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Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic 
cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead 
to heart failure through a variety of mechanisms, including myocardial infarction and 
chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia 
and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intra-
cellular signaling pathways, energy production, redox status, increased susceptibility 
to ischemia, and extracellular matrix remodeling. The close relationship between type 
2 DM and CVD has led to the common soil hypothesis, postulating that both condi-
tions share common genetic and environmental factors influencing this association. 
However, although the common risk factors of both CVD and type 2 DM, such as 
obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be 
identified in the majority of affected patients, less is known about how these factors 
influence both conditions, so that efforts are still needed for a more comprehensive 
understanding of this relationship. The genetic, epigenetic, and environmental back-
grounds of both type 2 DM and CVD have been more recently studied and updated. 
However, the underlying pathogenetic mechanisms have seldom been investigated 
within the broader shared background, but rather studied in the specific context of 
type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 
DM and CVD are not entirely understood and many aspects still require elucidation, an 
integrated description of the genetic, epigenetic, and environmental influences involved 
in the concomitant development of both diseases is of paramount importance to shed 
new light on the interlinks between type 2 DM and CVD. This review addresses the 
current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and 
CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation 
has been implicated in both disease conditions, either etiologically or as cause for their 
progression. Understanding the links between these disorders may help to drive future 
research toward an integrated pathophysiological approach and to provide future 
directions in the field.
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TAbLe 1 | Common pathophysiology of type 2 diabetes mellitus (DM) and cardiovascular disease (CVD).

Status Description Reference

Insulin resistance Insulin resistance is one of the most important antecedent of type 2 DM and CVD (15)
Inflammation There is a strong relationship between insulin-resistant states, inflammation, and CVD (14, 16)
Oxidative stress Chronic oxidative stress contributes to the pathogenesis of insulin resistance, type 2 DM, and CVD (17)
Hypercoagulability Enhanced activation of platelets and coagulation factors is reported in patients with type 2 DM and CVD (13, 18)
High blood pressure A positive association exists between hypertension, type 2 DM, and the risk of CVD (19)
Dyslipidemia Diabetic dyslipidemia is a major link between DM and the increased cardiovascular risk of diabetic patients (20, 21)
Obesity Obesity is a major risk factor for type 2 DM and CVD (22)

2

De Rosa et al. Type 2 Diabetes and CVD

Frontiers in Endocrinology | www.frontiersin.org January 2018 | Volume 9 | Article 2

iNTRODUCTiON

Type 2 diabetes mellitus (DM) is a complex metabolic disease in 
which concomitant insulin resistance and beta-cell impairment 
lead to hyperglycemia, which is the hallmark of the disease (1). 
Its prevalence is in rapid and progressive rise, due to the increase 
in average life expectancy, growing prevalence of obesity, and 
westernization of lifestyles in developing countries (2, 3), while 
its long-term complications are the major causes of morbidity, 
mortality, and exceptional healthcare costs (4, 5).

Cardiovascular disease (CVD) represents a leading health 
problem worldwide (6). Prospective studies have demonstrated 
that diabetic patients have a two- to fourfold propensity to 
develop coronary artery disease (CAD) and myocardial infarc-
tion (MI) (7), establishing that type 2 DM is an independent risk 
factor for stroke and heart disease (8). Indeed, about 70% of type 
2 DM at an age ≥65 years die from CVD (7), while type 2 DM 
patients with no history of CAD have an equal cardiovascular 
risk as patients with previous MI (9). CVD and type 2 DM share 
several common pathophysiological features that are summa-
rized in Table  1. Classical cardiovascular risk factors, such as 
dyslipidemia, hypertension and obesity can also raise the risk of 
type 2 DM. In particular, insulin resistance and hyperglycemia 
are associated with a low-grade inflammation, as well as with 
chronic enhancement of oxidative stress, triggering endothelial 
dysfunction and promoting atherogenesis (10–12). Among the 
different soluble mediators associated with the above-mentioned 
aspects, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and CRP 
are worth mentioning (13). In addition, it is well documented 
that type 2 DM is associated with enhancement of platelet and 
hemostatic activities (14).

Currently, a number of evidences exists, demonstrating that 
the interaction of type 2 DM and related cardiovascular risk 
underpin the progressive nature of the vascular damage, leading 
to atherosclerosis (23), while it is also proved that lifestyle modi-
fications, such as physical activity and weight loss, counteract 
CVD risk factors in prediabetic individuals (23, 24). As diabetes 
shares many risk factors with CVD, while some other ones may 
be independent, this reinforces the postulate proposed by Stern, 
according to which both diseases come independently from a 
“common soil” (20). In this scenario, as type 2 DM and CVD 
are both complex diseases, common risk factors predisposing to 
these disorders may include shared genetic factors, a setting that 
has been only partly elucidated.

