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The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL) and 
vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, 
inflammatory and immune processes, coagulation, and behavior. The core element of the 
PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic 
cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple differ-
ent partners to mediate their effects in various tissues and anatomical compartments, 
indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/
vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target 
of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective 
dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic mac-
ular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced 
hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary 
outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal 
alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor 
agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with 
bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent 
detrimental effects on the myocardial microvascularization. The trial demonstrated that 
bromocriptine treatment was associated with a high rate of left ventricular recovery and 
low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear 
the risk of side effects in the areas of blood coagulation, blood pressure, and alterations 
of the mental state.

Keywords: vasoinhibins, 16K prolactin, diabetic retinopathy, diabetic macular edema, peripartum cardiomyopathy, 
levosulpiride, bromocriptine, dopamine D2 receptor

BACKGROUnD

The prolactin/vasoinhibin axis defines an endocrine system, in which the pituitary secretion of 
prolactin (PRL), proteases at the central and peripheral level, and vasoinhibins at the target tissue 
level and in the circulation act in concert to regulate blood vessel growth and function, the secretion 
of other hormones, inflammatory and immune processes, coagulation, and behavior (1–5). The core 
element of the PRL/vasoinhibin axis is the generation process of vasoinhibins, which consists in the 
proteolytic cleavage of their precursor molecule PRL, the pituitary hormone essential for lactation 
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and colloquially referred to as the “nursing hormone.” This cleav-
age, depending on the molecular site, removes a varying number 
of amino acid residues near the C-terminal end of uncleaved PRL, 
which corresponds to removal of at least the fourth alpha-helix of 
full-length PRL (6, 7). The remaining N-terminal residues assume 
a new, not yet resolved solution structure, and a new, unique array 
of endocrine, paracrine, and autocrine effects distinct from PRL 
(8). As the inhibition of angiogenesis was the first discovered 
effect, these molecules were named vasoinhibins (7, 9, 10). The 
generation, secretion, and regulation of vasoinhibin action 
integrates the hypothalamus, the pituitary, and the target tissue 
levels, which led to the description of the PRL/vasoinhibin axis 
that shares its overarching organizational principles with other 
endocrine axes (2). Vasoinhibins comprise a family of peptides, 
as multiple isoforms with variation in the number of amino acids 
and molecular mass, respectively, are present. The total number 
of vasoinhibins has yet to be determined, as well as their receptor 
binding sites, receptors, and complete signaling mechanisms, 
which are only partially known (1, 2, 4, 11, 12). Vasoinhibins 
act through a still-unidentified binding site in endothelial cell 
membranes which is distinct from the PRL-receptor (13) and can 
interact with multiple different partners to mediate their effects (2, 5, 
14, 15). This interaction varies with the diverse effects in various 
tissues and anatomical compartments, indicating the pleiotropic 
nature of vasoinhibins (1, 2, 4). The regulation of blood vessels by 
PRL and vasoinhibins has been reviewed (1, 4, 12).

The accumulation of knowledge about the functions and effects 
of the PRL/vasoinhibin axis from basic studies has reached a criti-
cal mass which has triggered translation from bench to bedside 
and back, at present culminating in two clinical studies in which 
the PRL/vasoinhibin axis is target of therapeutic interventions 
to treat diabetic retinal diseases and peripartum cardiomyopathy 
(PPCM). It is the purpose of this review to discuss the principles 
behind these clinical studies, to address further areas of clinical 
relevance, to identify major barriers and clinical problems, and to 
point to solutions with which they could be overcome.

DiABeTiC ReTinOPATHY AnD DiABeTiC 
MACULAR eDeMA

The diabetogenic action of the pituitary has been described 
by Houssay and collaborators (16, 17). This seminal work was 
awarded by the Nobel Prize in Physiology or Medicine in 1947. 
A role of pituitary hormones in the etiopathology of retinal 
alterations emerged after observations of regression of diabetic 
retinopathy in a patient with Sheehan’s Syndrome in 1953 (18). 
This has led to the use of therapies against diabetic retinopathy 
targeting the pituitary gland by stalk section or surgical ablation, 
a path which, despite beneficial retinal effects, was fortunately 
soon abandoned (19, 20). The beneficial retinal effects after stalk 
section, pituitary ablation, or Sheehan’s Syndrome were, for the 
most part, attributed to declining levels of growth hormone and 
IGF-1, but circulating PRL levels were also subject of investiga-
tions addressing the etiopathology of diabetic retinopathy  
(21, 22). However, the results of these studies were inconsistent 
and did not provide sufficient mechanistic insight to delineate the 

