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Mammalian circadian rhythms are controlled by a master pacemaker located in the 
suprachiasmatic nuclei (SCN), which is synchronized to the environment by photic and 
nonphotic stimuli. One of the main functions of the SCN is to regulate peripheral oscilla-
tors to set temporal variations in the homeostatic control of physiology and metabolism. 
In this sense, the SCN coordinate the activity/rest and feeding/fasting rhythms setting 
the timing of food intake, energy expenditure, thermogenesis, and active and basal 
metabolism. One of the major time cues to the periphery is the nocturnal melatonin, 
which is synthesized and secreted by the pineal gland. Under SCN control, arylalkyl-
amine N-acetyltransferase (AA-NAT)—the main enzyme regulating melatonin synthesis 
in vertebrates—is activated at night by sympathetic innervation that includes the superior 
cervical ganglia (SCG). Bilateral surgical removal of the superior cervical ganglia (SCGx) 
is considered a reliable procedure to completely prevent the nocturnal AA-NAT acti-
vation, irreversibly suppressing melatonin rhythmicity. In the present work, we studied 
the effects of SCGx on rat metabolic parameters and diurnal rhythms of feeding and 
locomotor activity. We found a significant difference between SCGx and sham-operated 
rats in metabolic variables such as an increased body weight/food intake ratio, increased 
adipose tissue, and decreased glycemia with a normal glucose tolerance. An analysis of 
locomotor activity and feeding rhythms showed an increased daytime (lights on) activity 
(including food consumption) in the SCGx group. These alterations suggest that superior 
cervical ganglia-related feedback mechanisms play a role in SCN-periphery phase coor-
dination and that SCGx is a valid model without brain-invasive surgery to explore how 
sympathetic innervation affects daily (24 h) patterns of activity, food consumption and, 
ultimately, its role in metabolism homeostasis.
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inTrODUcTiOn

The circadian system, a set of biological clocks that regulate almost all physiological and behavioral 
processes, has evolved to adapt the organism’s physiology to cyclic environmental changes (1–4). 
In mammals, the master clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus 
and is mainly synchronized by the light–dark (LD) cycle (5). The circadian system also includes 
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peripheral clocks, entrained by the SCN via neural and humoral 
cues, such as rhythmically secreted hormones (6–8), and other 
SCN-independent cues like food (9).

One of the major physiological processes controlled by the  
SCN is metabolism, including metabolic rate and circadian 
rhythms of food intake (3). Food consumption is normally 
confined to the wake/active phase, while fasting periods occur 
during the rest/sleep phase, correlating to the anabolic, and 
catabolic phases of metabolism, respectively (10). Alterations of 
the circadian pacemaker can lead to metabolic pathologies, such 
as obesity or metabolic syndrome (11). For example, shift work, 
chronic forced circadian desynchronization or mutations of clock 
genes can affect the pattern of food intake and lead to increased 
levels of circulating triglycerides, and adipose tissue masses 
resulting in an augmented body weight (12–15).

Melatonin is a hormone produced by the pineal gland dur-
ing the dark phase and is considered one of the most important 
circadian outputs (16). It regulates major physiological processes, 
including the sleep–wake cycle, and lipid and glucose metabolism 
(17–22). The SCN interact with the pineal gland through the sym-
pathetic neurons of the superior cervical ganglia (SCG) (23). This 
interaction modulates the arylalkylamine N-acetyltransferase 
(AA-NAT) activity, the main enzyme responsible for melatonin 
rhythm generation in vertebrates (24). The elimination of the 
pineal melatonin rhythm, or a reduction of its amplitude, renders 
the circadian pacemaker a less self-sustained, often damped, 
oscillatory system (25). On the other hand, forced circadian 
desynchronization induced by an LD cycle of 22 h in rats (26) 
or by shift work in humans (27) disrupts rhythmic melatonin 
secretion.

