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The insulin-like growth factor (IGF) axis is required for the differentiation, development, 
and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated 
with various skeletal pathologies including growth abnormalities and compromised bone 
structure. It is becoming increasingly apparent that the action of the IGF axis must be 
viewed holistically taking into account not just the actions of the growth factors and 
receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).
There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects 
in bone and other tissues and that an understanding of the mechanisms of action of 
IGFBPs and their regulation in the pericellular environment impact critically on tissue 
physiology. In this respect, a group of IGFBP proteinases (which may be considered as 
ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this 
model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for 
growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF 
receptors. In this review, we examine the importance of IGFBP function in bone tissue 
with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). 
We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present 
evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step 
in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and 
IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions 
of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in 
bone we will allude to IGFBP activity in other cells and tissues where appropriate.

Keywords: insulin-like growth factor-binding protein-4, bone, pregnancy-associated plasma protein-A, proteolysis, 
insulin-like growth factor-binding protein-5

Abbreviations: IGF, insulin-like growth factor; IGFBP, IGF-binding proteins; IGF1R, IGF1 receptor; hDPC, human dental 
pulp cells; PAPP-A, pregnancy-associated plasma protein-A; STC, stanniocalcin; BMD, bone mineral density; hOB, human 
osteoblasts.
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iNTRODUCTiON

The insulin-like growth factor (IGF) axis comprises two polypep-
tide growth factors (IGF1 and IGF2), two cell surface receptors 
[IGF1 receptor (IGF1R) and IGF2R], and six soluble high-affinity 
IGF-binding proteins (IGFBP-1–6). Ancillary proteins associated 
with the IGF axis include various IGFBP proteinases that cleave 
IGFBPs into fragments with greatly reduced IGF-binding affinity, 
thus regulating the partition of IGFs between IGFBPs and cell 
surface receptors (1). IGFs are present at high concentrations in 
bone matrix (2), and disruption of the IGF1 gene compromises 
skeletal growth in mice (3) and humans (4). In addition to an 
anabolic role in mature bone, IGFs also stimulate differentiation 
of osteoblasts in developing bone tissue and regulate the balance 
between bone accretion and resorption which occur throughout 
life (5–7). IGFBP-4 is abundantly expressed in bone tissue (8), 
and the role of this IGFBP in regulating bone metabolism has 
been extensively investigated (9–11). In recent years, the activity 
of a specific IGFBP-4 proteinase, pregnancy-associated plasma 
protein-A (PAPP-A), has also been investigated in bone and other 
tissues (12–14). IGFBP-2 and IGFBP-5 are also significantly active 
in bone tissue demonstrating both IGF-dependent and IGF-
independent effects (15–18). Additionally, signaling pathways 
associated with IGFBP-2 and IGFBP-5 action in osteoblasts and 
bone tissues have been recently reported (19–22). In this review, 
we touch on each of these topics and also briefly on the actions of 
the other IGFBPs (IGFBP-1, -3, and -6) in bone cells and tissues.

iNSULiN-LiKe GROwTH FACTOR-
BiNDiNG PROTeiN-4

Insulin-like growth factor-binding protein-4 was first identified as 
an inhibitory IGFBP in medium conditioned by the TE89 human 
osteosarcoma cell line (23) and then cloned from cDNA libraries 
of various tissues in human and rat (24, 25). It is a 237-residue 
protein sharing the 3-domain structure previously described 
for other IGFBPs. Early studies showed that IGFBP-4 inhibited 
IGF2-stimulated thymidine uptake in primary cultures of human 
osteoblasts (hOB) (26) and in the MC3T3-E1 mouse osteoblast 
cell line (27) and inhibited IGF1-stimulated aminoisobutyrate 
uptake in bovine fibroblasts and in the rat neuronal B104 cell line 
(28, 29). This inhibitory activity in vitro led to the hypothesis that 
IGFBP-4 generally displayed anti-anabolic and anti-proliferative 
effects. In confirmation of this, overexpression of IGFBP-4 in 
a malignant prostate epithelial cell line decreased the prolif-
erative response to IGF1 and delayed tumor development when 
transfected cells were transplanted into nude mice (30). In vivo 
data also supported an IGF-inhibitory role for IGFBP-4. Tissue-
specific overexpression of IGFBP-4 in smooth muscle cells using 
an α-actin promoter caused smooth muscle hypoplasia (31) and 
a similar strategy using a protease resistant form of IGFBP-4  
(pr IGFBP-4) (see below) resulted in transgenic mice with 
decreased internal smooth muscle mass in stomach, bladder, 
and aorta (32). Importantly, with respect to this review, IGFBP-4 
overexpression in osteoblasts decreased bone formation and 
compromised global skeletal growth (11). Some epidemiological 