actions of PRL in the diseased retina. The discovery of vasoinhib-
ins, however, provided a new mechanistic framework and led to 
the reassessment of the role of PRL in the retina and its diseases. 
This reassessment was primarily based on the knowledge of the 
effects of vasoinhibins on blood vessel growth, permeability, and 
dilation, which correspond well with major pathological features 
seen in diabetic retinopathy and diabetic macular edema, for 
example, vascular leakage, retinal edema, intraretinal and vitreal 
hemorrhages, and retinal neovascularizations. How the PRL/
vasoinhibin axis performs control over blood vessel growth 
and function at the molecular level has been the subject of two 
reviews, and should, therefore, not be discussed here further, 
but there are underlying key elements of the PRL/vasoinhibin 
axis at the integrative and systemic levels that are helpful for 
understanding ongoing clinical trials (1, 4). One of these clinical 
trials investigates the effect of levosulpiride on retinal alterations 
in patients with diabetic retinopathy and diabetic macular edema 
(ClinicalTrials.gov Identifier: NCT03161652). Levosulpiride, 
an atypical neuroleptic agent, is a benzamide derivate and a 
selective dopamine D2-receptor antagonist, and treatment with 
levosulpiride is frequently associated with the development of 
hyperprolactinemia. The development of hyperprolactinemia 
with levosulpiride is due to blockage of dopamine receptors on 
the pituitary lactotrophs mediating inhibition of PRL-release 
(23). A low dose of levosulpiride is used as a prokinetic agent 
(24–26). Levosulpiride-induced hyperprolactinemia is usually 
an unintended side effect and can be accompanied by decreased 
libido, erectile dysfunction in men, and galactorrhea and amen-
orrhea in women. The clinical study on the effect of levosulpiride 
on retinal alterations in patients with diabetic retinopathy 
and diabetic macular edema, however, is an attempt to exploit 
positive effects of hyperprolactinemia, induced by a low dose 
of levosulpiride, on retinal outcomes. The principal finding that 
led to the development of this concept was a study in rats, in 
which the induction of hyperprolactinemia resulted in vasoin-
hibin accumulation in the retina and a reduction of vascular 
endothelial growth factor (VEGF)- and diabetes-induced retinal 
vasopermeability was demonstrated (27). The effect could not be 
observed in rats with genetic deletion of the PRL-receptor; also, 
the effects could be blocked by bromocriptine, which lowered 
the levels of circulating PRL and retinal vasoinhibins. Thus, the 
study indicated that circulating PRL can be incorporated into 
the eye and cleaved to vasoinhibins intraocularly, which could 
lead to beneficiary outcomes in terms of a vasoinhibin-mediated 
antagonization of VEGF- and diabetes-induced retinal vasoper-
meability (Figure 1A; Table 1). In consequence, it appeared that 
the counteraction of angiogenic factors, such as VEGF, and of 
excessive vasopermeability by the raising of ocular vasoinhibins, 
constitute direct therapeutic interventions into pathological 
pathways associated with the development of diabetic retinopa-
thy and diabetic macular edema. The development of this trial is 
also embedded into a long history of studies portraying the eye 
and its structures as targets for PRL and vasoinhibins (14, 28–40). 
The completion of this randomized, placebo-controlled clinical 
trial, which is carried out in Mexico and currently in the recruit-
ing phase, will demonstrate whether this concept can safely and 
effectively be translated to its clinical application.
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TABLe 1 | Current clinical studies with interventions into to the regulation of the prolactin/vasoinhibin axis.