The SCG are the uppermost ganglia of the paraventral sym-
pathetic chain and innervate the pineal gland, among others 
structures (28). Superior cervical ganglionectomy (SCGx) is a 
reliable model to study the role of sympathetic innervation on 
neuroendocrine interactions (29–31). Moreover, SCGx has been 
used to determine the influences of the circadian clock (i.e., the 
SCN) on neuroendocrine functions. In this sense, SCGx disrupts 
the circadian system by depressing melatonin secretion and 
suppressing its rhythm (32, 33), presumably by the inhibition 
of pineal AA-NAT activity (34). This also results in an abolition 
of the rhythmic excretion of urinary 6-sulphatoxymelatonin, a 
melatonin metabolite (35). In addition, the SCG also cover other 
territories such as other glands, brain areas, and the cardiovascu-
lar system, which might also be implied in metabolic regulation 
(36–41).

Taking into account that the lack of melatonin can produce 
circadian alterations, and that sympathetic innervation from 
the SCG covers diverse neuroendocrine effectors, the aim of our 
work was to study if SCGx can affect rat metabolism and whether 
this is related to an impairment of the circadian clock.

MaTerials anD MeThODs

ethics statement
All animal procedures were approved by the Institutional Animal 
Care and Use Committee at the School of Medicine, National 

University of Cuyo, Mendoza, Argentina (Protocol ID 9/2012) 
and were conducted in accordance with the National Institutes 
of Health’s Guide for Care and Use of Laboratory Animals and 
the Animal Research: Reporting In Vivo Experiments (ARRIVE) 
Guidelines.

animals
Young (3 months old) male Wistar rats were raised in our colony 
and maintained in a 12:12 h LD cycle (with zeitgeber time 12—ZT 
12—defined as the time of lights off; light intensity averaging 
300 lux at the cage level), in a controlled environment with food 
and water ad libitum.

locomotor activity rhythms
Animals were transferred to individual cages equipped with 
infrared motion sensors. Locomotor activity was assessed by 
the interruption of the infrared beam and recorded every 5 min 
(Archron, Argentina). The locomotor activity rhythm analysis was 
performed using the “el Temps” program (http://www.el-temps.
com). Locomotor activity onset was defined as the 10-min bin 
that contained at least 50% of the maximum activity/bin followed 
by another bin of at least another 50% of the maximum activity 
bin within 40 min. Entrainment to the LD cycle was confirmed 
by periodogram analysis (χ2 test). Phase angle was measured as 
the difference (in minutes) between activity onset and lights off. 
Total daytime activity was assessed by the area under the curve 
(AUC) of the waveform of each animal. Activity was expressed as 
a percentage of the total activity or relative activity by comparing 
post-surgery activity to the activity counts of the 3 weeks previous 
to the surgery (pre-surgery) as the post-/pre-ratio.

surgery
Bilateral superior cervical ganglionectomy (SCGx) was per-
formed as described by Savastano et  al. (31). Briefly, under 
ketamine (50  mg/kg of body weight)/xylazine (5  mg/kg of 
body weight) anesthesia, the ventral neck region was shaved 
and disinfected. The salivary glands were exposed through a 
2.5 cm vertical incision and retracted to uncover the underlying 
muscles. The carotid bifurcations were identified through the 
carotid triangles and the SCG were removed after sectioning the 
sympathetic trunks, the external carotid nerves, and the internal 
carotid nerves. For sham-operated animals, the same procedure 
was performed but the ganglia were not removed.

animal Weight and Food intake 
Measurements
Body weight and food consumption were monitored weekly at 
ZT10. After a 3-week pre-surgery baseline, animals were sub-
jected to bilateral SCGx or a sham procedure (n = 9 per group), 
and body weight and food intake were measured for another 
10 weeks. Food efficiency (FE) was analyzed by the body weight/
food intake ratio.

The food intake rhythm was analyzed in both groups at week 
11. Daytime (i.e., during lights on) and nighttime (during lights 
off) food intakes were measured daily at the end of the light and 
dark phases for 10 days (n = 5 per group). Daytime and nighttime 
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feedings were expressed as a percentage of total food consumed 
per day.

glycemia and glucose Tolerance  
Test (gTT)
At week 10, glycemia was measured at ZT10 using PTS PanelsTM 
test strips for CardioChekTM Brand Analyzer (Hannover, 
Germany) (n = 9 per group).