data also supported an inhibitory role for IGFBP-4 with increased 
levels in a cohort of female patients with age-related osteoporotic 
fractures of the hip and spine (33). Although this evidence sug-
gested an inhibitory role for IGFBP-4, other reports indicated an 
anabolic role for IGFBP-4. Therefore, systemic administration 
of IGFBP-4 to mice increased bone tissue markers (osteocalcin 
and alkaline phosphatase) in serum and skeletal tissues (10). 
Additionally, IGFBP-4 knockout (KO) mice exhibited prenatal 
growth retardation, suggesting that IGFBP-4 may be required for 
full growth promoting effects of IGF2 in the fetus (34). IGFBP-4 
KO mice also showed gender dependent changes in skeletal phe-
notype with female mice having reduced bone mineral density 
(BMD) along with other features associated with osteopenia (9). 
Clearly, further research is required to definitively establish the 
role of IGFBP-4 in bone tissue physiology. In this respect, the 
observation of IGFBP-4 proteolysis by fibroblast and bone cell 
cultures has attracted much interest as a means of regulating the 
activity of IGFs in bone and other tissues, and we provide a short 
summary of this area in the following section.

iGFBP-4 PROTeOLYSiS

Addition of IGF1 to cultures of human fibroblasts reduced the lev-
els of a 24 kDa IGFBP in conditioned medium and development 
of specific antibodies confirmed this species as IGFBP4 (35, 36). 
IGF1-dependent downregulation of IGFBP-4 occurred indepen-
dently of IGF1R activation and was not associated with changes 
in IGFBP4 mRNA levels, suggesting a direct post-translational 
regulation of IGFBP-4. Shortly thereafter, IGF-induced decreases 
in IGFBP-4 protein levels were shown to be due to the presence of 
a proteolytic activity in fibroblast-conditioned medium which in 
cell-free assays was activated by IGF1 or IGF2 (37). IGFBP-4 was 
cleaved into two discrete fragments by this protease, suggesting a 
specific cleavage point within the protein (38). The cleavage site 
was identified at the peptide bond M135-K136 within the central 
domain of IGFBP-4 producing 14 and 18  kDa protein frag-
ments (29). These data were used to engineer protease-resistant 
IGFBP-4 mutants that have proven useful in the further study 
of the biological significance of IGFBP-4 proteolysis (29, 39). 
This became apparent when intact, but not cleaved IGFBP-4, was 
shown to inhibit [3H] aminoisobutyric acid uptake into bovine 
fibroblasts with the inference that cleaved IGFBP-4 fragments 
did not bind IGF1. Further study indicated that IGF2 was a 
more potent activator of IGFBP-4 cleavage than IGF1 and IGF2 
pre-treatment of human dermal fibroblast cultures increased 
sensitivity of cell cultures to IGF1. The concept of IGF2-mediated 
IGFBP4 cleavage as a route for increasing sensitivity to IGF1 (40) 
may be significant as IGF1 and IGF2 are usually present together 
in the pericellular environment, suggesting a complex interaction 
between the growth factors to regulate anabolic responses.

