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In thyroid health, the pituitary hormone thyroid-stimulating hormone (TSH) raises glan-
dular thyroid hormone production to a physiological level and enhances formation and 
conversion of T4 to the biologically more active T3. Overstimulation is limited by negative 
feedback control. In equilibrium defining the euthyroid state, the relationship between 
TSH and FT4 expresses clusters of genetically determined, interlocked TSH–FT4 pairs, 
which invalidates their statistical correlation within the euthyroid range. Appropriate reac-
tions to internal or external challenges are defined by unique solutions and homeostatic 
equilibria. Permissible variations in an individual are much more closely constrained than 
over a population. Current diagnostic definitions of subclinical thyroid dysfunction are 
laboratory based, and do not concur with treatment recommendations. An appropriate 
TSH level is a homeostatic concept that cannot be reduced to a fixed range consid-
eration. The control mode may shift from feedback to tracking where TSH becomes 
positively, rather than inversely related with FT4. This is obvious in pituitary disease and 
severe non-thyroid illness, but extends to other prevalent conditions including aging, 
obesity, and levothyroxine (LT4) treatment. Treatment targets must both be individualized 
and respect altered equilibria on LT4. To avoid amalgamation bias, clinically meaningful 
stratification is required in epidemiological studies. In conclusion, pituitary TSH cannot 
be readily interpreted as a sensitive mirror image of thyroid function because the negative 
TSH–FT4 correlation is frequently broken, even inverted, by common conditions. The 
interrelationships between TSH and thyroid hormones and the interlocking elements of 
the control system are individual, dynamic, and adaptive. This demands a paradigm shift 
of its diagnostic use.
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inTRODUCTiOn

In the healthy body, multiple interlocking biochemical mechanisms interact homeostatically 
both to achieve biological equilibrium and to respond suitably to any challenges, internal or 
external, that might occur. However, the way in which different individuals maintain a steady 
homeostatic state varies considerably, including their appropriate reaction to any changes that 
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may be demanded of the system. In this regard, the possible 
biochemical expressions of a healthy framework within which 
viable variations of response can occur have finite limits (1). 
Appropriate reactions in individuals are defined by their own 
unique solutions both to homeostatic equilibrium and to bio-
chemical challenges, which are much more closely constrained 
than those permissible over the whole population. This has 
profound implications as to how disequilibria are confronted 
by individual responses to the challenge or therapeutic inter-
ventions administered to obvert it.

The classical definitions of hypothyroidism and hyperthy-
roidism reflect this concept when referring to inadequate—
either reduced or exaggerated—supply and response to thyroid 
hormones (2). Pathophysiological conditions or diseases may 
arise at various levels including deficiencies of hormone sup-
ply, alterations of control or resistance to cellular responses to 
the hormones (3–5). Thyroid gland failure represents a more 
restricted view, termed primary hypothyroidism. Current diag-
nostic definitions of thyroid disease are primarily laboratory 
based, and include subclinical dysfunctions that are dissoci-
ated from treatment recommendations (6–9). In this review, 
we revisit underlying principles of thyroid control, aligning or 
contrasting them with the current use of thyroid-stimulating 
hormone (TSH) in the diagnosis and treatment of thyroid 
diseases.

THe CURRenT PARADiGM OF  
THYROiD DiAGnOSiS

Two events have shaped the current paradigm of thyroid func-
tion testing (1) the discovery of negative feedback by thyroid 
hormones on pituitary TSH and (2) methodological advances in 
sensitively measuring TSH (6, 10, 11). If TSH serum concentra-
tions provided a more sensitive and accurate mirror image of 
thyroid hormone status than thyroid hormones themselves, this 
would be an ideal diagnostic tool. This argument emerged in 
the 1980s, and was readily accepted by clinicians (12, 13). TSH 
measurement subsequently gained a dominant role in thyroid 
function testing, facilitating cost effective disease screening, 
introducing new definitions of subclinical hypothyroidism 
or hyperthyroidism, and delivering biochemical treatment 
targets (14–17). A plethora of epidemiological studies then 
associated TSH concentrations with clinical outcomes (18–21). 
This resulted in a questionable paradigm elevating an indirect 
controlling parameter to such prominence and dominance as 
expressed in current guidelines for diagnosis and treatment 
of thyroid diseases (14–16). With the holy grail in the hand of 
scientists, clinically orientated approaches contradicting the 
TSH paradigm and noting discrepancies between a biochemi-
cally euthyroid and clinically hypothyroid status were readily 
dismissed (22–26). However, concerns have resurfaced in the 
light of recent basic and clinical studies revealing fundamen-
tal issues with the interpretation of TSH measurements and 
documenting unsatisfactory improvement in the quality of life 
of patients treated for hypothyroidism according to the current 
TSH paradigm (1, 27–29).