Many common single-nucleotide polymorphisms (SNPs) have 
been already associated with an increased risk of CVD and type 

2 DM (25), while their search is still ongoing. In addition, novel 
links between these disorders come from epigenetic studies. In 
this review, we will try to address the current knowledge about 
the genetic links between type 2 DM and CVD, and to evidence 
their potential pathophysiological role in the context of these 
diseases. We will dedicate a special focus to the high-mobility 
group A1 (HMGA1) common variant rs139876191, previously 
identified by us as a susceptibility locus for type 2 DM (26), and 
recently also associated with MI (27). In addition, we intend to 
provide an overview about the epigenetic links between type 2 
DM and CVD to widen our understanding about the biological 
mechanisms that join these disorders. More recently, non-coding 
RNAs have emerged as key regulators of the pathophysiology 
underlying both type 2 DM and CVD (28–30), adding up to 
the fast-growing list of common background in the epigenetic 
regulation between type 2 DM and CVD. However, these mecha-
nisms are often addressed within a specific pathological context, 
whereas an integrated approach should be preferred in order to 
capture all potential interlinks between type 2 DM and CVD.

GeNeTiC ASPeCTS

Monogenic Components
Although the most common forms of type 2 DM and the vast 
majority of CVD are polygenic, Mendelian forms have also been 
described for both conditions, in which a single gene mutation 
can trigger the disease (31, 32). In this regard, heterozygous 
mutations in candidate genes can be at the basis of familial 
forms of cardiovascular risk factors, including hypertension, 
hypercholesterolemia and type 2 DM (32). However, such genes 
do not automatically predispose to both type 2 DM and CVD. For 
example, recent studies have described a protective role against 
type 2 DM of LDL receptor or Apo B gene mutations, the most 
commonly studied genes for familial hypercholesterolemia. Being 
this condition characterized by impaired intracellular transport 
of cholesterol, this suggests a mechanistic role of cholesterol 
metabolism in type 2 DM (33).

Genetic Polymorphisms
Loci Associated with Type 2 DM and CVD
Many research reports have addressed genetic variants associ-
ated with CVD or type 2 DM (34, 35), and the list of loci joint 
to each specific disease is progressively increasing, mostly due 
to the power of genome-wide association studies (GWAS), 
combined with the analysis of large cohorts of patients. Up to 
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TAbLe 2 | Genes whose variants are commonly associated with both type 2 diabetes mellitus and cardiovascular disease.

Gene Relative protein function Role of genetic 
variant(s)

Reference

Adiponectin Adipokine with anti-inflammatory and antiatherogenic effects ↑ Risk (38)

ADIPOR1 Adiponectin receptor. Metabolism of fatty acids and glucose ↑ Risk (39, 40)

ApoE Lipoprotein transport ↑ Risk (41, 42)

CDKN2A/2B Cyclin-dependent kinase inhibitor. Cell cycle regulation ↑ Risk (43)

CELSR2-PSRC1-SORT1 CELSR2 is part of the cadherin superfamily, involved in contact-mediated communication.  
Proline- and serine-rich coiled-coil 1 plays an important role in mitosis. Sortilin 1 plays a role  
in the trafficking of different proteins to either cell surface or subcellular compartments

↓ Risk (43)

GLUL Enzyme implicated in ammonia and glutamate detoxification, acid–base homeostasis,  
cell signaling, and cell proliferation

↑ Risk (44, 45)

HMGA1 High-mobility group A1, architectural transcription factor with a role in cell growth,  
differentiation, and glucose metabolism

↑ Risk (26, 27)

HNF1A Hepatic nuclear factor 1A, involved in development and metabolic homeostasis ↑ Risk (43)

HP Haptoglobin. Hemoglobin-binding capacity. Implicated in angiogenesis and  
in cholesterol-crystallization-promoting activity

↑ Risk (46, 47)

Paraoxonase Enzyme that protects against lipid oxidation ↑ Risk (48–51)

PCSK9 Proprotein convertase subtilisin/Kexin type 9. Plasma cholesterol metabolism ↓ Risk (43)

PHACTR1 Phosphatase and actin regulator 1. PHACTR1 binds actin and plays a role in the reorganization  
of the actin cytoskeleton

↑ Risk (43)

SOD2 Superoxide dismutase 2 transforms toxic superoxide into hydrogen peroxide and diatomic oxygen ↑ Risk (52)

TCF7L2 Transcription factor 7-like 2, a member of the Wnt signaling pathway ↑ Risk (40, 53, 54)
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now, at least 83 loci have been associated with type 2 DM (36), 
and more than 30 with CVD (37). As type 2 DM and CVD 
are linked by common pathophysiological mechanisms, share 
many risk factors, and display highly correlated phenotypes, 
different approaches—including candidate gene studies, linkage 
analyses, and GWAS—have been employed to search for genes 
predisposing to both diseases. Current findings are summarized 
in Table 2.

