impairment in myotonic dystro-
phies. J Neurol Sci (2013) 331:132–5. doi:10.1016/j.jns.2013.06.008 

24. Dong J, Dong Y, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin 
in mice improves insulin sensitivity via irisin-mediated cross talk between 
muscle and adipose tissues. Int J Obes (2016) 40:434–42. doi:10.1038/
ijo.2015.200 

25. Colaianni G, Cinti S, Colucci S, Grano M. Irisin and musculoskeletal health. 
Ann N Y Acad Sci (2017) 1402:5–9. doi:10.1111/nyas.13345 

26. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin 
prevents and restores bone loss and muscle atrophy in hind-limb suspended 
mice. Sci Rep (2017) 7:2811. doi:10.1038/s41598-017-02557-8 

27. Kurdiova T, Balaz M, Mayer A, Maderova D, Belan V, Wolfrum C, et  al. 
Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin 
secretion in primary human myotubes. Peptides (2014) 56:1–7. doi:10.1016/j.
peptides.2014.03.003 

28. Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, 
genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 
(2015) 1852:594–606. doi:10.1016/j.bbadis.2014.05.019 

29. Sundarrajan L, Yaung C, Hahn L, Weber LP, Unniappan S. Irisin regulates 
cardiac physiology in zebrafish. PLoS One (2017) 12:e0181461. doi:10.1371/
journal.pone.0181461 

30. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, et al. Effects 
of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in 
human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 
(2014) 592:1091–107. doi:10.1113/jphysiol.2013.264655 

31. Petri H, Vissing J, Witting N, Bundgaard H, Kober L. Cardiac manifestations 
of myotonic dystrophy type 1. Int J Cardiol (2012) 160:82–8. doi:10.1016/j.
ijcard.2011.08.037 

32. Schneider-Gold C, Beer M, Köstler H, Buchner S, Sandstede J, Hahn D, 
et al. Cardiac and skeletal muscle involvement in myotonic dystrophy type 
2 (DM2): a quantitative 31=-MRS and MRI study. Nerve Muscle (2004) 
30:636–44. doi:10.1002/mus.20156 

33. Choudhary P, Nandakumar R, Greig H, Broadhurst P, Dean J, Puranik R, et al. 
Structural and electrical cardiac abnormalities are prevalent in asymptomatic 
adults with myotonic dystrophy. Heart (2016) 102:1472–8. doi:10.1136/
heartjnl-2015-308517 

34. Rodriguez A, Becerril S, Ezquerro S, Mendez-Gimenez L, Frühbeck G. 
Crosstalk between adipokines and myokines in fat browning. Acta Physiol 
(2016) 219:362–81. doi:10.1111/apha.12686

35. Huth C, Dubois MJ, Marette A, Tremblay A, Weisnagel SJ, Lacaille M, et al. 
Irisin is more strongly predicted by muscle oxidative potential than adiposity 
in non-diabetic men. J Physiol Biochem (2015) 71:559–68. doi:10.1007/
s13105-015-0402-3 

36. Crujeiras AB, Pardo M, Arturo RR, Navas-Carretero S, Zulet MA, Martinez JA,  
et al. Longitudinal variation of circulating irisin after an energy restriction-in-
duced weight loss and following weight regain in obese men and women. Am 
J Hum Biol (2014) 26:198–207. doi:10.1002/ajhb.22493 

37. Pardo M, Crujeiras AB, Amil M, Aguera Z, Jimenez-Murcia S, Baños R, et al. 
Association of irisin with fat mass, resting energy expenditure, and daily 
activity in conditions of extreme body mass index. Int J Endocrinol (2014) 
2014:857270. doi:10.1155/2014/857270 

38. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, 
et al. Irisin is expressed and produced by human muscle and adipose tissue in 
association with obesity and insulin resistance. J Clin Endocrinol Metab (2013) 
98:E769–78. doi:10.1210/jc.2012-2749 

39. Pruna L, Chatelin J, Pascal-Vigneron V, Kaminsky P. Regional body composi-
tion and functional impairment in patients with myotonic dystrophies. Muscle 
Nerve (2011) 44:503–8. doi:10.1002/mus.22099 

40. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The 
myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A (2015) 
112:12157–62. doi:10.1073/pnas.1516622112 

41. Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, BIsbinas I, Katsarou A, 
et al. Circulating irisin is associated with osteoporotic fractures in postmeno-
pausal women with low bone mass but is not affected by either teriparatide 
or denosumab treatment for 3 months. Osteoporos Int (2014) 25:1633–42. 
doi:10.1007/s00198-014-2673-x 

42. Palermo A, Strollo R, Maddaloni E, Tuccinardi D, D’Onofrio L, Briganti SI, 
et al. Irisin is associated with osteoporotic fractures independently of bone 
mineral density, body composition or daily physical activity. Clin Endocrinol 
(Oxf) (2015) 82:615–9. doi:10.1111/cen.12672 

43. Zügel M, Qiu S, Laszlo R, Bosnyak E, Weigt C, Müller D, et al. The role of sex, 
adiposity, and gonadectomy in the regulation of irisin secretion. Endocrine 
(2016) 54:101–10. doi:10.1007/s12020-016-0913-x 

