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Recent studies challenge the previous view that apoptosis within the granulosa cells of 
the maturing ovarian follicle is a reflection of aging and consequently a marker for poor 
quality of the contained oocyte. On the contrary, apoptosis within the granulosa cells is 
an integral part of normal development and has limited predictive capability regarding 
oocyte quality or the ensuing pregnancy rate in in vitro fertilization programs. This review 
article covers our revised understanding of the process of apoptosis within the ovarian 
follicle, its three phenotypes, the major signaling pathways underlying apoptosis as well 
as the associated mitochondrial pathways.
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iNTRODUCTiON

Pregnancy rate and oocyte quality have been linked to the incidence of apoptosis in women receiv-
ing in vitro fertilization (IVF) treatment (1). Poor prognosis patients (such as older women) had 
a greater incidence of apoptosis (number of pyknotic bodies), while follicles yielding oocytes that 
fertilized had lower levels of granulosa cell apoptosis (1, 2). Several growth factors and hormones are 
antiapoptotic, such as bone morphogenetic proteins (BMPs), follicle stimulating hormone (FSH), 
luteinizing hormone (LH), and estrogen. Recent studies from our group reported that granulosa 
cell expression of the receptors (R) of FSH (FSHR), BMP (BMPR1B), and LH (LHR) are reduced 
and dysregulated in older women; yet in the same cohort of women, granulosa cell apoptosis was 
highest in the younger rather than the older women (3–5). Different techniques have been applied 
historically to determine the level of apoptosis. In the light of recent reports for apoptosis analysis, 
there arises the question of whether apoptosis is an accurate measure for the interpretation of 
oocyte quality.

NeCROSiS AND APOPTOSiS: MORPHOLOGiCAL FeATUReS

Necrosis results from cellular exposure to a toxin or destructive agent which causes swelling and 
disruption to the cell’s organelles, leading to an irreversible breakdown of the cell’s membranes and 
the scattering of the cytoplasmic and nuclear contents (6). This leads to a marked inflammatory 
response by the body. However, apoptosis is caused by several distinctive signaling pathways, which 
culminate in shrinkage of the cell, cytoplasmic blebbing, and compartmentalization of organelles 
(Figure 1) (7–9). Characteristically there is no consequent inflammatory response. Although the cell 
membranes lose integrity, they fold and encapsulate (blebbing) to prevent the contents from affecting 
neighboring cells, a feature which is not observed in necrotic granulosa cells (10). Apoptotic cells 
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FiGURe 1 | Periluteal granulosa cells and cell morphology. Human granulosa 
cells were collected from a 15 mm follicle during an in vitro fertilization cycle 
at the time of oocyte collection. The granulosa cells are peri-luteal cells; 
however, the cytoplasm is still relatively compact compared to granulosa  
cells collected from ovulatory follicles (5). The granulosa cells have dense 
clustering of organelles around the large round nucleus (N). The cytoplasm 
appears granular during the late stages of follicular phase; large lipid droplets 
contain hormones. Cytoplasmic extrusions or blebbing, which indicates late 
apoptosis are shown (*); apoptotic bodies (a); organelles (o) clustered  
around the nucleus. Healthy granulosa cell (N) without blebbing is engulfing  
a neighboring apoptotic granulosa cell nucleus (N1) via phagocytosis (10).  
Bar 5 µm.
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typically have pyknotic, crescent-shaped or rounded dark bodies 
of dense DNA, fragmented into smaller sections. However, the 
majority of pyknotic cells in the middle layers of the membrana 
granulosa had been consumed by adjacent healthy cells.

Necrosis and apoptosis both culminate in cell death of the 
granulosa cell, and nucleic dyes that stain DNA material are com-
monly used to indicate the vitality of the cell membranes (11). 
Uniquely, the apoptotic granulosa cell will continue to synthesize 
steroid hormones until the mitochondrial membranes are dis-
rupted. Functioning apoptotic granulosa cells undergo reorgani-
zation of the cell cytoplasm, creating blebs of non-cytoplasmic 
organelles at the periphery; and mitochondria, Golgi apparatus, 
and endoplasmic reticulum, which are clustered around the 
nucleus; large fluid filled vacuoles containing steroids, lipids, and 
proteins also accumulate (12, 13). The granulosa cell expands 
and reorganizes the contents of the cytoplasm, forming new 
organelles, particularly smooth endoplasmic reticulum (SER) 
for progesterone production (13). The SER and mitochondria 
are assembled in close association with the nucleus (8, 13). The 
mitochondria and large, round, lipid droplets are closely associ-
ated with the SER, all of which have substantially increased in 
number, and cluster around the nucleus to increase efficiency of 
steroid synthesis (Figure 2) (8).