Among candidate genes, several ones involved in pathways 
pathophysiologically related to both diseases, have been exten-
sively investigated. One of them, paraoxonase, synthesizes an 
enzyme bound to high-density lipoprotein (HDL) particles, 
with a role in protecting LDL from proatherogenic, oxidative 
modifications. Paraoxonase variants have been described, which 
lead to reduced enzymatic activity or reduced levels of circulat-
ing enzyme, such as the paraoxonase polymorphism Gln-Arg 
192, or Met-Leu 54, which are independently associated with 
both type 2 DM and CVD (48–51). As oxidative stress is a 
major contributor to atherogenesis in diabetic complications 
(55), further studies have examined other genes involved in the 
redox balance. The superoxide dismutase (SOD) 2 is one of the 
key antioxidant defense systems against free radicals. Ala16Val 
(rs4880) is the SOD 2 most commonly described gene variant 
and resulted in a higher risk to develop CVD in diabetic women 
(52). Other interesting candidate genes for diabetes and CVD 
are represented by adiponectin and its pathway. Adiponectin 
is an adipokine with anti-inflammatory and antiatherogenic 
effects. Reduced levels of this biomolecule, as in obesity, correlate 
with increased risk for type 2 DM and CVD, whereas higher 

levels of adiponectin protect from the risk of CVD in diabetes  
(56, 57). In patients with type 2 DM, the +276 G/T SNP of the 
adiponectin gene has been reported to be associated with CAD 
(38). The adiponectin receptor 1 (ADIPOR1) gene has been found 
to be another interesting candidate gene for CVD in diabetic 
subjects. In particular, common haplotypes tagging three SNPs 
(rs7539542, rs10920531, and rs4950894) and causing reduced 
ADIPOR1 gene expression were found significantly associated 
with CAD in type 2 DM (39). Furthermore, in type 2 DM, an 
ADIPOR1 gene promoter variant (rs266729) has been linked 
with oxidative stress and cardiovascular risk (40).

One of the most associated spot for MI and CAD, identified 
by GWA strategies in cohorts of different ethnicities (58, 59), is a 
58 Kb non-coding region on chromosome 9p21, localized close 
to the CDKN2A and CDKN2B genes, in the context of a known 
non-coding RNA locus (ANRIL). This same region has turned 
out to be associated with type 2 DM and several cancers in some 
studies (60–63). Intriguingly, while the proximity to CDKN2A 
and CDKN2B, two genes with a role in cell cycle inhibition and 
tumor suppression, may explain a causal association with cancer, 
the 9p21 locus does not contain described genes for CAD, and is 
not linked with major cardiovascular risk factors, such as plasma 
lipoproteins, and hypertension. As mentioned before, several 
studies, but not all, have found the association of this locus with 
type 2 DM (60–62, 64, 65). In this regard, it has been reported that 
susceptibility to CAD and diabetes is encoded by distinct, tightly 
linked SNPs on chromosome 9p21, thereby sustaining an inde-
pendent association, with the ANRIL locus, of CAD and type 2 
DM susceptibility (66). On the other hand, the putative molecular 
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role of this locus in human CVD and type 2 DM has not been 
yet definitively identified. In fact, while mice lacking the ortholo-
gous region on chromosome 4 showed a reduction in cdkn2a 
and cdkn2b expression in several tissues, as well as increased 
incidence of cancers and increased proliferation of vascular 
smooth muscle cells (VSMCs), this condition was not associated 
with accelerated atherosclerosis (67). Moreover, studies aimed at 
evaluating CDKN2A/2B and lncANRIL levels in patients have 
provided conflicting data (68–70), underlying our current limit 
to interpret results from the non-coding genome. Recently, it has 
been hypothesized that the regulation of CDKN2B gene expres-
sion by lncANRIL could be involved in glucose homeostasis 
(71), while in diabetic patients, high glucose could alter ANRIL 
expression, favoring cell adhesion and cell proliferation, thereby 
leading to atherosclerosis (72). Other molecular mechanisms 
through which lncANRIL are associated with diabetes and its 
cardiovascular complications, however, remain unclear.

In another important study, 12 loci, previously identified 
by GWAS as predictors of coronary heart disease (CHD) 
in the general population, were investigated in three CHD 
case–control studies of diabetic patients. Among them, five 
variants, rs4977574 (CDKN2A/2B), rs12526453 (PHACTR1), 
rs646776 (CELSR2-PSRC1-SORT1), rs2259816 (HNF1A), and 
rs11206510 (PCSK9), showed a significant association with the 
risk for CHD also in type 2 DM (43). Among the type 2 DM 
susceptibility genes investigated by GWAS, the transcription 
factor 7-like 2 gene (TCF7L2) has been identified as one of the 
most significant (73). TCF7L2 variants have been found to be 
associated with CVD in some (40, 53), but not in all (74) reports, 
although the association between TCF7L2 risk alleles and CAD 
was not higher in diabetic individuals. Subsequent studies 
analyzed the association of three TCF7L2 variants (rs7903146, 
rs12255372, and rs11196205) with CAD in 1,650 patients that 
underwent coronary angiography, and found that these variants 
were more strongly associated with CAD in diabetic patients 
than in non-diabetics (54).