44. Moreno M, Moreno-Navarrete JM, Serrano M, Ortega F, Delgado E, Sanchez-
Ragnarsson C, et  al. Circulating irisin levels are positively associated with 
metabolic risk factors in sedentary subjects. PLoS One (2015) 10:e0124100. 
doi:10.1371/journal.pone.0124100 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/j.cmet.2015.08.001
https://doi.org/10.3803/EnM.2015.30.3.235
https://doi.org/10.1111/ggi.13030
https://doi.org/10.3389/fnagi.2015.00125
https://doi.org/10.3389/fnagi.2015.00125
https://doi.org/10.1016/S1474-4422(12)70204-1
https://doi.org/10.1016/S1474-4422(12)70204-1
https://doi.org/10.1007/s12603-009-0203-x
https://doi.org/10.1097/NEN.0b013e31816b4acc
https://doi.org/10.1002/mus.21122
https://doi.org/10.1002/mus.21122
https://doi.org/10.1212/01.WNL.0000065898.61358.09
https://doi.org/10.1212/01.WNL.0000065898.61358.09
https://doi.org/10.1155/2013/958510
https://doi.org/10.1089/gtmb.2015.0135
https://doi.org/10.1111/eci.12459
https://doi.org/10.1212/WNL.56.3.336
https://doi.org/10.1210/jcem.84.10.6079
https://doi.org/10.1016/j.metabol.2012.09.002
https://doi.org/10.1016/j.metabol.2013.09.013
https://doi.org/10.1016/j.nmd.2009.03.002
https://doi.org/10.1016/j.jns.2013.06.008
https://doi.org/10.1038/ijo.2015.200
https://doi.org/10.1038/ijo.2015.200
https://doi.org/10.1111/nyas.13345
https://doi.org/10.1038/s41598-017-02557-8
https://doi.org/10.1016/j.peptides.2014.03.003
https://doi.org/10.1016/j.peptides.2014.03.003
https://doi.org/10.1016/j.bbadis.2014.05.019
https://doi.org/10.1371/journal.pone.0181461
https://doi.org/10.1371/journal.pone.0181461
https://doi.org/10.1113/jphysiol.2013.264655
https://doi.org/10.1016/j.ijcard.2011.08.037
https://doi.org/10.1016/j.ijcard.2011.08.037
https://doi.org/10.1002/mus.20156
https://doi.org/10.1136/heartjnl-2015-308517
https://doi.org/10.1136/heartjnl-2015-308517
https://doi.org/10.1111/apha.12686
https://doi.org/10.1007/s13105-015-0402-3
https://doi.org/10.1007/s13105-015-0402-3
https://doi.org/10.1002/ajhb.22493
https://doi.org/10.1155/2014/857270
https://doi.org/10.1210/jc.2012-2749
https://doi.org/10.1002/mus.22099
https://doi.org/10.1073/pnas.1516622112
https://doi.org/10.1007/s00198-014-2673-x
https://doi.org/10.1111/cen.12672
https://doi.org/10.1007/s12020-016-0913-x
https://doi.org/10.1371/journal.pone.0124100


9

Dozio et al. Irisin in Patients with Myotonic Distrophies

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 320

45. Qiu S, Cai X, Yin H, Zügel M, Sun Z, Steinacker JM, et  al. Association 
between circulating irisin and insulin resistance in non-diabetic adults: a 
meta-analysis. Metabolism (2016) 65:825–34. doi:10.1016/j.metabol.2016. 
02.006 

46. Huh IY, Dincer F, Mesfun E, Mantzoros CS. Irisin stimulates muscle 
growth-rlatedgenes and regulates adipocyte differentiation and metab-
olism in humans. Int J Obes (Lond) (2014) 38:1538–44. doi:10.1038/ 
ijo.2014.42 

47. Faenza I, Blalock W, Bavelloni A, Schoser B, Fiume R, Pacella S, et al. A role 
for PLCb1 in myotonic dystrophies type 1 and 2. FASEB J (2012) 26:3042–8. 
doi:10.1096/fj.11-200337 

Conflict of Interest Statement: The research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential conflict 
of interest.

Copyright © 2017 Dozio, Passeri, Cardani, Benedini, Aresta, Valaperta, Corsi 
Romanelli, Meola, Sansone and Corbetta. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/j.metabol.2016.02.006
https://doi.org/10.1016/j.metabol.2016.02.006
https://doi.org/10.1038/
ijo.2014.42
https://doi.org/10.1038/
ijo.2014.42
https://doi.org/10.1096/fj.11-200337
http://creativecommons.org/licenses/by/4.0/

	Circulating Irisin Is Reduced in Male Patients with Type 1 and Type 2 Myotonic Dystrophies
	Introduction
	Materials and Methods
	Study Population
	Clinical, Biochemical, and Hormonal Assessment
	Primary Human Skeletal Muscle Cell Cultures
	Immunofluorescence, Myogenic Purity, and Differentiative Capability
	Statistical Analysis

	Results
	Circulating Irisin in DM1 and 
DM2 Male Patients
	Irisin Release from Myotubes of DM1 and DM2 Male Patients
	Correlations between Plasma Irisin Levels and Metabolic Parameters in DM1 Patients
	Correlations between Plasma Irisin Levels and Metabolic Parameters in DM2 Patients

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