Disease Clinical pathology Proposed 
pathomechanism

Therapeutic intention Therapeutic strategy Drug ClinicalTrials.
gov identifier

Diabetic retinopathy 
and diabetic macular 
edema

Retinal edema Increase in retinal 
vasopermeability

Inhibition of retinal 
vasopermeability by 
vasoinhibins

Increase PRL-secretion by 
dopamine D2-receptor antagonism

Levosulpiride NCT03161652

Peripartum 
cardiomyopathy

Low left ventricular 
ejection fraction

Vasoinhibin-mediated 
damage of myocardial 
vascularization

Inhibition of vasoinhibin 
generation in the heart

Inhibition of PRL-secretion by 
dopamine D2-receptor agonism

Bromocriptine NCT00998556

FiGURe 1 | The figure illustrates the key principles employed by two current clinical studies with interventions into the regulation of the prolactin/vasoinhibin axis 
axis. (A) One trial evaluates the effect of levosulpiride on retinal outcomes in patients with diabetic macular edema and diabetic retinopathy. Levosulpiride, a 
dopamine D2-receptor antagonist, is used to induce an increase of pituitary prolactin (PRL)-secretion via antagonization of the inhibiting effect of dopamine on 
PRL-secretion (disinhibition of PRL-release). PRL can enter the eye and be cleaved to vasoinhibins, with beneficial effects in retinal outcomes in terms of reducing 
retinal vasopermeability and their vascular endothelial growth factor-antagonism. (B) Another trial evaluated the effect of bromocriptine on the left ventricular function 
in patients with peripartum cardiomyopathy. Bromocriptine was used to inhibit pituitary PRL-secretion by dopamine D2-receptor agonism. Vasoinhibins can no 
longer be produced by proteolytic cleavage of PRL, and their detrimental effect of the vascularization of the myocard is reduced.
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PeRiPARTUM CARDiOMYOPATHY

A role for PRL in the etiopathology of heart failure, and PPCM in 
particular, was suggested in case reports in 1979 and 1984 (41, 42). 
However, the data remained inconclusive, particularly because a 
mechanism by which PRL could exert detrimental effects on the 
heart was not known. The discovery of cleaved PRL in 1980 in rats 
(43, 44) and its detection in humans 1985 (45), the identification 
of the anti-angiogenic effects of a 16 kDa PRL fragment in the early 

1990s (9, 10), the generation of a 16 kDa PRL by cathepsin D (46), 
the discovery of more anti-angiogenic PRL-fragments (7, 47),  
and their subsequent classification as vasoinhibins (7, 48, 49), 
provided the framework for a study from 2007 (50), in which it 
was suggested that an excessive generation of vasoinhibins in the 
heart could impair the myocardial microvascularization and con-
tribute to the development of PPCM. Indeed, PRL levels during 
the peripartum/postpartum period can be up to 20 times higher 
than normal, in order to facilitate lactation (51). This appears as 
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a precondition for a vasoinhibin-related onset of PPCM, as PRL 
is the immediate precursor molecule of vasoinhibins, and high 
substrate (PRL) availability favors the enzymatic generation of 
vasoinhibins. A second precondition for the excessive vasoin-
hibin generation in PPCM appears to be a high activity of the 
PRL-cleaving enzyme cathepsin D, which, in combination with 
the elevated PRL levels, is proposed to lead to abnormally high 
vasoinhibin values in the heart, detrimental effects on the vas-
cularization of the myocardium, and subsequent development 
of heart insufficiency. It is reported that vasoinhibins lead to an 
increased level of microRNA-146a expression in endothelial cells, 
which exerts angiostatic effects and impairs the metabolic activity 
of cardiomyocytes (52). More detailed molecular descriptions of 
the pathways, including information on possible factors involved 
in the myocardial signal transduction of vasoinhibins, can be 
found in the original papers (50, 52) and have also been reviewed 
(53). Based on these insights, a new therapeutic approach for 
PPCM was developed, using the dopamine D2-receptor agonist 
bromocriptine; a drug usually applied in patients with a prolacti-
noma or Parkinson’s disease. The principle behind this approach 
is the inhibition of vasoinhibin generation by substrate depletion, 
or the inhibition of pituitary PRL-secretion by lactotrophs, respec-
tively (Figure 1B; Table 1). Pilot studies using bromocriptine as 
an add-on treatment to standard heart failure therapy reported 
possible beneficial effects with a normalization of left ventricular 
functions and dimensions (54–56). A proof-of-concept study 
for the evaluation of bromocriptine appeared to confirm the 
positive effects of bromocriptine, and a randomized, controlled 
multicenter clinical trial to evaluate the effect of bromocriptine in 
patients with PPCM, conducted in Germany, was then initiated 
(ClinicalTrials.gov Identifier: NCT00998556) (57, 58). The trial 
has recently been completed and the results demonstrated that 
bromocriptine treatment was associated with a high rate of left 
ventricular recovery and low morbidity and mortality (59).