Other genetic variants may confer more CHD risk in patients 
with type 2 DM than in non-diabetic subjects. An exam ple is 
a polymorphism in the promoter region (−308) of the TNF-α 
gene, whose association with type 2 DM is even stronger in 
diabetic women (75). Also, as the apolipoprotein E (apo E) 
polymorphisms are known to modulate the risk for CVD in 
type 2 DM, many studies, but not all, have shown that the ApoE4 
allele is related to a greater susceptibility for CVD in the pres-
ence of type 2 DM (41, 42). Another important challenge refers 
to the identification of diabetes-specific susceptibility genes 
for CVD. In this regard, interesting studies have addressed the 
haptoglobin (HP) gene polymorphisms. HP is a serum protein 
that binds free hemoglobin, and prevents hemoglobin-induced 
oxidation. It is synthesized by two alleles, HP1 and HP2, the 
former encoded by 5 exons, and the latter by 7 exons, obtained 
by the intragenic duplications of exons 3 and 4. No significant 
association was shown between HP phenotype and CVD risk, 
whereas the HP2 allele is strongly related to CVD in type 2 DM 
patients (46). The molecular explanations that may justify this 
specific association include the reduced ability of HP2, with 
respect to HP1, to prevent the oxidative stress driven by glycated 

hemoglobin (46, 76). Further studies have demonstrated that, in 
a large, type 2 DM-enriched cohort of Americans of European 
ancestry, the HP2-2 phenotype significantly associates with 
CVD mortality, triglyceride levels, and subclinical atheroscle-
rosis, in the form of increased carotid-media thickness, but not 
of calcified arterial plaques (47). Also, a recent GWAS investi-
gated the link between glutamate-ammonia ligase (GLUL) gene 
polymorphism and CHD, demonstrating that the association 
was specific for type 2 DM patients (44). Further studies con-
firmed the association of the rs10911021 GLUL variant with 
type 2 DM, and demonstrated that this polymorphism does not 
affect amino acid metabolism. However, although apparently 
counterintuitive, it is associated with lower HDL cholesterol 
levels, and large HDL particles (45).

These and other examples of type 2 DM-specific associated 
variants, while enriching our knowledge about CVD risk factors, 
contribute to the debate about the “common soil” hypothesis for 
type 2 DM and CVD (20, 77). In this context, only few significant 
loci for type 2 DM and CVD, identified by large-scale GWAS, 
had shown to be shared between both diseases. Starting from 
this provocative observation, new strategies have been used to 
identify novel and ethnic-specific genetic links between CVD 
and type 2 DM. For example, studies have been carried out 
using an integrative pathway and network analysis combined 
with GWAS in more than 15,000 women from three different 
ethnicities, leading to the identification of eight major pathways 
shared by type 2 DM and CVD in all ethnic groups (78). In these 
studies, key driver genes, influencing the extra-cellular matrix 
composition, such as COL1A1, COL3A1, and ELN, that had 
been cross-validated in mouse models for type 2 DM and CVD, 
have also emerged. Interestingly, few peculiar pathways related 
to specific ethnic groups were identified (78). In addition, in the 
past years, attempts have been made to assess a more reliable 
disease susceptibility for CVD in type 2 DM by analyzing cumu-
lative genetic risk from multiple loci rather than from single 
SNPs (79, 80). As an example, two genetic risk scores have been 
successfully used to predict CVD and CVD fatal outcomes using 
patients from the Diabetes Heart Study (81).

HMGA1: An Established Gene for Type 2 DM Risk 
and a Novel Gene Predisposing to MI
High-mobility group A1 is a small, non-histonic nuclear protein, 
with pleiotropic effects involved in the regulation of embryogen-
esis, oncogenesis and tumor progression, cell differentiation, as 
well as inflammation (82–84). As an architectural transcription 
factor, it binds to the minor groove of AT-rich regions of DNA, 
and alters the chromatin conformation, facilitating the assembly 
and stability of stereospecific DNA–protein complexes called 
“enhanceosomes,” which drive gene transcription (85–87). Many 
studies from our group have demonstrated the role of HMGA1 
in the transcriptional control of glucose metabolism, being a key 
regulator of the insulin receptor (INSR), insulin-like growth fac-
tor binding protein 1 (IGFBP1), retinol binding-protein 4 (RBP4), 
visfatin, and insulin (INS) genes (88–93), as well as an important 
mediator of insulin action (94). Defects in HMGA1 protein, or 
the association with functional HMGA1 variants, among which 
the most common rs139876191 variant (previously named 
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rs146052672), cause a decrease in INSR expression and a trans-
ethnic increased susceptibility to either type 2 DM (26, 95–98) or 
metabolic syndrome (99). Besides its effects on glucose homeo-
stasis, HMGA1 plays a role in adipogenesis and lipid metabolism 
(100–102), while the HMGA1 rs139876191 variant correlates 
with body mass index, and reduced HDL levels in patients with 
metabolic syndrome and type 2 DM (97, 99).