At week 13, a GTT was performed after 18 h fast (n = 5 per 
group). Glycemia was measured as mentioned above before and 
15, 30, 60, and 120 min after glucose administration (orogastric, 
3  g/kg of body weight from a 30% solution of d-glucose), at 
ZT10. The AUC of glycemia vs. time was calculated above each 
individual baseline (basal glycemia).

Fat Weight Measurements
At the end of week 13, animals were decapitated under anesthe-
sia, and epididymal, retroperitoneal, mesenteric, and inguinal 
adipose tissues were collected and weighed (n = 5 per group). Fat 
weight was expressed as relative to body weight.

statistical analysis
Data were expressed as mean ± SEM and analyzed using PRISM5 
(GraphPad Software Inc., La Jolla, CA, USA). Statistical differ-
ence between means was determined by Student’s t-test. For 
the grouped statistical analysis, two-way ANOVA or repeated 
measures two-way ANOVA was used with Bonferroni as post-
test. p  <  0.05 was considered significant and p  <  0.01 highly 
significant.

resUlTs

global Metabolism is affected by Bilateral 
superior cervical ganglionectomy
To study the effect of SCGx on rat metabolism, animals were 
subjected to ganglionectomy or a sham procedure at the middle 
of week 3 (n = 9 per group). Body weight and food consump-
tion were measured, and FE (body weight/food intake ratio) was 
calculated. Rats subjected to SCGx did not exhibit differences in 
body weight (Figure 1A) but had significant lower food intake 
when compared with sham animals (Figure 1B), throughout the 
10  weeks after surgery. An FE analysis (42) showed metabolic 
differences between the two groups. FE was higher in gangli-
onectomized animals, revealing that these rats gained more body  
mass per gram of consumed food than controls (Figure 1C).

ganglionectomy increases Daytime 
locomotor activity
Rats subjected to SCGx or sham surgeries (n = 9 per group) were 
placed individually in cages with infrared sensors to study their 
activity distribution during the day. An activity rhythm analysis 
demonstrated that entrainment to the LD cycle and activity phase 
angle were not affected by ganglionectomy (Table 1; Figure 2A). 
Moreover, SCGx animals did not show differences in the levels of 
total activity as post-/pre-surgery ratio (Table 1; Figure 2B; SCGx 
group: 1.08  ±  0.083; sham-operated group: 0.99  ±  0.042; data 

expressed as mean of post-/pre-surgery ± SEM). However, loco-
motor activity of ganglionectomized animals during the lights-on 
phase increased after surgery and remained higher throughout  
the 10-week post-surgery interval (Figure 2C). Moreover, the rela-
tion between the AUC of daytime activity after and before surgery 
was significantly higher in the SCGx animals (Table 1; Figure 2D; 
SCGx group: 5.492 ± 0.4126; sham group: 1.992 ± 0.2212; data 
expressed as mean of post-/pre-surgery ±  SEM). This increase 
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FigUre 2 | Ganglionectomy affects locomotor activity rhythm. (a) Representative actograms for animals subjected to SCGx or sham procedure (n = 9 per group). 
Red lines indicate the moments that the system did not record activity. (B) A locomotor activity analysis showed no differences in the levels of total activity, as 
post-surgery/previous-to surgery ratio (SCGx group, 1.08 ± 0.083; sham group, 0.99 ± 0.042; values are given as mean ± SEM; t-test: p < 0.353; n = 9 per 
group), but the activity of SCGx animals during daytime (i.e., during lights on) increased after surgery and remained higher throughout the 10-week post-surgery 
interval [(c); repeated measures two-way ANOVA: p < 0.0001, F = 16.55 for interaction, p < 0.0001, F = 11.50 for time, p < 0.0001, F = 43.69 for surgery, 
followed by Bonferroni post-tests: ***p < 0.001; n = 9 per group]. This increased daytime activity is evidenced in the area under the curve (AUC) from post-surgery/
pre-surgery ratio, that was significantly higher in the SCGx animals when compared with the sham group [(D); SCGx group: 5.492 ± 0.4126; sham group: 
1.992 ± 0.2212; values are given as mean ± SEM; t-test: ***p < 0.0001, t = 7.475; n = 9 per group]. Repeated measures two-way ANOVA results are expressed  
at the bottom right of the figure. Asterisks above the curve indicate significant p-values of the Bonferroni post-test. The arrows correspond to the day of surgery.