SHiFTinG THe PARADiGM

Is the TSH concentration at all times a reliable mirror image of 
the thyroid hormone status of the patient?

Firstly, we must note that this question reverses causality of 
process. While TSH is subject to negative feedback by thyroid 
hormones predominantly FT4, thereby reflecting on the thyroid 
hormone status, its primary physiological role is to elevate the 
hypothyroid to the euthyroid state (1). Without appropriate 
stimulation by TSH, the basal hormone output by the thyroid 
gland remains insufficient, as becomes apparent in pituitary 
deficiency (secondary hypothyroidism) (4). Conversely, in 
thyroid health TSH raises the glandular hormone production to 
its physiological level, and it also enhances the formation of the 
biologically more active T3 and its conversion from T4 (30–32). 
The integration of the TSH–T3 shunt into the homeostatic 
control of the thyroid–pituitary axis is illustrated in Figure 1A. 
Feedback details have been discussed elsewhere (27). Clinical 
studies and theoretical modeling suggest that the shunt facilitates 
FT3 stability against variations in the glandular T4 output, and 
its absence may lead to T3 production instability in athyreotic 
patients (31, 33). This relational control loop operates still within 
the euthyroid TSH range (34). It also appears to mediate subtle 
expressions of central control over peripheral tissues, such as 
circadian or seasonal variation in FT3, but not FT4, the former 
lagging the TSH rhythm (35). In thyroid autoimmune disease, 
the feedforward control increases T4 to T3 conversion, compen-
sating for latent thyroid failure until the disease has progressed 
beyond tolerance (34).