Also, HMGA1 plays a critical role in the development and 
progression of the atherosclerotic plaque by promoting the 
proliferation and the migration of VSMCs to the neointima, and 
by inducing the expression of several inflammatory cytokines, 
adhesion molecules, including CD44, and chemokines (103, 104). 
On the other hand, by activating the matrix metalloproteinase 9 
(MMP-9), and the vascular endothelial growth factor (VEGF), 
HMGA1 is essential for vascular repair and neoangiogenesis, 
whereas its lack causes impairment of both vascular protection 
from injuries and of neovascularization (92, 105, 106). Recently, 
the functional HMGA1 rs139876191 variant has been found 
to be associated with acute MI, independently of type 2 DM or 
other cardiovascular risk factors, such as hypertension, obesity, 
and gender, suggesting that HMGA1 may represent a new can-
didate gene for acute MI and a marker for cardiovascular risk 
(27). Although further studies in other populations are needed 
to confirm this association, due to its pathophysiological role in 
insulin resistance, glucose homeostasis, lipid metabolism, inflam-
mation and vascular repair, HMGA1 may represent a convincing 
molecular link between type 2 DM and MI.

ePiGeNeTiC CHANGeS

Epigenetic processes are defined as heritable modifications in 
gene expression that occur in the absence of changes in the DNA 
sequence, and include DNA methylation, histone acetylation, 
and RNA-based mechanisms. These processes are cell-specific, 
susceptible to modifications, and responsive to the environment, 
and should be taken into account to better understand otherwise 
hidden causes of diseases.

DNA or Histone Modifications
New research investigations have addressed the link between 
epigenetic factors, type 2 DM and CVD. Hyperglycemia, for 
example, can induce epigenetic changes that lead to the over-
expression of genes implicated in vascular inflammation. In 
particular, hyperglycemia has been shown to activate the NF-kB 
signaling pathway in cultured THP-1 monocytes, leading to the 
production of MCP-1 and other inflammatory factors, and to the 
expression of adhesion molecules in endothelial cells, providing 
a plausible molecular mechanism for endothelial dysfunction and 
atherosclerosis (107). On the other hand, clinical studies have 
demonstrated that early intensive control of glycemia in diabetic 
patients is crucial to prevent chronic micro- and macrovascular 
complications, reinforcing the notion that glycemia may have 
a longstanding influence on clinical outcomes, a phenomenon 
called “metabolic memory” (108).

In support of an epigenetic role of hyperglycemia, it has been 
demonstrated, in aortic endothelial cells, that exposure to high 
glucose correlates with the inverse acetylation of the histone 

H3K9/K14 and modified DNA methylation patterns (109). 
Several histone lysine modifications have also been described 
following transient high glucose levels that may account for a 
persistent transcriptional induction of the RELA gene, encoding 
for the p65 subunit of NF-kB, even after subsequent incubation 
of endothelial cells with normal glucose concentrations (110). 
Altogether, the net result of this activity leads to the transcrip-
tional activation of some target genes implicated in the endothelial 
dysfunction, and the repression of other ones (111). Acetylation 
or hyperacetylation may also occur, being responsible for the 
increased expression of HMOX1, MMP10, SLC7A11, MMP1, 
MCP-1, and ICAM genes (109). Hyperglycemia is, however, 
not the only inducer of epigenetic modifications. Many other 
pathophysiologic mechanisms that may be operative in diabetes, 
independently from glucotoxicity, like ROS, PKC activation, and 
AGEs have been described to induce also epigenetic changes 
(112). In particular, ROS production is able to significantly 
induce the CpG hypomethylation of the p66Shc promoter and, 
at the same time, an increment in the H3 histone acetylation. 
Thus, ROS-induced epigenetic modifications are associated with 
higher levels of p66Shc, a mitochondrial adaptor that modulates 
the intracellular redox state, and with significant activation of 
PKC, therefore sustaining endothelial dysfunction and vascular 
damages (111, 112).