TaBle 1 | Effects of SCGx on the diurnal rhythm of locomotor activity.

 sham scgx p-Value

Period (min) 1,441 ± 0.645 1,442 ± 1.323 0.522
Phase angle (min) 6.50 ± 1.190 7.00 ± 1.080 0.766
Total activity (post-/pre-surgery) 0.99 ± 0.042 1.08 ± 0.083 0.351
Daytime activity (post-/
pre-surgery)

1.99 ± 0.221 5.49 ± 0.412 <0.0001

Nighttime activity (post-/
pre-surgery)

1.01 ± 0.003 0.91 ± 0.005 <0.0001

FigUre 1 | Bilateral superior cervical ganglionectomy affects metabolic 
variables. Rats subjected to SCGx at week 3.5 did not exhibit differences in 
body weight [(a); repeated measures two-way ANOVA: p = 0.0002, 
F = 3.229 for interaction, p < 0.0001, F = 1,588 for time, p > 0.05, 
F = 0.008 for surgery; n = 9 per group], but had significant lower food intake 
throughout the 10 weeks after surgery [(B); repeated measures two-way 
ANOVA: p < 0.0001, F = 35.51 for interaction, p < 0.0001, F = 222.8 for 
time, p = 0.0015, F = 14.92 for surgery, followed by Bonferroni post-tests: 
***p < 0.001, **p < 0.01; n = 9 per group]. A food efficiency (body weight/
food intake ratio) analysis demonstrated metabolic differences between the 
two groups with higher levels in ganglionectomized animals [(c); repeated 
measures two-way ANOVA: p < 0.0001, F = 42.75 for interaction, 
p < 0.0001, F = 374.7 for time, p < 0.0001, F = 76.49 for surgery, followed 
by Bonferroni post-tests: ***p < 0.001, *p < 0.05; n = 9 per group]. The rats 
used in this work were still growing from young-to-adulthood and therefore 
increasing their body mass and food consumption over time. Arrows indicate 
the day of surgery. Repeated measures two-way ANOVA results are depicted 
at the bottom right of each figure. Values are given as mean ± SEM.
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occurs at the expense of a reduced nighttime activity (Table 1, 
SCGx group: 0.91 ± 0.005; sham-operated group: 1.01 ± 0.003; 
data expressed as mean of post-/pre-surgery ± SEM).

ganglionectomy increases Food intake 
during Daytime
We next studied the daily pattern of food consumption, which 
can be affected by circadian alterations (13). Ganglionectomized 
animals had a lower level of food intake per day (Figure  3A; 
19.06  ±  0.5960  g for SCGx group; 22.80  ±  0.8027  g for sham 
group, n = 5 per group).

As it was observed with the activity rhythm, a food intake rhythm 
analysis revealed increased food consumption during daytime 
(Figure 3B; 16.68 ± 0.9030 g for SCGx group; 6.160 ± 0.2015 g 
for sham group), and a slightly but significantly lower feeding 
activity during the night (Figure 3C; 83.48 ± 0.8864 g for SCGx 
group; 93.63 ± 0.7122 g for sham group).