During luteinization, granulosa cells form irregular microvilli 
and tight junctions between the cells, whereas in an apoptotic 
granulosa cell, the cell membrane disintegrates and spaces form 
(12). The apoptotic granulosa cell continues to produce steroids 
in large antral follicles until complete mitochondrial breakdown 
occurs (16).

GRANULOSA CeLL APOPTOSiS: THRee 
PHeNOTYPeS, THeiR iNiTiATiON AND 
ReGULATiON

Atresia of ovarian follicles can be divided into three phenotypes, 
each with different mechanisms of initiation and regulation, but 
all involving granulosa cell apoptosis (17). The first, so-called 
“antral atresia”, affects the middle prolific layers of granulosa cells, 
with apoptosis progressing toward the antrum. The second, “basal 
atresia”, occurs in the granulosa cells closest to the basal lamina 
of very small antral follicles. The cells prematurely luteinize and 
begin to produce progesterone; however, they do not complete 
luteinization, with subsequent cell death (17). A third form of 
apoptosis in the preovulatory follicles is referred to as “terminal 
differentiation apoptosis” and is similar to epidermal skin cells 
sloughing off (10, 18). The granulosa cells that are sloughed off 
from the antral surface form globules that aggregate and float 
into the antral fluid (10). The globules average 40 µm in diameter 
and stain positively for propidium iodide (PI), which indicates 
that their cell membranes are compromised. However, the DNA 
is not fragmented, being of high molecular weight, and has a 
negative DNA fragmentation laddering result for the TUNEL 
(terminal deoxy-UPT nick end-labeling) assay. The majority 
of cell death in the membrana granulosa is via “antral atresia.” 
Apoptotic bodies and cytoplasmic blebbing are typical of antral 
apoptosis, whereas apoptotic cells in the middle or basement 
section of the granulosa membrana are commonly engulfed by 
neighboring healthy granulosa cells and/or infiltrating mac-
rophages. There are three main areas of apoptosis inducement; 
growth factors, death receptors and cell damage. Apoptosis can 
occur at any stage of the development of the follicle. In small 
follicles the granulosa cells are compact with large round nuclei. 
As the follicle matures the predominantly estrogen producing 
granulosa differentiates steroidogenically, increasing the volume 
of mitochondria and SER. Apoptosis at this stage of development 
would similarly result in condensation of the nucleic contents 
and clustering of the organelles around the nucleus. In the late 
stages of apoptosis, cell membranes are broken down and the 
contents compartmentalize into apoptotic bodies.

MAJOR APOPTOSiS SiGNALiNG 
PATHwAYS iN THe OvARiAN FOLLiCLe

There are three major signaling pathways for the development 
of apoptosis in granulosa cells (19). The first is growth factor-
induced high levels of cAMP through granzyme B; the second 
affects mitochondrial function via the Bcl2 family member 
activation; and the third utilizes tumor necrosis factor alpha 
(TNFα) and Fas ligand (FasL)-Fas and other death receptors; 
all of which result in caspase-induced DNA fragmentation 
(Figure 3). In the ovary, granzyme B is stimulated by gonado-
trophins and forskolin to bypass the mitochondria to preserve 
their function in the early stages of apoptosis, even though DNA 
fragmentation and nuclear collapse may have occurred (16).