Pathophysiological challenges other than thyroid disease 
may disturb the equilibria between TSH and thyroid hormones, 
requiring setpoint adjustment of the hypothalamic–pituitary–
thyroid axis (Figures  1A–C). Weight gain or loss, alterations 
in body composition, and aging may cause profound changes 
(Figure  1C), frequently switching the control mode from 
negative feedback to tracking FT4 rather than opposing it 
(36, 39, 40). This inversion of the TSH–FT4 correlation is 
clinically important to recognize, but it may be missed or 
misinterpreted as subclinical hypothyroidism when relying on 
TSH measurement as sole diagnostic test. Several mechanisms 
provide a physiological interface for shifting the control modes 
of the hypothalamic–pituitary–thyroid axis (36, 39–46). While 
detailed examination of the complex subject is beyond the scope 
of this article and dedicated reviews are available (36, 39, 41, 
43, 45, 46), a brief explanation may be helpful. Hypothalamic 
tancytes strongly express the relatively more T3- than T4-affine 
thyroid hormone transporter MCT8 and deiodinase type 2 and 
3, enabling them to sense FT3 and FT4 levels (41, 44–46). They 
also respond to alterations in the energetic and metabolic needs 
of the body and interact with TRH neurons (41, 42, 44–48). 
Fat cells release adipokines such as leptin into the circulation 
which directly or indirectly stimulate pituitary TSH secretion 
(36, 39, 40, 42, 45). In a vicious cycle, TSH may promote leptin 
release through TSH receptor activation on adipocytes (49). The 
controlling system stays informed on fat and energy reserves, 
and may act on adjusting energy expenditure accordingly. While 
rising with weight gain TSH decreases again after weight loss 
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FiGURe 1 | Theoretical and observed relationships between thyroid-stimulating hormone (TSH) and thyroid hormones. The central system provides an integrated 
solution to the location of the setpoint (settling point) of thyroid homeostasis, as determined by the various genetic, epigenetic, and allostatic parameters (27, 36). 
This includes monogenic factors such as polymorphic variants of receptors and transporters, changes in deiodinase activity or variations in T4 production efficiency, 
and environmental impacts, e.g., nutritional factors, body weight, body composition, age, and extends to diseases of the thyroid and other organs where severe 
disequilibria may arise and a “euthyroid” solution is not achieved (27, 36). (A) Schematic overview of main regulatory pathways and control loops in the 
hypothalamic–pituitary–thyroid regulation. External factors of influence include (1) obesity (hyperthyrotropinemia), (2) pregnancy (hCG-mediated suppression of TSH 
release and stimulation of T4 secretion), (3) non-thyroidal illness (NTI) (both pituitary and thyroid function down-regulated), and (4) certain psychiatric diseases (both 
pituitary and thyroid function stimulated). (B) The response of the thyroid to TSH by hormone release and corresponding feedback on pituitary TSH secretion 
produces a finite equilibrium solution, thereby defining interlocking TSH–FT4 pairs (setpoints). These are characteristic for each person and show only little variation 
unless disturbed by internal or external strain. In the event of progressive thyroid capacity stress, irrespective and independent of other influences, setpoints for FT4 
and TSH translocate along a homeostatic pituitary response curve (isocline) unique for the individual. Hence, in the case of a diminished or exaggerated pituitary 
response the translocation moves along the thyroid isocline. The open circles indicate the expected variation (10% for FT4 and 30% for TSH) surrounding the 
individual setpoint. The percentiles for the isoclines of the response curves were derived from previous data in a healthy sample and the included area between the 
2.5 and 97.5 percentiles represents the population’s reference range (37). (C) Influences additional to direct thyroid activity change (e.g., allostatic changes such as 
obesity, age, pregnancy, and NTI) may have dislocating effects on isoclines and setpoints. (D) Observed TSH–FT4 pairs (setpoints) in two individual patients (blue 
and green symbols) and the averaged group of 250 patients (black ellipse) followed long term on stable treatment conditions. Data ellipses indicate the 50 and 95% 
confidence limits for the setpoint. Levothyroxine dose was 100 μg/day, 1.5 µg/kg body weight for each of the individual patients, and 1.5 (SD 0.27) μg/kg for the 
whole group. Data are from a published longitudinal study (38). (e) Observed TSH–FT3 pairs depicted in the same patients as in (D). FT3 concentrations vary with 
conversion efficiency and impact on the location of the TSH–FT4 setpoint (38).
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(36, 39, 50, 51). Central and peripheral deiodinases are also 
sensitive to nutritional factors and body composition, adjust-
ing T4 to T3 conversion to maintain T3 stability under varying 
conditions (39, 40). As transporters, deiodinases and thyroid 
hormone receptors subtypes differ in both their expressions 
and T3 affinities, central responses may readily diverge from 
peripheral equilibria (52–54). This may explain why none of 
these physiological changes is associated with thyroid dysfunc-
tion, although the equilibria between thyroid hormones and 
TSH are profoundly altered. Similar changes in control modes 
are observed in aging (55). In the Baltimore Longitudinal Study 
of Aging, some participants experienced a parallel rise/fall of 
TSH and FT4, whereas others showed a rising TSH with declin-
ing FT4 concentrations (55). Interestingly, the two patterns 
carried different mortality risks (55). Underlying mechanisms 
are complex and confounded by other pathologies, but pituitary 

responsiveness is clearly age related, as is deiodinase activity 
(56–58). Generally, higher TSH ranges are deemed acceptable 
in the elderly patient (57, 59, 60). More dramatic perturbations 
occur in severe non-thyroidal illness (NTI) including psychiatric 
disease (Figure 1C) where the allostatic stress response operates 
to alter both the setpoint and peripheral transfer parameters of 
the control loop, as reviewed elsewhere (36).

These lines of evidence suggest that equilibria and correlations 
between TSH, FT4, and FT3 are by no means invariant; rather 
being situationally adjusted in response to minor disturbances, 
and completely deranged in severe pathology (Figure 1B).

