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The thymus is sexually differentiated organ providing microenvironment for T-cell 
precursor differentiation/maturation in the major histocompatibility complex-restricted 
self-tolerant T cells. With increasing age, the thymus undergoes involution leading to 
the decline in efficacy of thymopoiesis. Noradrenaline from thymic nerve fibers and “(nor)
adrenergic” cells is involved in the regulation of thymopoiesis. In rodents, noradrenaline 
concentration in thymus and adrenoceptor (AR) expression on thymic cells depend on 
sex and age. These differences are suggested to be implicated in the development of 
sexual diergism and the age-related decline in thymopoiesis. The programming of both 
thymic sexual differentiation and its involution occurs during the critical early perinatal 
period and may be reprogrammed during peripubertal development. The thymic (re)
programming is critically dependent on circulating levels of gonadal steroids. Although 
the underlying molecular mechanisms have not yet been elucidated fully, it is assumed 
that the gonadal steroid action during the critical perinatal/peripubertal developmental 
periods leads to long-lasting changes in the efficacy of thymopoiesis partly through (re)
programming of “(nor)adrenergic” cell networks and AR expression on thymic cells.

Keywords: thymic noradrenergic innervation, noradrenaline-synthesizing thymic cells, adrenoceptors, sex 
steroids, thymic involution, thymic programming/reprogramming

The thymus is organ in which T cells are continually generated in a highly dynamic process comprising 
T-cell receptor (TCR) gene rearrangement, lineage commitment, and selection (1). These processes 
are linked to distinct rates of proliferation and cell death by apoptosis (1). With increasing age, the 
thymus atrophies and declines in functions, the phenomenon termed involution (2). Consequently, 
thymic generation of naïve T cells declines (2, 3). This leads to the shrinkage of peripheral TCR 
repertoire and the expansion of memory T cell compartment, i.e., to the changes covered by the 
canopy term immunosenescence (3–5). At the clinical level, the immunosenescence is associated 
with a greater susceptibility to infections (6, 7), an impaired response to vaccinations (8, 9), and 
an increased propensity for malignant diseases (10, 11). In addition, according to the U.S. Center 
for Disease Control, approximately 80% of aged individuals are afflicted with at least one chronic 
disease as a result of a declination of immune function. Consequently, factors contributing to the 
thymic involution and mechanisms of their action are becoming the subject of increased interest 
in the scientific and healthcare communities alike. It should be emphasized that understanding of 
the mechanisms underlying thymic involution is important not only for moderating the deleterious 
effects of immunosenescence, but also for envisaging strategies to “rejuvenate” the immune system. It 
is noteworthy that even in a significant thymic involution thymopoiesis does not cease completely, so 
it may be enhanced (12). The thymic “rejuvenation” becomes particularly important after exposure 
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to chemotherapy, ionizing radiation, and some infective agents 
(e.g., HIV-1) (13).

There is evidence that (i) early perinatal programming of the 
thymus is crucial for the development of thymic involution, and 
consequently the efficacy of immune responses from early life 
through adulthood (14), and (ii) this phenomenon is sexually 
dimorphic (14, 15). Consistently, sex differences in the organ size, 
structural organization, and thymopoiesis (14–22), and conse-
quently T-cell immune response (23, 24), have been observed. A 
more rapid thymic involution was found in male compared with 
female mice (25). Consequently, adult females have the ability 
to reject allografts more efficiently, a greater ability to combat 
various viral and bacterial infections, and superior antitumor 
responses (23).

There are data indicating that the early programming of the 
thymus development/involution is shaped by genetic, environ-
mental, and hormonal factors (14). The role of genetic factors 
has been shown in both mice and rats (26–31). These genetically 
based differences are suggested to be connected to strain differ-
ences in susceptibility to various pathologies involving immune 
mechanisms (26–30). Environmental factors, such as malnutri-
tion, and exposure to endocrine disruptors, in early postnatal life 
are also shown to influence the pace of thymic involution (32). 
Alterations in circulating levels of sex steroids in the critical early 
postnatal developmental “window” may influence not only sexual 
dimorphism in structural and functional thymic parameters, but 
also the timing of thymic involution (15, 21, 33). Furthermore, 
gonadal steroids may influence sexual dimorphism in thymo-
poiesis, and the age-related decline in its efficacy through: (i) 
modulating thymic extrinsic (encompassing noradrenergic nerve 
fibers) and intrinsic [composed of noradrenaline-synthesizing 
cells, i.e., “(nor)adrenergic” cells] adrenergic regulatory net-
works, in terms of their density/noradrenaline content and (ii) 
adrenoceptor (AR) expression on thymic cells (34, 35). In addi-
tion, it should be pointed out that the ablation of gonadal steroids 
during the peripubertal developmental “window” leads not only 
to short-term increase in thymic weight and enhancement of thy-
mopoiesis, but also to the long-lasting thymic “rejuvenation” (33).