Further studies have investigated the associations between 
epigenetic modifications and cardio-metabolic phenotypes, 
such as obesity, dyslipidemia, insulin resistance, inflamma-
tion, and hypertension, in relation to CVD risk (113). In a 
recent study, peripheral blood mononuclear cells were used to 
measure histone deacetylases (HDACs) activity and expression 
in relation to glycemia, inflammation and insulin resistance 
in patients with type 2 DM. Low-grade chronic inflammation 
and insulin resistance induced HDAC3 activity and expression, 
and correlated positively with circulating levels of TNF-α, IL-6, 
and other proinflammatory markers, and negatively with Sirt1 
expression (114).

Several reports have demonstrated a correlation between 
DNA methylation and cardiovascular risk. The susceptibility 
haplotype rs8050136 of the FTO gene, a prominent gene associ-
ated with increased risk for obesity and CVD, displayed increased 
levels of methylation (115); a similar mechanism has been 
hypothesized for the rs9939609 polymorphism (116). In another 
candidate gene study, an association between IGF2 methylation 
and lipid profile alterations was found in obese children. In 
particular, IGF2 hypermethylation was associated with higher 
triglyceride/HDL-cholesterol ratio, representing an epigenetic 
marker of metabolic risk (117). Another study that combined 
genome-wide transcriptome and CpG methylation profiling by 
array, reported many differentially methylated predicted sites 
in adipose tissue from insulin-resistant patients compared to 
controls, which included genes involved in insulin signaling and 
in the interaction with integrins (118). Altered methylation were 
also found in IL18, CD44, CD48, CD38, Cd37, CX3CL1, CXCR1, 
CXCR2, CXCL1, IGF1R, APOB48R, LEF1, GIPR, GRB10, SIRT2, 
HDAC4, DNMT3A, LEPR, and LEP genes that were already 
found to be strongly and independently associated with insulin 
resistance (118–121). In addition, polarization of adipose tissue 
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macrophages from an anti-inflammatory (M2) to a proinflam-
matory phenotype (M1) in obese mice was shown to involve 
the methylation of the PPARγ promoter (122). Finally, there 
are evidences that MI susceptibility risk may be influenced by 
epigenetic changes occurring in the prenatal environment (123).

Abnormalities in MicroRNA (miRNA) 
expression
MicroRNAs are small single-strand RNA molecules that influ-
ence their target genes at a posttranscriptional level, thereby 
regulating many biological processes. Since their discovery about 
two decades ago, numerous miRNAs have been described to be 
associated with a multitude of diseases, including type 2 DM 
and CVD (28, 124, 125). In particular, with reference to type 
2 DM, miRNAs have shown to be involved in regulating beta 
cell function, insulin response, glucose homeostasis, as well as 
the pathogenesis of diabetic vascular complications (126, 127). 
Research in this field has highlighted new mechanistic links 
between diabetes and CVD (128), with many evidences proving 
the involvement of distinct miRNAs in the pathological steps that 
lead to atherosclerosis (Figure 1).

In vitro and in  vivo studies concerning the mechanisms 
that are responsible for the endothelial dysfunction in diabetes 
demonstrated that, in the presence of high glucose concentra-
tions, upregulation of miR-185 reduced the expression of the 
glutathione peroxidase-1 (GPx-1) gene, which encodes an 
enzyme that is important in the prevention of oxidative stress 
(129); instead upregulation of miR-34a and miR-204 contributed 

to endothelial cell senescence by impairing SIRT-1 expression 
and function (130, 131). In the endothelium, miR-126 exerts 
proangiogenic, and anti-inflammatory activities. At a functional 
level, it enhances VEGF and fibroblast growth factor activities, 
contributing to vascular integrity and angiogenesis (132, 133), 
recruits progenitor cells through the chemokine CXCL12 (134), 
while it suppresses inflammation by inhibiting TNF-α, ROS, and 
NADPH oxidase via HMGB1 (135). Consistently, miR-126 levels 
are down-regulated in both myocardial tissue and plasma from 
type 2 diabetic patients without any known anamnestic data for 
CVD (136, 137), and in patients with CAD (138), suggesting 
that it could represent a new diagnostic marker for diabetes and 
CVD. Other studies in endothelial colony-forming cells, as well 
as in progenitor endothelial cells (EPCs) exposed to high glucose, 
demonstrated that miR-134 and miR-130a affected cell motility 
and apoptosis, respectively (139, 140).

In diabetes, VSMCs loose their contractility and acquire 
proliferative and migratory properties, facilitating the onset 
of pathological processes relevant to CVD (141). miR-145 
has proved to reduce its level in the presence of high glucose, 
to impair myocardin gene expression via Klf4, and to facilitate 
VSMC proliferation (29, 142). In this context, a role of miR-504 
and miR-24 in promoting VSMC proliferation and migration, has 
also been reported (143, 144).