The pituitary–thyroid feedback loop must be revisited in the 
light of these findings (27). The strong log-linear correlation 
between TSH and FT4, observed in primary hypothyroidism, 
disintegrates toward the euthyroid range (61–65). The statistical 
correlation between TSH and FT4 is invalidated by clustering of 
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genetically determined TSH–FT4 pairs (Figure 1B), and influ-
ences other than TSH shape the interrelations and equilibria 
(Figure 1C) (37, 65). This results in a high-individuality index 
of TSH, which gravely limits the use of population statistics in 
determining the euthyroid range (66, 67). Hypothalamic–pitui-
tary–thyroid control is more complex and frequently denies the 
diagnostic simplification of a fixed log-linear TSH–FT4 gradient 
(Figures 1A–C) (27, 68). Studies in levothyroxine (LT4)-treated 
patients with thyroid carcinoma favor cascade-type control 
involving FT4, FT3 and their interaction over simple propor-
tional control (38). Setpoint simulations corroborated these 
clinical results (37, 38). Together these findings question, the 
current diagnostic use of the TSH response as a reliable mirror of 
thyroid status. They demand a conceptional evolution of thyroid 
regulation to underpin a more differentiated clinical use.

APPROPRiATeneSS veRSUS nORMALiTY

The appropriateness of a TSH level is a different concept from 
range consideration. In secondary hypothyroidism or hypopi-
tuitarism, TSH measurement may be frequently inappropriate, 
residing within its reference range, yet abnormally low relative to 
the low-FT4 level. Deranged setpoints together with normal or 
elevated FT4 concentrations have been well recognized in TSH 
or thyroid hormone resistance syndromes and TSH producing 
pituitary tumors. Similarly, low-FT3 and/or low-FT4 serum 
concentrations in the NTI syndrome are accompanied by variable 
TSH values within or outside the reference range (4, 5, 36, 69–72). 
The isolated interpretation of TSH is not diagnostically useful in 
these conditions. While these limitations are well known, the 
dominance of TSH in the diagnosis of euthyroidism and as a 
treatment target for primary hypothyroidism also warrants closer 
scrutiny.

The high-individuality index of TSH and its correlative varia-
tion with thyroid hormones cause major statistical issues, because 
the basic concept of statistical hypothesis testing demands that 
the sample is randomly drawn from a population and thus repre-
sentative of the population (73). This tenet is, however, violated 
where a measured TSH value is not an expression of normality 
surrounded by some margin of error or variation within a given 
population, rather a heterogeneous group of individuals sharing 
the same TSH value with different physiological meaning. For 
some individuals, the same TSH value may indicate a perfectly 
normal situation, for others subtle thyroid failure with declining 
FT4 concentrations and negative correlation between the two 
hormones, and for others a control shift to a positive TSH–FT4 
correlation induced by non-thyroidal influences. A known 
response heterogeneity, however, precludes the use of statistical 
regression models based on normality assumption, requiring 
multilevel, hierarchical, or latent class models instead (74). The 
heterogeneity bias is known as Simpson’s amalgamation para-
dox (75, 76). Misleading and conflicting results may therefore 
be expected when mixing different underlying physiologies 
without proper stratification. Some authors reported a protec-
tive effect of TSH in the elderly, others an increased mortality 
risk of higher TSH within the normal range, and others no 
association of death with TSH, but with higher FT4 (21, 77–81). 

A dissociation between TSH and FT4 is also apparent in atrial 
fibrillation in euthyroid individuals where the risk increases with 
higher FT4 concentrations, but not lower TSH levels (82). We 
face a similar paradox in RCTs comparing T3–T4 combinations 
with T4 monotherapy, where patients invariably expressed their 
preference for the combination, but statistical analysis finds no 
evidence of superiority (83, 84).

We conclude that a TSH measurement representing ambiguous 
and overlapping categories between thyroid health and disease 
is by itself unreliable as a diagnostic tool. Statistical averaging or 
arbitrary cut-offs such as tertiles or quartiles should not be based 
on false assumptions of normality without further clinically 
meaningful stratification.

Another situation that differs from any naturally occurring 
condition is LT4 monotherapy for primary hypothyroidism. The 
homeostatic equilibria between TSH, FT4, and FT3 adequate 
for the previously healthy state no longer apply equally to the 
treated state, where dissociations between FT4 and FT3 and 
TSH and FT3 are apparent (Figures 1D,E) (31, 33, 65, 85–87). 
The T3/T4 conversion rate is reduced in LT4-treated athyreotic 
patients, compared with their rate prior to surgery (38, 86). FT3 
is displaced from TSH in these patients, being relatively lower 
at the same TSH level (33, 85). While the consequences of the 
altered ratios are widely unknown and require further study (88), 
implications for the interpretation of TSH measurements can be 
readily derived.