Apoptosis can also be initiated by a number of extrinsic fac-
tors that may damage the cell such as DNA damage and oxidative 
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FiGURe 2 | Schematic diagram of granulosa cell characterization from follicular to luteal phase. In a stage-dependent progression, the granulosa differentiates from 
a compact 8–15 µm cell with a large round nucleus and relatively small cytoplasm (12). The cytoplasm contains mitochondria, rough endoplasmic reticulum, Golgi 
apparatus, lipid droplets, and many other organelles (14). As the granulosa cell matures, the organelles proliferate and the cytoplasm expands to accommodate new 
steroidogenic capacity. A fully luteinized granulosa cell, 25–30 µm, contains a large volume of mitochondria, steroid filled lipid droplets, and smooth/rough 
endoplasmic reticulum, and has the capacity to produce progesterone directly (8). At any stage of follicular growth the granulosa cell can undergo apoptosis. Early 
apoptosis is characterized by collapse of the cell membranes and condensation of the chromatin, which often polarizes in the nucleus with the organelles clustered 
adjacent (15). Early apoptosis in a granulosa cell with an expanded cytoplasm is similarly changed with a greater volume of organelles clustered around a collapsing 
nucleus. Late stages of apoptosis end with compartmentalization of organelles into blebs and extrusion of apoptotic bodies that may contain nucleic matter.
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stress, which activate p53-specific signaling pathways to trigger 
apoptotic mechanisms (8, 19, 33).

Conversely, many growth factors [such as insulin-like growth 
factor (IGF), epidermal growth factor (EGF), and fibroblast 
growth factor (FGF)] as well as gonadotrophins (FSH and LH) 
are antiapoptotic, which creates a microenvironment that ensures 
survival.

Estrogen and progesterone are the main antiapoptotic fac-
tors along with FSH, LH, EGF, IGF, FGF, prolactin, laminin, 
leptin, and glucocorticoids. The steroid producing capacity of 

a follicle is reflected in the hormone levels within serum and 
follicular fluid from the antral cavity of the follicle under the 
influence of steroidogenic acute regulatory protein (StAR) (34). 
The steroids produced by the theca and granulosa cells pro-
vide an antiapoptotic effect in a stage-specific manner during 
folliculogenesis.

After dominant follicle selection, the theca cell mitochondria 
convert cholesterol to pregnenolone by cytochrome P450 side-
chain cleavage enzyme, mediated by StAR. The pregnenolone 
is transported out of the mitochondria and converted to 
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FiGURe 3 | Apoptosis signaling pathways. Estrogen is a major driver of follicular growth and its effects results in inhibition of apoptosis. There are three main  
areas of apoptosis inducement: 1. growth factors, 2. death receptors, and 3. cell damage (20). Before antral cavity formation ovarian follicle androgens increase  
the receptor of follicle stimulating hormone (FSH) expression and high levels of BMPR1B activity, possibly via BMP6 and 7, suppress LHR expression (21). 
Antiapoptotic FSH induced cAMP–PKA promote ERK1/2 signaling, which increases Bcl-2 and promotes estrogen production in favor of progesterone synthesis 
(22–24). The bone morphogenetic proteins (BMPs) 2, 4, 6, and 7 inhibit progesterone synthesis, which reduces caspase 3, 6, and 7 production during the follicular 
phase (25). Dysregulation of the BMPs induces granzyme B synthesis leading to increased DNA fragmentation (16). Fas ligand (FasL) and TNFR activity induces 
caspase 8 induced DNA fragmentation (26). BMP 7 inhibits caspase 3 activity. Estrogen via the estrogen receptor has also been shown to reduce FasL activity  
(27, 28). Stress induced apoptosis via p53 causes mitochondrial breakdown via caspase 9 (29). Mitochondrial apoptosis is dependent on the ratio of pro and 
antiapoptotic factors of the Bcl-2 family (30). The Akt signaling pathway promotes antiapoptotic activity and is influenced by estrogen and growth factor-induced 
cAMP-PKA activity (31, 32).
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progesterone by 3β-hydroxysteroid dehydrogen. The proges-
terone is then converted to androgens, predominantly andros-
tenedione, dehydroepiandrosterone, and testosterone, and 
transported from the theca cell to the granulosa cell where it used 
to synthesize estrogen.

During the estrogen-driven proliferative phase of folliculo-
genesis, granulosa cell apoptosis is inhibited by antiapoptotic 
signaling pathways such as protein kinase B (Akt/PKB), extracel-
lular signal-regulated kinase (ERK), EGF, and the BMPs. The 
Akt signaling pathway promotes antiapoptotic activity and is 
influenced by estrogen and growth factor induced cAMP-PKA 
activity. Estrogen directly inhibits FasL-induced apoptosis via the 
estrogen receptor, which activates the Akt–dependent pathway 
(20). In addition, the BMP ligands have been shown to inhibit 
apoptosis signaling down-stream of these signaling pathways in 
a number of studies (25, 35–38).