scgx animals exhibit lower Basal levels 
of Blood glucose but higher adipose 
Tissue
Six weeks after surgery, a glycemia analysis at ZT10 showed lower 
levels of blood glucose in SCGx rats (Figure 4A; 48.89 ± 4.464 mg/dl  
for SCGx group; 78.50 ± 4.392 mg/dl for sham group; n = 9 per 
group).
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FigUre 3 | Daytime feeding is increased in SCGx animals. 
Ganglionectomized animals had a lower level of food intake [(a); SCGx 
group: 19.06 ± 0.5960 g; sham group: 22.80 ± 0.8027 g; values are given 
as: mean ± SEM; t-test: **p = 0.0057, t = 3.738; n = 5 per group]. Feeding 
rhythm was also affected: daytime (i.e., during lights on) food consumption 
was higher in SCGx rats [(B); SCGx group: 16.68 ± 0.9030 g; sham group: 
6.160 ± 0.2015 g; t-test: ***p < 0.0001, t = 11.37; n = 5 per group], and 
lower during the nighttime (i.e., during lights off) [(c); SCGx group: 
83.48 ± 0.8864 g; sham group: 93.63 ± 0.7122 g; t-test: ***p = 0.0001, 
t = 8.926; n = 5 per group], compared with sham animals. Values are given 
as mean ± SEM.
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At week 13, a GTT was performed (n = 5 per group). Surprisingly, 
there were no differences in glycemia kinetics (Figure 4B) or in 
the AUC of the GTT (Figure 4C; 935 ± 57.04 mg/dl for SCGx; 
1,008 ± 65.66 mg/dl for sham) between ganglionectomized and 
sham animals.

Finally, to better understand the increased body mass in 
SCGx animals, we studied the fraction of the body weight that 
is represented by adipose tissue. For this, we measured the 
levels of mesenteric, epididymal, retroperitoneal, and total 
fat at the end of week 13 (Figure 5), and found adipose tissue 
significantly increased in SCGx when compared with sham 
animals (epididymal fat: SCGx group, 0.0186  ±  0.0005; sham 
group, 0.0162  ±  0.0004; retroperitoneal fat: SCGx group, 
0.0154 ±  0.0002; sham group, 0.0130 ±  0.0007; mesenteric fat: 
SCGx group, 0.002 ± 0.0003; sham group, 0.002 ± 0.0003; total 
fat: SCGx group, 0.0362 ± 0.0007; sham group, 0.0318 ± 0.0011; 
n = 5 per group).

DiscUssiOn

The impact of the superior cervical ganglionectomy (SCGx) on 
hormone secretion, and blood glucose and insulin release has been 
reported before (40, 43–46) but its role on body weight homeo-
stasis remains to be fully established. In this work, we assessed 
the impact of SCGx on rat metabolism and diurnal rhythms. Rats 
subjected to SCGx showed: (1) increased FE (i.e., gained more 
weight per gram of food consumed); (2) increased activity dur-
ing the lights-on phase of the photoperiod; (3) increased feeding 
during daytime; (4) reduced glucose levels, without changes in 
glucose tolerance, at ZT10; and (5) increased adipose tissue mass.

The SCG provide sympathetic innervation to diverse areas 
including the hypothalamus, the pineal gland, cephalic blood 
vessels, the choroid plexus, the eye, the myocardium, the salivary 
and thyroid glands, and the carotid body (12, 40, 41). Removal 
of the superior cervical ganglia can cause loss of vasoconstric-
tion control of brain and pituitary blood vessels (47), changes 
in cerebrospinal fluid production from the choroid plexus (48), 
and other central effects in response to partial sympathetic den-
ervation (49). Moreover, abolition of the peripheral sympathetic 
innervation of the brain by SCGx is associated with several neu-
roendocrine changes in mammals, which include the disruption 
of water balance (37), and the alteration of normal photoperiodic 
control of reproduction (50, 51).

As previously mentioned, the mammalian circadian system 
is held in synchrony by the SCN through endocrine and auto-
nomic outputs (52, 53). One of the mayor endocrine cues is the 
pineal hormone melatonin. Its synthesis and release is driven by 
the SCN through a multisynaptic pathway relaying in the SCG  
(54, 55). This interaction determines the rhythmic production of 
the hormone, whose day–night profile is modulated by daylength 
(23), encoding photoperiodic changes in the metabolic state (56).