Thyroid-stimulating hormone concentrations in normal health 
cannot be a therapeutic target for establishing LT4 dose adequacy 
(31, 89, 90). The treatment situation has to be re-evaluated on 
the basis of the shifted equilibria rather than pre-existing range 
considerations.

Can’t we just rely on bringing TSH within an acceptable 
population range and assume peripheral autoregulation at the 
tissue level should take care of the adequate tissue supply with 
T3? There are two major issues with this popular belief in the 
ability of the patient’s own pituitary gland—except for pituitary 
deficiency—to be the best judge of dose adequacy. First, this 
leaves patients frequently dissatisfied, because their quality of 
life is not generally restored with LT4 treatment to the same 
level seen in healthy persons despite their TSH concentrations 
being within the reference range (29). Second, the TSH for a 
patient on LT4 is not what it is for an untreated patient (65). 
The clinical and biochemical treatment response to LT4 turns 
out to be diverse and is influenced by many treatment-related 
or unrelated factors (Figures 1D,E) (38, 89). As a consequence 
of low-conversion efficiency, at least in some patients, the 
equilibrium for TSH may be shifted below the reference range 
of the healthy population (38, 86, 89). This poses a dilemma to 
clinicians.

TOwARD An OPTiMiZeD TReATMenT 
STRATeGY

Given the fundamental changes in thyroid control related to 
LT4 medication, we can no longer dismiss patient complaints 
when discrepancies arise between clinically hypothyroid versus 
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TABLe 1 | Differences between the thyroid-stimulating hormone (TSH) paradigm and the newly proposed paradigm.

TSH paradigm new relational paradigm

Normality-based statistics Homeostatic equilibria
Univariate normal distribution Multivariate distributions
Population-based range Setpoint, joined TSH–FT4 pairs
Low degree of individuality High-individuality index
TSH is reflective of thyroid hormone status TSH is interlocked with FT4 and FT3
The reference range is fixed across individuals and conditions The setpoint is genetically determined and adjustable to various conditions
The parameters are treated as singularities, even when interpreted in combination The parameters are interpreted in relation to each other
Interpreting ranges Reconstructing setpoints
Levels are interpreted as within the reference range or outside its limits Levels are interpreted as relatively appropriate or inappropriate
A TSH within its reference range in a healthy population indicates euthyroidism The population-based TSH reference range is too wide to reliably define 

euthyroidism in a person
A high TSH indicates overt or subclinical hypothyroidism with rare exceptions A high TSH originates from diverse physiologies
The setting of reference ranges and their interpretation is a simple process The derivation of conjoined homeostatic equilibria is an intricate process
Subclinical thyroid disease entities are solely based on laboratory measurements and  
do not correspond to treatable clinical entities

The clinical change or challenge is considered primary mounting a defensive 
reaction that may alter the setpoint or transfer function

TSH is frequently interpreted without sufficient consideration of the clinical situation The interpretation of TSH is tied to the clinical presentation
TSH reference range is universally suitable to judge treatment success TSH level is inadequate as a measure of treatment success and LT4 dose 

adequacy
The suitable TSH range remains unchanged in LT4-treated patients The suitable TSH range is shifted in LT4-treated patients
Exclusive role of TSH in guiding treatment targets Supportive role of FT3 in guiding treatment targets
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biochemically euthyroid states (23–26). A recent retrospec-
tive study in patients with thyroid carcinoma followed long 
term found that displaced equilibria and resulting lower FT3 
concentrations were associated with a lack of symptom relief, 
independently of known confounders such as gender, age, body 
weight, and weight-adjusted LT4 dose (38). This study and oth-
ers contradict the assumption that patients may invariably gain 
satisfaction from LT4 treatment when TSH levels are kept within 
or even below reference range (29, 38, 90). Unfortunately, tissue 
T3 concentrations or T3 receptor saturation cannot be readily 
determined in humans. This was, however, done in rodents 
where various tissues remained in the hypothyroid state on LT4 
monotherapy despite normal serum TSH levels, and only T3/
T4 combination could restore euthyroidism in tissues (91, 92). 
These experiments uncovered limiting biochemical pathways 
that affect local sensitivity to T4 such as ubiquitination of hypo-
thalamic type 2 deiodinase (92).