The central goal of this mini review is to summarize recent 
findings and current knowledge related to the mechanisms of 
indirect (nor)adrenaline-mediated action of gonadal steroids on 
the programming/reprogramming of thymic involution, as its 
action may be easily controlled by many drugs in use for non-
immune indications.

THYMiC eXTRinSiC AnD inTRinSiC 
(nOR)ADReneRGiC ReGULATORY 
neTwORKS

Thymic extrinsic (nor)adrenergic network
The thymus receives extensive noradrenergic innervation 
(36, 37). The varicose noradrenergic fibers terminate in close 
proximity to thymocytes (37, 38), and various subsets of thymic 
non-lymphoid (stromal) cells (38–41). In rodents, noradrenergic 
fibers appear in the thymus in late embryonic period, and their 
density increases during prepubertal development (42, 43). The 

data on postpubertal changes in their density are inconsistent 
(44–50). In advanced age, in rodents of distinct (sub)strains has 
been observed decrease, increase and lack of changes in thymic 
noradrenergic nerve fiber density compared with young adult 
(sub)strain-matched ones (44–50). This inconsistency is most 
likely linked to (sub)strain and sex-dependent differences in the 
kinetics of postpubertal changes in thymic noradrenergic inner-
vation. It has also been suggested that the noradrenaline content 
in thymic nerve fibers, and consequently thymic noradrenaline 
concentration vary with age (44–50). In addition, both thymic 
parameters were found to be greater in male than in age-matched 
female rats (51) (Figure 1).

Thymic intrinsic (nor)adrenergic network
Many types of mature immune cells synthesize and secrete 
catecholamines (52–54). The investigations of the expression 
of tyrosine hydroxylase (TH), the key rate-limiting enzyme in 
catecholamine synthesis in freshly isolated thymic cells, cultured 
thymocytes and cells from adult thymic organ culture revealed 
that thymic cells, including thymocytes, synthetize noradrena-
line (34, 51, 55). TH-immunoreactive cells were found across all 
thymocyte subsets delineated by CD3 expression levels, but their 
frequency was highest among the most mature CD3high thymo-
cytes (51). In addition, TH-immunoreactive cells were observed 
in various thymic non-lymphoid cell subpopulations (44, 51). 
Their density varies across distinct thymic microenvironments. 
They are frequent at the medullary side of the corticomedullary 
junction, whereas their density is moderate and poor in the 
subcapsular cortex, and intracortically/intramedullary, respec-
tively (51). This is important as various thymic non-lymphoid 
cell subsets are strategically positioned in particular thymic 
microenvironments to orchestrate thymocyte differentiation/
maturation (56). TH immunoreactivity was observed in thymic 
epithelial cells (TECs) (39, 51, 57–59), macrophages, and den-
dritic cells (44, 60). In TEC population, TH immunoreactivity 
was found in neural crest-derived thymic nurse cells (51, 57, 58), 
type 1 (subcapsular/perivascular), and type 5 (located mainly in 
corticomedullary region) cells (39, 51, 59). The density of both 
lymphoid and non-lymphoid TH-immunoreactive cells was 
shown to be higher in male than in female rats (51) (Figure 1). 
In addition, the overall noradrenaline content in thymocytes 
was found to be greater in male compared with female adult rats 
(51) (Figure 1). Although studies in rat adult thymic organ and 
thymocyte cultures suggested that noradrenaline from thymic 
“(nor)adrenergic” cells is implicated in the fine tuning of thymo-
poisesis (55), a role for thymic intrinsic adrenergic network in 
thymic homeostasis is still far from being understood. It is note-
worthy that intrinsic (nor)adrenergic cellular networks: (i) have 
also been identified in some other tissues and (ii) suggested to be 
particularly important under specific conditions, e.g., following 
sympathectomy, gonadectomy, chronic stress (45, 61–65), as it 
allows for mainly local regulation of the catecholamine influence 
(64, 66).