Previous evidences have shown that SCGx decreases the 
secretion of melatonin and suppresses its rhythm (32, 33). The 
relationship between melatonin and the circadian control of 
metabolism has been demonstrated before. Pinealectomy and 
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FigUre 4 | SCGx animals exhibit lower basal levels of blood glucose, with normal glucose tolerance. Basal glucose levels at ZT10 were measured at week 10. We 
found lower levels in SCGx rats when compared with the sham ones [(a); SCGx group: 48.89 ± 4.464 mg/dl; sham group: 78.50 ± 4.392 mg/dl; t-test: 
***p = 0.0003, t = 4.706; n = 9 per group]. At week 13, a glucose tolerance test (GTT) was performed (n = 5 per group). Glycemia was measured before and 15, 
30, 60, and 120 min after glucose administration. There were no differences in glycemia kinetics (B) or in the area under the curve of the GTT [(c); SCGx group: 
935 ± 57.04 mg/dl; sham group: 1,008 ± 65.66 mg/dl; t-test: p = 0.214, t = 0.834; n = 5 per group] between ganglionectomized and sham animals. Values are 
given as: mean ± SEM. Repeated measures two-way ANOVA results are shown at the right of the figure.
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melatonin administration or replacement (57, 58) significantly 
changes body weight, as well as glucose levels and its utilization 
in different tissues (59). In our model, we found decreased levels 
of glucose at ZT10, but a GTT showed no differences between 
SCGx and sham-operated animals. In contrast, pineal ablation in 
rats was shown to increase glucose levels (57).

Furthermore, leptin secretion is strongly associated with glu-
cose and lipid metabolism, and has been shown to be modulated 
by melatonin (60). Moreover, the administration of melatonin in 
experiments conducted in rats and rabbits induced a reduction in 
body weight, serum lipids, adiposity, blood glucose, and insulin 
levels associated with the intake of a high-fat diet, suggesting a 
protective role of melatonin (20, 61, 62).

Taking into account our results, SCGx mimics the effect of 
pinealectomy on the neuroendocrine system only in some  
aspects, affecting several areas that include, but are not restricted 
to, the pineal gland. Although we cannot state that all SCGx-
induced changes presented here are exerted via a suppressed pin-
eal function, it is tempting to speculate that the diurnal timing of 
locomotion and feeding might be related to the lack of melatonin 
feedback to the circadian clock.

The importance of timed feeding and circadian physiology of 
metabolism has been extensively studied (63, 64). In this sense, an 
increased fat anabolism during daytime (i.e., the rest phase) due 
to food consumption at this time, may explain the lower levels of 

FigUre 5 | Ganglionectomized rats exhibit higher levels of adipose tissue. 
Epididymal + inguinal (Epi + Inguinal), retroperitoneal, and mesenteric fat 
were collected at the end of week 13, and their weights were relativized to 
body weight for each animal. Fat tissue was significantly increased in SCGx 
compared with sham animals (for epididymal + inguinal fat, SCGx group: 
0.0186 ± 0.0005; sham group: 0.0162 ± 0.0004; t-test: **p = 0.0053, 
t = 3.795; for retroperitoneal fat, SCGx group: 0.0154 ± 0.0002; sham 
group: 0.0130 ± 0.0007071; t-test: *p = 0.0125, t = 3.207, for mesenteric 
fat, SCGx group: 0.002 ± 0.0003; sham group: 0.002 ± 0.0003; t-test: 
p = 1, t = 0; and for total fat, as the collective weight of 
epididymal + inguinal, retroperitoneal, and mesenteric fat, SCGx group: 
0.0362 ± 0.0007; sham group: 0.0318 ± 0.0011; t-test: **p = 0.0032, 
t = 4.14; values are given as: mean ± SEM; n = 5 per group).
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blood glucose, and lead to increased adiposity in the SCGx group. 
Previous studies showed that animals fed during the light phase 
exhibit an increased body weight and food consumption, altera-
tions in leptin, insulin, corticosterone, glucose, and free fatty acid 
levels in plasma, fat accumulation, liver steatosis, and metabolic 
syndrome (65–69). These alterations arise from a completely 
reversed clock-gene expression in the liver, kidney, heart, and 
pancreas, without affecting SCN function (9).