Primary cultures of hOB expressed an IGFBP-4 protease 
activity identical to that described for fibroblasts (41), and 
pre-treatment of osteoblast cultures with IGF2 also increased 
sensitivity to IGF1-stimulated [3H] thymidine incorporation 
(42). Subsequently, IGFBP-4 protease activity has been reported 
in human endometrial stromal cells (43) and in porcine aorta-
derived smooth muscle cells (44), suggesting that proteolysis of 
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IGFBP-4 may have widespread biological significance. At around 
this time, a landmark study identified PAPP-A as the enzyme 
responsible for IGF-dependent cleavage of IGFBP-4 in fibroblast-
conditioned medium (34). PAPP-A was also shown to cleave 
IGFBP-5 in an IGF-independent manner (45). Identification 
of PAPP-A as the IGF-dependent IGFBP-4 proteinase caused a 
paradigm shift in this area of IGF research. Whereas previously 
IGFBP-4 had been viewed mainly as an IGF-inhibitory IGFBP 
in tissue culture studies, co-expression of PAPP-A in cell culture 
could negate this inhibitory effect. Furthermore, the “activa-
tion” of PAPP-A by IGFs suggested possible positive feedback 
loop whereby growth factor action could be enhanced. Further 
aspects of function, structure, and regulation of PAPP-A activity 
are discussed below.

PReGNANCY-ASSOCiATeD PLASMA 
PROTeiN-A

Functional Aspects
Pregnancy-Associated Plasma Protein-A was partially purified 
from human fibroblast-conditioned medium by Lawrence 
et al (46), and its identity was confirmed by mass spectroscopy. 
By using polyclonal anti-PAPP-A antibodies, IGFBP-4 protease 
activity in fibroblast-conditioned medium could be completely 
inhibited, suggesting that PAPP-A may be the only IGFBP-4 
protease expressed by these cells. PAPP-A isolated from fibro-
blast cultures was found to be identical to the enzyme described 
in pregnant serum (46–48), showing both IGF dependency and 
the same site of proteolytic cleavage in the central domain of 
IGFBP-4 (see above). Identification of PAPP-A allowed some 
elegant transgenic studies highlighting the importance of this 
enzyme. Transgenic mice with a collagen I promoter–PAPP-A 
construct overexpressed PAPP-A specifically in osteoid tissue 
causing increased calvarial BMD (14). In double transgenic mice 
overexpressing PAPP-A and a pr IGFBP-4, bone phenotype was 
similar to single pr IGFBP-4 transgenics, showing decreased cal-
varial thickness and BMD compared to WT mice. This provided 
strong evidence that in  vivo anabolic effects of PAPP-A were 
due to IGFBP-4 proteolysis, most likely resulting in an increase 
in the local bioavailability of IGF (49). In confirmation of this, 
PAPP-A KO mice showed reduced femur BMD and blunted 
responses to the anabolic actions of parathyroid hormone (12). 
In a clinical context, PAPP-A has been proposed as a target for 
anti-proliferative therapies in various cancers. Studies in an 
ovarian cancer tissue model (50) and using xenografts of adeno-
carcinoma A549 cells (45) showed that antibody-mediated inhi-
bition of PAPP-A activity decreased tumor growth presumably 
because pericellular IGF remains bound to IGFBPs leading to 
a reduction in free IGF in the local tumor environment. This 
may be important as current anti-IGF-based strategies have 
proved disappointing in clinical trials. Anti-IGF1R strategies 
are hampered by hyperinsulinemia secondary to elevated GH 
levels as a result of impaired IGF-1 feedback at the level of the 
pituitary (51). This may lead to increased mitogenic signaling 
by elevated insulin levels through the insulin receptor (IR). 
IGF1R blockade may also result in IGF1 signaling through the 

IR or through hybrid IGF1R/IR isoforms which are known to 
exist in many tissues (52) and which may not be blocked by 
anti-IGF1R-directed monoclonal antibodies. See the study by 
Yee (53) for an excellent review of the abovementioned argu-
ments. In contrast, the use of anti-PAPP-A-directed antibodies 
would not be associated with these complications acting only to 
inhibit IGF1 release from pericellularly proteolysed IGFBP:IGF 
complexes.