POTenTiAL RiSKS ASSOCiATeD wiTH 
THeRAPeUTiC inTeRvenTiOnS

Therapeutic intervention of the PRL/vasoinhibin axis is likely to 
be associated with risks that complicate the clinical decision to 
commence therapy with both D2R-antagonists and agonists, or 
stimulating/blocking vasoinhibin generation and/or signaling by 
other means (60). These risks can be inferred from the known 
profile of biological effects of vasoinhibins, but may also include 
unexpected side effects and complications that can only be identi-
fied in clinical studies. Relevant issues, for example, are the effects 
of vasoinhibin stimulation or blockage on blood coagulation, as 
well as possible effects on blood pressure. Plasminogen activator 
inhibitor-1 was recently identified as a frequent binding partner 
of vasoinhibins, and this binding is responsible for the mediation 
of profibrinolytic effects of vasoinhibins (5). Blocking vasoinhibin 
production and/or signaling could, therefore, contribute to the 
formation or stabilization of thrombi. Of note, histological analy-
sis of lung sections demonstrated a higher number of thrombi in 
control mice than in vasoinhibin treated mice (5). The clinical 
relevance of this observation is—at present—unclear, but it 
points to the importance of vigilance toward thrombotic events 

in patients in which inhibition of vasoinhibin generation and/or 
signaling is the target of intervention, for example, when inhibit-
ing vasoinhibin generation with bromocriptine in patients with 
PPCM (60). Likewise, elevating PRL and/or vasoinhibin levels, as 
in the trial evaluating levosulpiride for the treatment of diabetic 
macular edema and retinopathy, could include delayed and 
disturbed coagulation. In mice, vasoinhibins have been demon-
strated to be able to upregulate blood pressure by modulating the 
activity of endothelial nitric oxide synthase (eNOS) (61). Hence, 
blood pressure fluctuations may be due to changes in vasoinhibin 
levels and could appear when vasoinhibin levels are manipulated. 
Indeed, some of the cardiovascular side effects of bromocriptine, 
such as hypotension, syncope, and pleural/pericardial effusion, 
could be influenced by a decline of vasoinhibin levels (60).

The range of possible side effects when intervening the PRL/
vasoinhibin axis also includes effects on the mental state. These 
effects are implied by experiments in rodents, demonstrating that 
the intraventricular administration of vasoinhibins leads to an 
increase in anxiety and depression-related behaviors (3). This 
scenario is further implied by an investigation showing a high 
prevalence of depression in women with PPCM, as the higher 
circulating vasoinhibin levels in these patients may enter the 
cerebrospinal fluid and exert neuropeptide-like effects in the 
central nervous system (62, 63). Lastly, the occurrence of maniac 
episodes after the initiation of medication with cabergoline and 
bromocriptine (64) may be related to central vasoinhibin levels, 
as a sudden decline of vasoinhibins may contribute to elevated 
arousal and affect (63). Of note, Ergot-derived drugs, such as 
bromocriptine, can induce retroperitoneal fibrosis and pleural, 
pericardial, and cardiac valve fibrotic reactions (65).