On the other hand, SCGx rats exhibit significantly augmented 
serum corticosterone and adreno-corticotropin hormone levels, 
and a suppression of their rhythm (35, 70). Glucocorticoids 
(GCs) can stimulate the de novo synthesis of lipids (71). It has 
been reported that rats exposed to long-term treatment with 
GCs show a slower body weight gain, reduced food intake, and 
increased epididymal fat mass (72). Some of the effects reported 
here might be related to alterations in GC turnover that, in turn, 
could lead to the increase in FE and lipid accumulation. Indeed, 
the role of the sympathetic neuro-adipose connections in the 
regulation of lipolysis and body weight has been studied before 
(73). Sympathetic denervation leads to an increase in adipose 
tissue, while nerve stimulation results in fatty acid release, and 
sympathetic or ganglionic blockade inhibits the mobilization of 
lipids (74–76). Leptin production is also under the control of the 
sympathetic system (77), with participation of the SCG (78).

Regarding light synchronization, it has been demonstrated 
that pinealectomy accelerates the re-entrainment of rats to the 
new LD schedule (79–82). Moreover, in rodents, melatonin 
administration synchronizes free-running rhythm and acceler-
ates re-entrainment after phase shifts of the LD cycles (83–85), 
and reinforces entrainment to shortened 22 h LD cycles in both 
SCGx and pinealectomized rats (86). We studied the effect of 
SCGx on the entrainment to the LD cycle and found no significant 
differences on period, phase angle, or total locomotor activity 
between SCGx and sham-operated animals. However, SCGx rats 
showed significant differences in activity during daytime (lights 
on). In addition, food intake analysis evidenced augmented food 
consumption during daytime, which may correlate with the activ-
ity bouts under the light phase.

Also, it was previously observed that bilateral removal of the 
SCG delays the synchronization of feeding rhythms with a newly 
imposed diurnal lighting regimen, but, again, the response to 
pinealectomy was different (87). In fact, the elimination of pineal 
rhythmicity cannot account for all of the effects of SCGx on 
photic entrainment of feeding and locomotor activity rhythms. 
It can be suggested that SCGx alters the sympathetic innervation 
of hypothalamic structures implicated in the neural control of 
feeding, affecting the diurnal rhythm of food intake.

Rhythms in metabolism are orchestrated by the SCN and 
other inputs from different areas of the hypothalamus, like the 

mediobasal region, which plays a significant role in metabolic 
homeostasis (88–93). Other areas, like the dorsomedial hypo-
thalamus, have an important role as a component of the SCN-
independent food-entrainable oscillator (94–97). The circadian 
regulation of body weight depends on the integration of multiple 
signals of several hypothalamic areas, including the SCN, the 
arcuate nucleus, the ventromedial hypothalamic nucleus, and the 
paraventricular nucleus, that control appetite and food intake, 
deposition of fat, and energy expenditure (11, 53, 98). Melatonin 
not only couples circadian cues to many body functions but might 
also be a key player in the regulation of basal metabolic rate (99), 
independently of other SCG-innervated territories, such as the 
hypothalamus. In this sense, the results shown in this work pro-
vide evidence suggesting that SCGx may be affecting metabolism 
by changing the feeding pattern (i.e., increasing feeding during 
daytime), acting over peripheral clocks without affecting the SCN.

In conclusion, these findings provide insights into the meta-
bolic and diurnal rhythms of ganglionectomized rats. SCGx is 
not only a good model to study the circadian clock influence on 
neuroendocrine functions, but a reliable approach to investigate 
the relationship between the circadian system and metabolism, as 
well as the role of the SCG innervation in the synchronization of 
the master circadian clock with the peripheral clocks, especially 
the ones that drive metabolic variables.
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