Structural Aspects
Although PAPP-A was isolated over four decades ago from 
pregnancy serum (54), it was only after the cloning and expres-
sion of this large (1,547 residues) protein that detailed work on 
protein structure began (55). PAPP-A belongs to the metzincin 
superfamily of metalloendopeptidases containing a Zn-binding 
motif and a highly structurally conserved Met-turn (56). 
PAPP-A associates with the cell surface through two of five short 
consensus repeat modules within the C-terminus of the protein, 
and membrane-bound PAPP-A remains catalytically active. 
This may ensure release of IGF in the vicinity of cell surface 
IGF1R (57). Under reducing conditions, PAPP-A migrates as a 
200 kDa protein although in pregnancy serum (and some other 
biological fluids) it is primarily present as a disulfide-bound 
dimer associated covalently with another disulfide bound dimer 
of the proform of eosinophil major basic protein (proMBP) in 
a 2:2 heterotetrameric complex (58, 59). The structure of the 
heterotetrameric PAPP-A:proMBP complex identifies a disulfide 
bridged dimer of PAPP-A covalently bound to a disulfide-bridged 
dimer of proMBP via two interchain disulfide bridges (60). In 
this configuration, PAPP-A is inactive with the proMBP dimer 
binding at or close to the active site of PAPP-A, suggesting that 
steric inhibition of enzyme activity may result. Both PAPP-A and 
proMBP are extensively glycosylated, and under non-denaturing 
gel electrophoresis conditions, the complex runs as a large 
(>500 kDa) molecular weight species. A mutagenic analysis of 
the substrate IGFBP-4 suggested that the C-terminal domain of 
IGFBP-4 conferred the IGF dependence for PAPP-A cleavage 
of IGFBP-4 (61). In addition, this same study showed that the 
region between the Zn-binding domain and the Met turn motif of 
PAPP-A was important for proteolytic activity toward the IGFBP-
4:IGF1 complex. Availability of recombinant PAPP-A allowed 
confirmation that the rate of IGFBP-4 proteolysis is enhanced by 
binding of IGFs to IGFBP-4 (62), and detailed kinetic analysis 
confirmed IGF2 as a more potent activator of proteolysis than 
IGF1. The effect of IGFs on IGFBP4 proteolysis was associated 
with changes in both affinity (Km) and turnover rate (Kcat). This 
study also confirmed IGFBP-5 as a PAPP-A substrate although 
proteolysis of IGFBP5 was not IGF dependent (63). Further 
mutational analysis suggested that the Lin12-Notch repeat mod-
ules present in the C-terminal of PAPP-A are responsible for the 
differential requirement of IGFBP-4 and IGFBP-5 for IGF during 
PAPP-A-mediated proteolysis (64, 65).

Regulation of PAPP-A Activity
Relatively few agents have been shown to influence PAPP-A 
activity. IGFBP-4 proteolysis was inhibited following treatment 
of fibroblast cultures with phorbol esters. The attenuation of this 
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FiGURe 1 | Diagrammatic representation of pregnancy-associated 
plasma protein-A (PAPP-A) activity in the insulin-like growth factor (IGF) 
axis. PAPP-A is present in serum and some other biological fluids 
covalently complexed with the pro-form of eosinophil major basic 
protein (proMBP). In this form PAPP-A is inactive. Uncomplexed PAPP-A 
acts to cleave IGF-binding protein-4 (IGFBP-4) and IGFBP-5 into 
fragments with reduced IGF-binding affinity. IGFBP-4 but not IGFBP-5 
requires binding of IGF for PAPP-A cleavage. Proteolysis of IGFBP 
substrates releases IGFs to allow interaction with cognate cell surface 
receptors. Recently, discovered stanniocalcins (STC1 and STC2) act to 
inhibit PAPP-A activity. STC2 is shown, and this inhibitor forms a 
covalent bond with PAPP-A to inhibit the proteolytic activity. See the text 
for further details.
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effect by prior treatment with actinomycin D or cycloheximide 
suggested PCK-regulated expression of an inhibitor of IGFBP-4 
proteolysis (66). Such an inhibitory activity was also reported in 
SV40-transformed hOB cells, suggesting that the process of cellu-
lar transformation may be associated with inhibition of IGFBP-4 
proteolysis (67). The finding that phorbol esters and/or SV40-
mediated transformation increased the expression of proMBP – a 
covalent inhibitor of PAPP-A (see above) – suggested at least one 
route by which these agents may act to inhibit IGFBP-4 cleavage 
in fibroblast cultures (68).