An important issue is the link between lipid metabolism and 
miRNAs in diabetic CVD. Several important genes implicated 
in lipid synthesis or processing, like FoxA2, Ppargcla, Hmgcs2, 
and Abdhd5 have been shown to be dysregulated by miR-29 in 
Zucker diabetic fatty rats (145), while HNF-4 alpha was found 
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to be raised by increased levels of miR-122 in diabetic mice and 
insulin-resistant HepG2 cells (146). Both miR-122 and HNF-4 
alpha were able to upregulate the expression of SREBP-1 and 
FAAS genes, causing abnormal cholesterol homeostasis and 
high levels of fatty acid and triglyceride synthesis (146). Finally, 
decreased levels of miR-26a have been reported in obese mice, 
in which they contribute to increased fatty acid synthesis, and to 
obesity-related metabolic complications (147).

Platelets are key partaker in CVD and their involvement in 
the development of cardiovascular complications is strength-
ened in diabetes (148). Platelets play an important role in the 
pathophysiology of thrombosis and represent an important 
source of different RNA species, including pseudogenes, 
intronic transcripts, non-coding RNAs, and antisense tran-
scripts (149, 150). These molecules can be released by platelets 
through microvescicles, contributing to the horizontal transfer 
of molecular signals delivered through the bloodstream to spe-
cific sites of action (151). The downregulation of miR-223, miR-
126, or 146a observed in diabetic and hyperglycemic patients 
(137, 152) has been associated with increased platelet reactivity 
and aggregation (153, 154). In line with these findings, silencing 
of miR-223 in mice caused a hyperreactive and hyperadhesive 
platelet phenotype, and was associated with calpain activation 
through the increased expression of beta1 integrin, kindlin-3, 
and factor XIII (153, 155). Moreover, the modulation of the 
expression levels of platelet miRNAs can also be measured 
in plasma. In fact, plasma levels of miR-223 and miR-126 are 
decreased in diabetics (137, 156). This leads to the upregulation 
of the P2Y12 receptor, as well as P-selectin, further contributing 
to platelet dysfunction (156). As a result of this interaction, acti-
vation level of platelets in type 2 DM is increased (149, 156, 157).  
Consistently with this, circulating miR-223 levels are independ-
ent predictors of high on-treatment platelet reactivity (158). 
Another interesting mechanism linking platelets and diabetes 
involves miR-103b, a platelet-derived biomarker proposed for 
the early diagnosis of type 2 DM, and the secreted frizzled-
related protein-4 (SFRP4), a potential biomarker of early β cell 
dysfunction and diabetes. In fact, platelet-derived miR-103b 
is able to downregulate SFRP4, whose expression levels are 
significantly increased in pancreatic islets and in the blood of 
patients with prediabetes or overt diabetes (159). These inter-
esting results identify miR-103b as a novel potential marker 
of prediabetes and diabetes, and disclose a novel potential 
therapeutic target in type 2 DM.

Macrophages also play a key role in atherosclerotic plaques. 
Unbalanced production of proinflammatory molecules from  
adipose tissue contributes to the polarization of macrophages 
toward the M1 phenotype and their accumulation within the vessel 
wall (160, 161). It has been demonstrated in vitro and in vivo that 
in the presence of high glucose or in insulin-resistant states, endo-
thelial cells decreased miR-181b expression, while the production 
of this miR, through the inhibition of AKT Ser 473 phosphoryla-
tion, was associated with a M2 anti-inflammatory response, but 
not with antiproliferative effects (162). These results are compat-
ible with an inhibitory role of miR-181b in atherosclerosis.

Other miRNAs, abundantly expressed in cardiomyocytes, 
such as miR-1 and miR-133a, seem to be crucial in preventing 

myocardial dysfunction. Both these miRNAs have been shown 
to be reduced in ischemic myocardial tissue, in left ventricular 
hypertrophy, and in diabetic cardiomyopathy (163, 164). Among 
the molecular mechanisms proposed for miR-133a, the repres-
sion of serum response factor, which plays a role in myoblast 
proliferation, of RhoA (a protein involved in GDP-GTP cycling), 
Cdc42 (a kinase implicated in hypertrophy), and Nelf-A/WHSC2 
nuclear factor (165).

Many cardiac-enriched miRNAs have been reported to be 
responsive to hyperglycemia, including miR133a, miR-1, and 
miR-206, with the last two favoring the apoptosis of cardiomyo-
cytes through the negative regulation of the heath shock protein 
60 (166). Recent evidences demonstrated that miR-208 and miR-
499, together with miR-1 and miR-133, could play a role into the 
molecular mechanisms leading to the differentiation of stem cells 
into cardiomyocytes (167). In fact, the involvement of miR-133a 
in the modulation of contractility was recently demonstrated in 
streptozotocin-induced diabetic rats (168), in which miR-133a 
overexpression was able to improve contractility through the 
upregulation of tyrosine aminotransferase, a known regulator 
of norepinephrine production and β-adrenergic receptors (168). 
These latter findings are particularly interesting, as we could 
recently demonstrate that miR-133a transcoronary concentration 
has an interesting prognostic potential in patients with CVD (169). 
Less data is currently available on the involvement of miR-208 in 
diabetic heart disease. A proposed mechanism for this miRNA 
implicated a role in the regulation of myosin heavy chain gene 
expression (170). On the other hand, functional studies showed 
that miR-499 protects cardiomyocytes from ischemic damage 
and apoptosis via the suppression of calcineurin-mediated 
dephosphorylation of dynamin-related protein-1 (171).