AR expression on Thymic Cells
To corroborate modulatory role for noradrenaline in the thy-
mus is the expression of ARs on both thymocytes and thymic 
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FiGURe 1 | Influence of alterations in circulating ovarian steroid levels in critical developmental periods on programming/reprogramming of thymic extrinsic and 
intrinsic adrenergic networks. This figure indicates (middle schemes) sex differences in noradrenaline content in noradrenergic nerve fibers and thymocytes, density 
of tyrosine hydroxylase (TH)-expressing (“adrenergic”) cells, density of β2-adrenoceptor (AR)+ thymic cells and thymocyte β2-AR surface density in young adult rat 
thymus, and influence of (upper scheme) single injection of testosterone on the third postnatal day to female rats and (lower scheme) ovariectomy in peripubertal 
period on noradrenergic nerve fiber and thymic “adrenergic” cell density and their noradrenaline content, as well as the density of AR-expressing thymic cells and 
thymocyte AR surface density in young adult rats.
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non-lymphoid cells. Thymic cells express β2- and α1-AR (67–70). 
Their expression is reciprocally regulated during thymocyte 
maturation (50, 71, 72). The most mature CD3high thymocytes 
predominantly express β2-AR, whereas α1-AR expression is 

predominant on the most immature CD3− thymocytes (50, 60, 70, 
72). There is sexual diergism in the expression of β2-AR on thy-
mocytes. Immunophenotyping showed the higher frequency of 
β2-AR-expressing cells among thymocytes from female compared 
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with male young adult rats, but lower density of the receptor on 
their surface (73) (Figure 1). In addition, autoradiographic stud-
ies indicated a sexually dimorphic pattern of postnatal changes in 
the density of β-AR in rat thymus (69). There are no data on sex 
differences in α1-AR expression on thymocytes.

The expression of β2-AR was also demonstrated on cortical 
(aminopeptidase A+), and medullary (UEA-1+) TECs, CD68+ 
macrophages, and OX62+ dendritic cells (44). In addition, 
α1-AR-immunoreactive cells were observed among TECs and 
macrophages located predominantly in subcapsular/subtrabecu-
lar and corticomedullary thymic regions (60). Thymic dendritic 
cells also express α1-AR (74). The subsets of β2-AR+ and α1-AR+ 
non-lymphoid cells were shown to co-express TH (60). Thus, not 
only paracrine, but also autocrine noradrenaline action may be 
expected in the thymus.

GOnADAL STeROiDS AnD 
PROGRAMMinG/RePROGRAMMinG OF 
THe THYMiC (nOR)ADReneRGiC 
neTwORKS AnD AR eXPReSSiOn

early Postnatal Thymic Programming
The thymus is sexually differentiated organ (15). The sexual 
differentiation in the thymus, as in the brain areas controlling 
gonadotropin release, occurs during the critical perinatal period, 
and is governed by sex steroid-dependent mechanisms (15). In 
addition, the widely accepted organizational/activational hypote-
sis of the bran development is extended to encompass the thymic 
differentiation (15). According to the original hypothesis, in the 
absence of testicular androgens during the critical period (start-
ing at the late prenatal period and continuing, at least, to day 5 
postpartum), the areas controlling gonadotropin release develop 
in a primarily female manner (75–78). Conversely, the presence of 
testicular androgens leads to their defeminization/masculiniza-
tion, a phenomenon known as neonatal androgenization (77–79). 
This postpones sexual maturation and leads to development of 
non-ovulatory ovaries with estrogen hyporesponsiveness (78, 
80, 81). The mechanisms of testosterone action in the brain and 
thymus are extremely complex, as in both organs it converts into 
estrogen (15, 75–78), and consequently does not act only through 
androgen receptors (82). The binding of estradiol to classical estro-
gen receptor (ER)α or ERβ in the cytoplasm of target cells causes 
the receptor dimerization and translocation in nucleus, where the 
dimer associates with various coactivators to enable binding to 
the estrogen response elements (EREs) in or near the promoters 
of target genes (83). Estradiol can also influence expression of 
genes that do not harbor EREs in their promoter regions. In this 
case, ligand-activated ERs do not bind DNA directly, but through 
protein–protein interactions with other classes of transcription 
factors at their respective response elements in promotor region 
of their target genes (84). In addition, estradiol may act through 
membrane G protein-coupled ER (GPER, previously termed 
GPR30) (84). This involves mobilization of diverse signaling 
pathways and may depend on a number of conditions, like the 
availability of signal transduction molecules and downstream 
targets (84).