An early study reported stimulation of IGFBP-4 proteolytic 
activity in the rat neuronal B104 cell line by glucocorticoids 
(69) and following identification of PAPP-A as an IGFBP-4 
proteinase, the synthetic glucocorticoid dexamethasone was 
shown to increase enzyme activity in primary cultures of rat 
vertebral osteoblasts (13). PAPP-A mRNA levels were not altered 
by dexamethasone treatment, suggesting a post-transcriptional 
mechanism by which enzyme activity was increased. In contrast  
to the above, TGFβ increased PAPP-A mRNA levels approximately 
12-fold in hOB cultures, and this was associated with increased 
PAPP-A activity in conditioned medium (70). The demonstration 
of increased IGF2-mediated IGFBP-4 cleavage following TGFβ 
treatment of hOB cultures (71) may be of particular significance 
given the fact that IGF2 and TGFβ are two of the most abundant 
growth factors present in bone matrix, and a co-ordinated action 
of TGFβ and IGF2 in bone matrix to increase local availability of 
IGF may occur. Osteoblasts secrete IGF peptides endogenously 
(IGF2 >  IGF1) and, despite the fact that the IGFBP-4 levels in 
osteoblast-conditioned media are typically an order of magnitude 
higher that the IGF2 levels, endogenous IGF2 can stimulate the 
proteolysis of concurrently expressed IGFBP-4 protein in osteo-
blast cultures (72, 73).

Recently, two novel protein inhibitors of PAPP-A activity  
have been described. These are members of the stanniocalcin 
family (STC1 and STC2) and were first identified as regulators of 
Ca homeostasis in teleost fish (74, 75). However, in the context 
of the mammalian IGF axis, their status as PAPP-A inhibitors 
indicates that these proteins are negative growth regulators. 
Overexpression of STC1 or STC2 resulted in growth retardation 
in transgenic mice (76, 77), whereas KO of STC2 causes increased 
growth (78). Molecular mechanisms of STC1 and STC2 inhibi-
tion of PAPP-A differ with STC2 forming a disulfide-bonded 
covalent complex with PAPP-A and STC1 forming a high-affinity 
non-covalent complex with the enzyme. Nonetheless, both 
STC1 and STC2 potently inhibit PAPP-A which may cause an 
increased concentration of IGF bound in complex with IGFBP-4 
(and IGFBP-5, see below) and hence less bioavailable IGF in the 
pericellular environment. In agreement with this, STC2 inhibited 
PAPP-A-stimulated IGF1R phosphorylation in transfected cells 
exposed to IGF1:IGFBP-4 complexes (74). A recent study using 
whole exome sequencing of a large human cohort reported 
two separate single amino acid mutations of STC2 leading to  
compromised inhibition of PAPP-A. The fact that these alleles 
strongly associated with increased height in the sampled popula-
tion is of particular interest (79). A diagrammatic representation 
of the IGFBP-PAPP-A-STC axis is presented in Figure 1.

PAPP-A iN OTHeR SPeCieS

Pregnancy-associated plasma protein-A has also been cloned 
from a mouse cDNA library (80). Although murine (m) PAPP-A  
shares 91% homology with the human enzyme and cleaves 
IGFBP-4 in an IGF-dependent manner, mPAPP-A activity is not 
elevated in pregnant serum or in placenta. In addition, a variant 
mPAPP-A containing a 29-residue insert (PAPP-Ai) was also 
isolated. Interestingly, this PAPP-A isoform was a less efficient 
IGFBP-4 protease than the shorter variant of the enzyme. The 
significance of these differences between murine and human 
PAPP-A remains to be resolved, although PAPP-A null mice 
are 40% smaller than littermates, suggesting a role for PAPP-A 
during embryogenesis (81). This may be due to diminished 
IGFBP-4 cleavage and, therefore, reduced IGF availability in 
the developing fetus. In agreement with this, IGFBP-4 cleavage 
is absent in fibroblast cultures derived from these null mice. 
PAPP-A is present in multiple other species, including zebrafish, 
and interestingly, the absence of PAPP-A in this species causes 
a developmental delay, which is independent of proteolytic  
activity (82).
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PReGNANCY-ASSOCiATeD PLASMA 
PROTeiN-A2