Implications emerging from advances in the understanding 
of the diverse facets of pituitary control (Figures 1A–E), clinical 
studies, mathematical simulations, and experimental treatments 
suggest replacing the current TSH paradigm with a more inclusive 
interpretation. This should take into account clinical signs and 
symptoms, all three thyroid parameters, and their relationships. 
The appropriateness of the respective levels relative to each other, 
to the previous healthy state and to a specific condition becomes 
more important than a blanket categorization according to place-
ments within or outside any set range (Table 1).

If required for symptom relief, considering wide variations 
in individual responses, clinicians may find it acceptable to 
suppress the TSH close to or slightly below its reference range 
while avoiding overt clinical or biochemical hyperthyroidism.  
In fact, in a recent study, patients after thyroidectomy with 
mildly suppressed TSH levels were closest to euthyroid, based 
on surrogate markers for end organ response, those with normal 
TSH mildly hypothyroid and those with strongly suppressed  

levels mildly hyperthyroid (90). T3/T4 combination therapy 
may be preferable to patients with persistent symptoms or a 
failure to sufficiently raise their FT3 concentration despite LT4 
dose escalation and TSH suppression (93).

This practice should not be discouraged by incorrect statisti-
cal analyses of epidemiological studies. Many studies reported 
increased risks associated with suppressed TSH such as atrial 
fibrillation and osteoporosis but failed to properly classify the 
hormone status of patients into euthyroid versus hyperthyroid, 
and frequently did not even distinguish between treatment-
induced TSH suppression and endogenous hyperthyroidism 
(94). Importantly, thyroid hormones, while suppressing pituitary 
TSH, have been reported to upregulate the locally produced 
osteoprotective TSHβv variant (95). Statistical associations 
with TSH cannot establish causality, as the opposing effects of 
low-TSH and low-FT3/TSHβv frequently occur together in LT4-
treated patients.

However, it is equally appropriate to stress a caveat that not 
every patient on LT4 may require or tolerate a suppressed TSH. 
Unfortunately, conventional range considerations for TSH do 
not apply to the LT4-treated patient. There is no easy fix, but a 
paradigm shift could be a first step toward a solution. Until more 
personalized methods such as setpoint reconstruction have 
been evaluated (37), treatment adequacy must be judged on an 
individual basis by a combination of clinical and biochemical 
outcomes. The frequent overlapping and unspecific nature of 
hypothyroid symptoms presents yet another challenge (96–99). 
Unfortunately, reliable and readily accessible markers of the tissue 
effects are lacking.

However, the hypothyroid patient should not opt for under-
treatment and forego symptom relief out of an exaggerated fear 
of over-treatment. On the other hand, long-term risks of LT4 
treatment should also be carefully evaluated. Assessing scientific 
studies is a difficult task because statistical masking, confound-
ing, and response heterogeneity can all be expected in a statistical 
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parameter with a high-individuality index (67, 100, 101). This 
includes RCTs, regarded as the highest class of empirical evi-
dence, which are not immune from violations of the underlying 
statistical assumptions.

Simplified concepts such as the negative thyroid pituitary 
feedback control contributed a fundamental understanding 
of endocrine principles, but were subsequently not refined for 
dealing with more complex facets of the various thyroid dis-
orders and the clinical requirements of the diagnostic process. 
The pituitary TSH response is too diverse to be viewed as a 
sensitive mirror image of thyroid function. The interlocking 
elements of the control system are highly individual, dynamic, 
and adaptive. The assumed negative TSH–FT4 association 
that underpins the diagnostic use of TSH becomes frequently 
uncorrelated or even inverted, involving various influences, 
and mechanisms such as statistically multivariate clustering of 
TSH–FT4 setpoints, non-proportional cascade-type control, 
control mode shifts from negative feedback to positive tracking, 

and prevalent extra-pituitary–thyroid modulators of the relation-
ship. Discrepancies arise between individually appropriate TSH 
levels and population-based reference ranges, laboratory-based 
disease definitions and treatment requirements, feedback adjust-
ments and thyroid failure, and non-shared equilibria between 
thyroid health and LT4 treatment (Table  1). These have to be 
conceptionally reconciled to meet the needs of patients and clini-
cal practitioners. TSH should be viewed as a controlling element 
and interpreted within its physiological role as a more narrowly 
defined and conditionally adaptive setpoint (Figure  1). Novel 
testable concepts are emerging and await clinical study.
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