It was shown that a single injection of testosterone on the third 
postnatal day enhanced thymic growth and postponed thymic 
involution in female rats, which normally starts around puberty 
(85, 86). Accordingly, long-lasting changes in thymopoiesis, 
mirrored in the enhanced thymocyte differentiation/maturation 
in adult animals were observed (86). In addition, neonatal andro-
genization facilitated the generation of CD4−CD8+TCRαβhigh 
cells, and consequently shifted CD4+/CD8+ recent thymic 
emigrant ratio in peripheral blood toward the latter (86). The 
thymopoietic changes were ascribed to thymocyte overexpres-
sion of Thy-1, as its overexpression reduces thymocyte negative 
selection and favors maturation of CD8+ T cells (87). Considering 
CD8+ T cell dominance in the periphery of males when compared 
with females (23, 88), the previous findings indicate defeminiza-
tion/masculinization of T-cell compartment in adult neonatally 
androgenized rats, i.e., speak in favor of a sex steroid role in the 
sexual differentiation of thymus.

Although aware of the complexity of changes in neuroendo-
crine-thymic communications in neonatally androgenized rats, 
in this review we focused on those mediated by catecholamines. 
Neonatal androgenization was shown to increase thymic 
noradrenaline concentration in adult rats (35). This mainly 
reflected the increase in nerve fiber noradrenaline content 
(35). Consistent with the so-called transsynaptic action of 
sex steroids on neurotransmitter synthesis (89), the previous 
finding may be explained by an augmented sympathetic tone 
in neonatally androgenized rats (90, 91). However, the higher 
noradrenaline concentration partly reflected the greater density 
of noradrenaline-synthesizing cells and noradrenaline content 
per cell (35) (Figure 1). Considering that the circulating level of 
testosterone was elevated in neonatally androgenized rats (35), 
this could be associated with data indicating that androgens 
prominently transactivate TH promoter (92). In light of data 
from other studies (51), the previous findings suggest thymic 
defeminization/masculinization in neonatally androgenized 
rats (Figure 1).

As additional sign of defeminization/masculinization (73), 
the frequency of β2-AR-expressing cells within thymocytes (35) 
was diminished in neonatally androgenized rats (Figure  1). In 
addition, neonatal androgenization decreased β2-AR density on 
thymocytes (35) (Figure 1). Given that in many cell types estro-
gen, acting through classical ERs, upregulates β2-AR expression 
(93, 94), the alterations in β2-AR density could reflect estrogen 
hyporesponsiveness (80, 95). This hyporesponsiveness most  
likely emerged from the ER interaction with an excess of estrogen 
(as a result of testosterone aromatization) during the critical 
period (96, 97). The interaction of receptor with excess ligand in 
the critical period is shown to cause misprinting substantiated in 
diminished receptor binding capacity and responsivity in later life 
(96, 97). The elevation of thymic noradrenaline concentration fol-
lowing the testosterone injection could also impair the efficacy of 
β2-AR signaling (through the hormonal misprinting) (35), lead-
ing to the diminished noradrenaline action as the ultimate effect. 
In favor of this assumption is the increase in Thy-1 expression in 
adult neonatally androgenized rats (83). Namely, the incubation 
of murine thymocytes with noradrenaline causes time- and con-
centration-dependent decreases in the Thy-1 mRNA levels, which 
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Leposavić and Pilipović Gonadal Steroids and Thymic (Re)programming

Frontiers in Endocrinology | www.frontiersin.org January 2018 | Volume 9 | Article 13

are completely preventable by propranolol (98, 99). Moreover, 
given that: (i) noradrenaline upregulates α1-AR expression (100) 
and (ii) long-lasting α1-AR blockade facilitates thymocyte dif-
ferentiation/maturation toward CD4+CD8−TCRαβhigh cells (70), 
the contribution of an augmented α1-AR signaling (reflecting its 
increased density and/or noradrenaline concentration) to the 
thymocyte maturation skewed toward CD4−CD8+ TCRαβhigh cells 
in adult neonatally androgenized rats cannot be ruled out.

In favor of the role of sex steroids in perinatal programming 
of thymic noradrenergic networks are also data showing that 
orchidectomy in the critical perinatal period lowers levels of both 
neurally- and thymocyte-derived noradrenaline in adult rats and 
thereby contributes to the deceleration of the thymic involution 
(34). This is consistent with data indicating that not only in pres-
ence of excess ligand in the critical periods, but also in its absence 
the ligand–receptor connection changes for life (101).

To summarize, the previous findings indicate that alterations 
in circulating levels of sex steroids in the critical perinatal period 
may affect the programming of the sexually dimorphic (nor)
adrenaline influence on thymopoiesis. However, the molecular 
mechanisms standing behind this phenomenon remain to be 
elucidated.