Overgaard et al. described the cloning of a metalloprotease from 
placental cDNA libraries with homology to PAPP-A. This protein, 
which cleaves IGFBP-5 (and IGFBP-3), was named PAPP-A2 
(83) and is present in human pregnancy serum where it releases 
IGF1 from the IGF1:IGFBP-5 complexes (84). PAPP-A2 appears 
as a monomer of 200  kDa in non-reducing gel electrophoresis 
and in contrast to PAPP-A does not bind to proMBP or associ-
ate with cell surfaces. Cleavage of IGFBP-5 by PAPP-A2 is not 
IGF-dependent, but as IGFBP-5 has been reported to have both 
IGF-dependent and IGF-independent effects in hOB cultures 
(see below), PAPP-A2 activity may also have major relevance 
in bone cell physiology. In agreement with this, homozygous 
PAPP-A2 KO mice show decreased post-natal growth along with 
reduced body length (85). Similarly, conditional PAPP-A2 KO 
in osteoblasts decreased body mass and bone length, although 
other tissue sources of PAPP-A2 may be involved in appropriate 
post-natal growth (86). PAPP-A2 may represent a quantitative 
trait locus regulating body shape in mice (87, 88). Recently, two 
separate families (of Palestinian and Spanish ancestry) were found 
to have two different inactivating PAPP-A2 mutations that result 
in growth retardation in homozygous children (89, 90). Further 
analysis of affected individuals indicated significant increases in 
IGF1 in ternary ALS complexes with reduced free serum IGF1. 
In addition, affected individuals showed moderate microcephaly, 
mild BMD effects, and thin long bones. This phenotype was 
presumably associated with the inability of mutant PAPP-A2 to 
proteolyse IGFBP-3 and IGFBP-5 substrates.

OTHeR iGFBs iN BONe MeTABOLiSM

insulin-Like Growth Factor-Binding 
Protein-5
Insulin-like growth factor-binding protein-5 is also present at 
high concentrations in bone matrix and has been associated 
with both inhibitory and stimulatory activities in bone cells and 
tissues. IGFBP-5 was reported to have IGF-dependent and IGF-
independent effects in bone tissue, although the literature is con-
flicted in this area. IGFBP-5 was shown to enhance IGF-stimulated 
mitogenesis in hOB cultures (91, 92) and to stimulate the dif-
ferentiation of two osteoblast cell lines in an IGF-independent 
fashion (93, 94). In ovariectomized rats, daily subcutaneous 
injection of IGFBP-5 increased osteoblast proliferation (95) and 
enhanced the association of IGF1 with bone cells possibly via 
specific cell-surface binding sites for IGFBP-5 (26, 96) or through 
a specific IGFBP-5 receptor on osteoblast membranes (97, 98). 
Disappointingly, however, a specific IGFBP-5 receptor has not 
been isolated or characterized further. Signaling studies suggest 
that the actions of IGFBP-5 in osteoblasts involve Ras association 
family isoform C activation of Erk-1/2 (19). The association of 
IGFBP-5 with four and a half LIM domain protein within the 
nucleus of U2 osteosarcoma cells has also been reported although 
the functional significance of this observation remains unknown 
(99). Although all the abovementioned findings are consistent 

with a stimulatory role for IGFBP-5 action in bone tissue (IGF-
dependent or independent), some authors have reported con-
trary findings. For example, IGFBP-5 was reported to inhibit 
IGF1-stimulated proliferation in the U2 human osteosarcoma 
cell line (100), and transgenic mice overexpressing IGFBP-5 
from the osteocalcin promoter showed decreased trabecular 
bone formation and reduced rates of mineral deposition during 
the first few weeks of post-natal life (15). Stromal cells isolated 
from transgenic animals also showed decreased levels of osteo-
genic markers. Constitutive overexpression of IGFBP-5 in the 
mouse osteoblast precursor cell line MC3T3-E1 also decreased 
osteogenic marker expression and delayed formation of mineral-
ized nodules under osteogenic culture conditions (16). Finally, 
addition of exogenous wtIGFBP-5 or overexpression of IGFBP-5 
from an adenovirus promoter inhibited osteoblast differentiation 
and growth of mouse metatarsal bones in short-term culture (20).