Specific miRNAs, such as miR-15, -16, -26a, -196a2, and 
Let-7a (172) are able to modulate HMGA1, whose association 
with acute MI, type 2 DM, and cardiovascular risk has already 
been discussed (26, 27, 99). Also, HMGA1 can specifically induce 
the expression of miR-10b, -21, -125b, -221, -222, or inhibit the 
production of miR-34a and -603, all of which are involved in 
several aspects of cardiovascular pathophysiology (173), thereby 
further supporting the notion that a complex relationship indeed 
exists between HMGA1 and miRNAs in this context (29, 174).

Abnormalities in Long Non-Coding  
RNA (lncRNAs) expression
Long non-coding RNAs include non-protein coding transcripts 
longer than 200 nucleotides (175, 176). They have both nuclear 
and cytoplasmic location and work as signal amplifiers for bio-
logical activity, regulating gene expression through a variety of 
partly explored molecular mechanisms, including the interaction 
or competition with other RNAs, DNA binding proteins, and 
specific regulatory DNA sequences (176, 177). New increasing 
evidences show the involvement of lncRNAs in human diseases 
(178), such as cardiometabolic diseases (179–182). For example, 
in the context of atherosclerosis (Figure 1), experimental studies 
have shown altered expression of lncRNAs in several processes 
implicated in SMC proliferation, endothelial function, inflam-
matory cells, lipid metabolism and obesity, as well as with insulin 
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resistance (183), while clinical studies have demonstrated that 
circulating lncRNAs could be potentially used to predict type 2 
DM (182) or the outcome of heart failure (184). However, data 
from this kind of studies are still initial and in progress. The first 
lncRNA robustly associated with CVD and type 2 DM has been 
lncANRIL, a locus identified by GWA studies, already widely 
discussed in this review in the Section “Genetic Polymorphisms.” 
Metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) is an lncRNA particularly expressed in the nucleus 
and physiologically implicated in the regulation of endothelial 
cell function. It has been demonstrated that hyperglicemia alters 
MALAT1 expression, leading to micro- and macrovascular dam-
ages (185–187). In particular, at a molecular level, MALAT1, by 
targeting serum amyloid antigen 3, a proinflammatory ligand, 
has been shown to induce the expression of IL-6 and TNF-α, 
as well as ROS production, thereby promoting endothelial 
dysfunction (187). Recently, the lncRNA H19, which has a role 
in limiting body weight and cell proliferation, was found to be 
markedly reduced in a mouse model of diabetic cardiomyopathy 
as a consequence of hyperglycemia (188). In an elegant study, 
it was demonstrated that lncRNA H19, via mIR-675, targets 
VDAC1, a mitochondrial porin that plays a role in ATP transport, 
regulating cardiomyocyte apoptosis (188). In other cases, lnc 
RNAs have been implicated in diabetic vascular complications 
through mechanisms linked to macrophage-mediated inflam-
mation. By transcriptome profiling of bone marrow-derived 
macrophages from db/db and diet-induced insulin-resistant type 
2 diabetic mice, an increase in lncRNA E330013P06 has been 
observed, demonstrating that this lncRNA promoted foam cell 
formation and endothelial dysfunction through the expression of 

inflammatory genes like Nos2, IL6 and ptgs2 (189). Also, a recent 
study using RAW264.7, as well as bone-derived macrophages, 
showed that lncRNA Lethe exerted an anti-inflammatory role by 
inhibiting the translocation of NF-kB transcription factor to the 
nucleus, and that in the presence of high glucose concentrations, 
lncRNA Lethe expression was reduced, with a consequent incre-
ment in NOX2 gene expression and ROS production (190).

CONCLUSiON

In this review, we provide an overlook about the main genetic 
and epigenetic factors linking type 2 DM and CVD, with a 
particular emphasis on the pathophysiological mechanisms 
involved. We addressed known genetic variants shared by 
both conditions, and the most relevant epigenetic mechanisms 
involved in their interplay. However, as a lower amount of solid 
evidence is available to date about epigenetics in this patho-
physiological context, further research will be necessary to 
validate, in patients with type 2 DM, the results obtained so far 
in vitro and in vivo, in animal models. A deeper understanding 
of gene networks, intracellular pathways, and cell-to-cell com-
munication mechanisms will allow the identification of novel 
biomarkers, as well as new therapeutic targets to exploit in the 
management of CVD in patients with type 2 DM.
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