Peripubertal Thymic Reprogramming
It has been suggested that the hormonal changes occurring at the 
time of puberty lay the framework for biological differences that 
persist throughout life (102). In addition, the original organi-
zational/activational hypothesis of sexual differentiation of the 
brain has been extended to include puberty (76, 103). Namely, 
ovariectomy in peripubertal period leads to a long-lasting post-
ponement/alleviation of the postpubertal decline in thymopoiesis 
(33, 104). This could be partly related to ovariectomy-induced 
changes in thymocyte proliferation (35). Given that the age-
related decline in thymopoiesis has been partly related to the rise 
in the thymic noradrenaline level (44, 50, 105), one may assume 
that the peripubertal ovariectomy affects thymic adrenergic 
networks. Indeed, it was shown that it diminishes the thymic 
noradrenaline level in young adult (2-month-old) rats (45). This 
reflected the decrease in the density of noradrenergic nerve fibers 
and noradrenaline content in both noradrenergic nerve fibers 
and non-lymphoid cells, as thymocyte noradrenaline content 
increased (45) (Figure  1). These changes were preventable by 
estrogen supplementation (45). This could be explained by the 
following facts: (i) estrogen represents the key factor in remod-
eling of noradrenergic innervation in some other tissues (106) 
and (ii) is implicated in the regulation of TH expression (107). 
Estrogen is suggested to regulate TH gene expression through 
direct genomic effects, as the TH promoter contains several ele-
ments, including the activation protein 1 and Sp1/Egr1 motifs 
that might mediate estrogen action on TH gene (108, 109). The 
thymic cell type-specific effects of peripubertal ovariectomy on 
TH expression could be explained by data indicating that estrogen 
may regulate TH transcription in opposite direction through ERα 
and ERβ (110). Given that estrogen may influence TH expression 
trough extragenomic and indirect genomic effects, it may also 
be supposed that estrogen, through the same ER, may produce 

opposing effects by interacting with proteins with distinct action 
on gene transcription in distinct cells (111, 112). In peripuber-
tally ovariectomized rats, the density of noradrenergic nerve 
fibers and TH-expressing non-lymphoid cells remained lower 
than in age-matched controls until the age of 11 months (45). 
On the other hand, thymocyte noradrenaline, which was elevated 
in 2-month-old peripubertally ovariectomized rats, continued to 
rise until the age of 11 months (45). In 11-month-old peripuber-
tally ovariectomized rats it was comparable with controls (45). 
Thus, it seems that the ovariectomy-induced changes are long 
lasting (45).

In addition, peripubertal ovariectomy in young adult rats 
diminished the average thymocyte surface density of β2-AR, 
but it increased that of α1-AR (reflecting estrogen, and estrogen 
and progesterone deficiency, respectively) (45) (Figure 1). These 
changes, despite the rise in circulating estrogen level post-
ovariectomy because of extragonadal synthesis (113), remained 
stable until the age of 11 months (45). This could be related to 
a decreased sensitivity to estrogen action, as a consequence of 
peripubertal hormone misprinting. Finally, it is noteworthy 
that the increased noradrenaline content in thymocytes and 
diminished frequency of β2-AR+ thymocytes in young adult 
ovariectomized rats suggested that peripubertal ovariectomy 
instigates some signs of thymic defeminization/masculinization 
(51, 73) (Figure 1).

The putative role of peripubertal orchidectomy in long-
lasting reprogramming of the thymic adrenergic networks has 
not been examined. However, 1 month following peripubertal 
orchidectomy the changes in both extrinsic and intrinsic 
noradrenergic networks were similar to those described 
1  month following ovariectomy in the same age (44, 45). In 
addition, an impaired β-AR-mediated influence on thymus 
led to more efficient thymocyte positive selection/less efficient 
negative selection, and preferential differentiation/matura-
tion of thymocytes into mature CD4+CD8−TCRαβhigh cells in 
orchidectomized rats (44), i.e., to a more “feminine” pattern of 
T-cell development (23).

COnCLUSiOn

In summary, a growing body of evidence indicates that both 
thymic sexual differentiation and involution are, at least 
partly, “controlled” during the critical developmental periods 
by gonadal steroids. In addition, it suggests that the gonadal 
steroid-mediated thymic (re)programming involves extrinsic 
and intrinsic noradrenergic regulatory networks and AR 
expression on thymic cells. The challenge remains to elucidate 
the molecular mechanisms underlying these gonadal steroid-
induced effects. Nonetheless, it may be assumed that (i) altera-
tions in circulating levels of gonadal steroids during the critical 
developmental periods (either induced endogenously or by 
endocrine disruptors in the environment) lead to long-lasting 
effects on thymopoiesis and (ii) pharmacological manipulation 
with (nor)adrenaline action on thymus may be useful means 
in preventing/moderating deleterious effects of aging on 
thymopoiesis.
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