Although IGFBP-5 is cleaved in an IGF-independent manner 
by PAPP-A and PAPP-A2 (see above), it is also a substrate for 
other proteolytic enzymes. Matrix metalloproteinase-1 and -2  
(MMP-1 and MMP-2) were shown to degrade IGFBP-5 in a 
time-dependent fashion in medium conditioned by the mouse 
MC-3T3-E1 cell line (101), and the complement component C1s 
was identified as an IGFBP5-specific protease in human dermal 
fibroblast-conditioned media (102). Following on from this, 
Mohan et al. described a disintegrin and metalloprotease-9 as an 
IGFBP-5 protease expressed in the U2 human osteosarcoma cell 
line (103). Although the importance of IGFBP-5 cleavage may 
(as for IGFBP4) lie with the regulation of free pericellular IGF 
concentrations, this is somewhat complicated by the observations 
of IGF-independent actions of IGFBP-5 described earlier. Clearly, 
these may also be impacted by IGFBP-5 cleavage. Further work is 
required to establish the role of IGFBP-5 in osteoblast differentia-
tion and in bone tissue metabolism in general.

Finally, there are reports of broad-spectrum proteolytic 
enzyme families, which degrade IGFBP-5 (and other IGFBPs). 
These include plasmin (104), thrombin (105), the serine proteases 
cathepsin G, and elastase (106), although questions of specificity 
and biological relevance related to these proteases remain largely 
unanswered.

insulin-Like Growth Factor-Binding 
Protein-2
The literature describes both IGF-dependent and IGF-
independent effects of IGFBP-2 in osteoblast cultures and bone 
tissues. An early study using a unilateral disuse osteoporosis 
model in the rat showed that osmotic minipump delivery of IGF2/
IGFBP-2 complexes prevented the decrease in BMD in affected 
femurs associated with this model (107). A subsequent report 
from the same group showed that IGF2/IGFBP-2 complexes 
bound to heparin-Sepharose and that it was suggested that such 
complexes may associate with ECM components in bone tissue 
potentially increasing the local concentration of IGFs (108).  
In agreement with the abovementioned findings, IGFBP-2 
potentiated IGF2-induced increases in ALP activity in cultures 
of rat tibial osteoblasts (109), and we have demonstrated the 
same effect of IGFBP-2 on IGF1-stimulated ALP activity in 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


6

Beattie et al. IGFBP Action in Bone Tissue

Frontiers in Endocrinology | www.frontiersin.org February 2018 | Volume 9 | Article 31

differentiating human dental pulp cells (110). Studies in IGFBP-2 
KO mice indicated gender-specific differences in osteogenic 
phenotype with increased cortical thickness and periosteal 
circumference in female mice but reduced cortical bone area 
and trabecular volume in male KOs (111). Although difficult to 
rationalize, it clearly suggests interplay between the IGF axis and 
other hormone systems. This same group also reported impaired 
osteoclastogenesis in bone marrow cells derived from igfbp2−/− 
mice and a transfection study in these cells and indicated that 
both the IGF and heparin-binding domain (HBD) of IGFBP-2 
were required for osteoclast generation (112). This description 
of IGF-independent effects of IGFBP-2 in vitro was confirmed 
in concurrent studies demonstrating restoration of osteogenic 
phenotype in igfbp2−/− bone marrow cells by addition of 
a HBD peptide derived from IGFBP-2. In addition, in  vivo 
administration of HBD peptide restored osteoblast number in 
igfbp2−/− mice (17). Recently, studies in the mouse MC-3T3 
pre-osteoblast cell line showed that IGFBP-2 can bind and 
inhibit the activity of receptor phosphotyrosine phosphatase β 
causing increased levels of phosphorylated PTEN, activation of 
Akt, and stimulation of osteogenesis (17, 18). Further reports 
from this laboratory highlight the importance of the scaffold/
adaptor protein IRS-1, PKCζ, and early activation of AMP-
dependent protein kinase in the osteoblast differentiation of 
primary rat calvarial cells and the differentiating MC-3T3 cell 
line (21, 22). It should be noted that IGFBP-2 is also a PAPP-A 
substrate, although this IGFBP is cleaved less efficiently than 
IGFBP-4 and IGFBP-5 (113).