MAJOR BARRieRS

The major barrier not yet overcome, which delays a more thor-
ough, more in-depth clinical evaluation of vasoinhibins is the 
lack of a quantitative assay for the determination of vasoinhibins 
in biological fluids, such as serum, plasma, cerebrospinal fluid, 
urine, and tissue homogenates. Some experimental techniques, 
such as mass spectrometry, have been evaluated, but the only 
more widely used methodology for detecting vasoinhibins is 
immunoprecipitation with anti-PRL antibodies and subsequent 
Western blotting (28, 50, 66). This technique has multiple limi-
tations, including a relatively low sensitivity and a relative lack 
of quantitative information, and is, in most cases, not precise 
enough to unambiguously discriminate between vasoinhibin 
isoforms. The presence of multiple vasoinhibin isoforms of dif-
ferent molecular masses is a challenge for the development of a 
quantitative immunoassay, as it complicates the decision of which 
isoform should be targeted when monoclonal anti-vasoinhibin 
antibodies are manufactured. This challenge would be alleviated, 
if there would only be one dominating isoform being associated 
with a particular disease, such as PPCM or preeclampsia, and 
the other isoforms would not be produced, or only be present in 
negligible amounts. However, in contrast to in vitro and in vivo 
experimental studies, no clinical study has provided clear proof of 
the exact identity of the vasoinhibin isoform under investigation, 
that is their complete amino acid sequence or cleavage site within 
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the PRL sequence, which could then be used as the template to 
produce monoclonal anti-vasoinhibin antibodies. Moreover, 
several clinical studies reported the association of changes in 
vasoinhibin levels of more than one isoform at the same time, 
indicating that, according to disease state, more than one isoform 
may be involved (28, 67). These observations extend to another 
unmet challenge requiring attention: the site of vasoinhibin 
production and the controlling mechanisms determining their 
overall isoform composition. Vasoinhibins are generated in the 
pituitary gland and in multiple peripheral tissues and fluids  
(2, 68), but information about which of these sites is the one pro-
ducing vasoinhibins measured in the circulation of patients is not 
available. For example, elevated serum levels of vasoinhibins in 
patients with PPCM might derive from PRL cleavage occurring in 
the heart, but may also originate from another site of vasoinhibin 
generation. This problem is relevant for clinical investigations, 
as some reports correlate the serum activity of PRL-cleaving, 
vasoinhibin generating enzymes with circulating vasoinhibin 
levels, implying that vasoinhibins are either produced in the 
circulation, or that the enzyme activity in the circulation cor-
responds with its activity at the site of vasoinhibin generation, 
for example, at the organ or tissue level (50, 69). Both possibilities 
are not supported by evidence and, thus, require clarification. 
Moreover, questions about the controlling mechanisms of single 
vasoinhibin isoforms production arise when only one cathepsin 
D-, or MMP-cleaved isoform, is detected (50). These enzymes 
use multiple cleavage sites within the PRL sequence to generate 
vasoinhibins of varying molecular mass, and if only a single 
isoform is produced, unknown controlling mechanisms must be 
in place suppressing the generation of the other isoforms (70). 
Of note, the quantitative determination of vasoinhibin levels is a 
missing piece in the characterization of the role of vasoinhibins 
in diabetic retinopathy and PPCM, but also in other diseases that 
have been brought into context with a dysregulation of vasoinhib-
ins, and only if vasoinhibin levels are evaluated, their role in the 
aforementioned diseases can be further substantiated.

PeRSPeCTiveS

The present time is unique in the scientific history of PRL research, 
as new entities—diabetic retinal diseases and PPCM—are added 

to the short list of conditions in which the pituitary secretion of 
PRL is target of therapeutic interventions. This list had previ-
ously comprised only the condition of prolactinoma and the 
inhibition or PRL-release for ablactation or secondary amenor-
rhea. Of note, there are more clinical entities in which studies 
reported that a dysregulation of PRL and of the PRL/vasoinhibin 
axis might play a role, for example, breast and prostate cancer 
(71–75), preeclampsia and eclampsia (67, 76, 77), pregnancy-
induced hypertension (78), pulmonary artery hypertension (79), 
retinopathy of prematurity (28), and rheumatoid arthritis (80). 
These conditions require thorough clinical investigation, includ-
ing determination of PRL and vasoinhibin levels, and, ideally, 
additional experimental validation. In due course, in case the 
role of the PRL/vasoinhibin axis in these diseases is consolidated, 
it is possible that altering PRL and vasoinhibin levels represents 
a new option for therapeutic intervention. However, a better 
understanding of the physiological regulation of this axis and of 
its alterations under such diseases is required, as too many factors 
are still unclear. These factors comprise, as discussed, the sites and 
regulatory mechanisms involved in vasoinhibin generation, the 
relative contribution of vasoinhibins isoforms generated not only 
by proteolytic cleavage of PRL but also by the cleavage of related 
hormones, such as growth hormone and placental lactogen  
(47, 81). Undoubtedly, new information about the solution 
structure of vasoinhibins, their bioactive domains, receptors and 
signaling mechanisms, and the evolutionary emergence of the 
various isoforms (2, 8, 11) are required to advance the field in the 
future and to substantiate the impact of the PRL/vasoinhibin axis 
in human health and disease.
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