iGFBP-1, -3, AND -6

Although IGFBP-1, -3, and -6 have all been reported to be 
expressed in osteoblasts and to be present in bone tissue (114), 
there are fewer data describing the functions of these three 
IGFBPs. IGFBP-1 was expressed at low levels in primary hOB 
cultures under regulation of glucocorticoid and insulin although 
the physiological relevance of this effect in bone tissue has not 
been established (115). A recent prospective study (10-year 
follow-up) in a cohort of elderly women reported a positive 
correlation between serum IGFBP-1 and osteoporotic fracture, 
suggesting an IGF-independent osteopenic effect of IGFBP-1 
(116). Further data are required on IGFBP-1 and its effects (if 
any) on bone physiology.

A very early study reported inhibition of IGF1-stimulated 
DNA synthesis in two osteoblast cell lines by intact IGFBP-3 
(117). This inhibitory effect on both IGF1- and IGF2-stimulated 
DNA synthesis was confirmed in cultures of rat calvarial cells 
(118). Although these data suggest an inhibitory role for IGFBP-3 
in bone metabolism, other in vivo data (119) and cross-sectional 
studies in a cohort of female patients with postmenopausal osteo-
porosis suggest an anabolic role for IGFBP-3 in maintaining bone 
density (120).

Insulin-like growth factor-binding protein--6 mRNA was 
expressed in primary osteoblast cultures derived from fetal rat 
calvaria (121), and the expression of both mRNA and protein 

was upregulated in a dose-dependent fashion by cortisol or reti-
noic acid treatment (122, 123) cultures. Conversely, IGFBP-6 
expression was negatively regulated by TGFβ1 in the same 
cell culture system (124). IGFBP-6 shows a higher affinity for 
IGF2 than IGF1. Accordingly, it was shown to be a more potent 
inhibitor of IGF2-stimulated DNA and glycogen synthesis in 
hOB  cells than IGF1 (125). This inhibitory effect of IGFBP-6 
was confirmed in the SaoS2 human osteosarcoma cell line using 
a stable antisense transfection strategy to demonstrate that the 
anti-differentiative activity of all-trans retinoic acid (Vitamin D) 
was at least partly mediated via IGFBP-6 (126). More recently, 
IGFBP-6 has been shown to interact with the thyroid hormone 
receptor alpha1 and to inhibit the tri-iodothyronine-induced 
increase in osteoblast marker expression in the human U2-OS 
osteosarcoma cell line (127). In contrast to these reports, the 
inhibitory effect of IGFBP-6 attenuated by intracellular interac-
tion with the LIM mineralizing protein in both human and 
mouse osteoblastic cells (128), and one study reported a stimu-
latory effect of IGFBP-6 on DNA synthesis and mitogenesis in 
the human osteosarcoma Saos-2/B-10 cell line (129). As for 
IGFBP-1 and IGFBP-3, the role of IGFBP-6 in osteogenesis and 
bone tissue physiology has been underreported, and further 
studies are required to elucidate the role of these 3 IGFBPs in 
osteogenesis and bone physiology.

CONCLUSiON

Six decades have passed since the initial description of the ana-
bolic role of IGF1 in skeletal tissue (130). In the intervening years, 
much progress has been made in defining the actions of IGF1 
and IGF2 and other members of the IGF axis in bone tissue at all 
stages of development. This review has focused specifically on the 
function of IGFBPs in osteogenic tissues – both IGF-dependent 
and IGF-independent. However, the IGF axis acts in a co-
ordinated fashion and is integrated with other hormonal systems 
and growth factor axes to regulate skeletal tissue development 
and maintenance. It is anticipated that in this and other aspects of 
IGF axis physiology, many important observations will be made 
in the near future.
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