The LH surge-induced differentiation of the granulosa cell 
enables it to convert cholesterol to progesterone directly, and the 

levels rise substantially. At the time of ovulation the LH surge 
induces the granulosa cells to express progesterone receptors. 
The follicle undergoes progesterone-driven luteinization and 
enters the luteal phase, cell proliferation ceases, and high levels 
of progesterone inhibit apoptosis during corpus luteum forma-
tion (39).

MiTOCHONDRiAL PATHwAYS OF 
APOPTOSiS AND THe BMPs

Apoptosis is induced via a change in the balance of proapoptotic 
factors versus antiapoptotic factors. In most cells of the body, 
mitochondrial apoptosis is the primary pathway involved in 
programmed cell death. However, in the ovary, early apoptosis 
begins in the nucleus of granulosa cells, bypassing the mitochon-
dria until the later stage of apoptosis. The B-cell lymphoma 2 
gene (Bcl-2) family consists of proapoptotic and antiapoptotic 
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factors (~40 known members) associated with the regulation of 
apoptosis via the mitochondria (27, 40).

Bone morphogenetic proteins have an inter-relationship 
with the proapoptotic factor Bax (a Bcl-2 derived prosurvival 
protein), and its ratio to antiapoptotic factors (Figure  3). 
Bcl-2 opposes Bax and its destruction of the mitochondrial 
membranes. Bax is present from the resting primordial fol-
licle onward; whereas Bcl-2 is only present after primary to 
secondary transition, which may influence primordial follicle 
loss (41). BMP2, when overexpressed in renal tumors, signals 
via Smad 1, 5, and 8 (Smads, initially identified in drosophila, 
are signal transducers for receptors of the TGF-B superfamily), 
and increases GATA-4 expression, which inhibits Bax activity in 
the mitochondria (42). (The GATA transcription factor family 
are key mediators of sp hemopoietic progenitors.) In the mouse 
ovary, GATA-4 inhibits Bax-induced mitochondrial membrane 
permeabilization (41). Conversely, BMP2 induces apoptosis 
in bone by increasing caspase 3, 6, 7, and 9 expression (35), 
indicating a tissue-specific involvement of BMP2.

In the ovary BMP2 increases granulosal FSHRs in small fol-
licles, and FSHR-mediated signaling is antiapoptotic in nature 
(43). This action occurs independently of granulosa cell prolifera-
tion induced by BMP2, highlighting the dual action capability 
of BMPs to inhibit and to induce cellular activity, and to induce 
differential responses during different stages of folliculogenesis.

In vitro culture of caprine granulosa cells with BMP2, 4, 6, 
and 7 reduces the percentage of DNA fragmentation (38). In 
the same study, FSHR silencing increased apoptosis. BMP4 
neutralization in rodents causes an increase in apoptosis of the 
granulosa cells and the oocyte (37). BMP7 activated caspase 9 in 
granulosa cells; however, BMP4 and 7 had no effect on the levels 
of mitochondrial apoptotic factors, Bax and Bcl-x1 mRNA (25). 
Furthermore, BMP7 induced survivin and X-linked inhibitor 
of apoptosis protein to stimulate caspase 3 and 9 expression. 
BMP4, however, reduced factors downstream of caspase 3 that 
culminated in the reduction of apoptosis (Figure 3) (25).

ReGULATiON OF BMPR1B AND FSHR 
AND THeiR iNFLUeNCe ON APOPTOSiS

The BMP ligands are well established as regulators of granulosa 
cell proliferation in sheep (25, 44–48), cows (25, 49–52), and 
humans (3, 5, 22, 23, 53–56). In addition, granulosa cell apop-
tosis increases dramatically around the time of dominant follicle 
selection when the ratio of androgen is greater than estrogen  
(49, 57–59). The start of follicle selection coincides with the 
down-regulation of granulosa cell BMPR1B and FSHR expres-
sion (3, 4, 9).

In the transition from pre-antral to antral follicle, high levels 
of BMPs promote FSHR expression within the granulosa cells. 
The high levels of BMP6, 4, 7 (25), and BMP15 (60) concurrently 
sp suppress LHR expression in granulosa cells. During the subse-
quent follicle section process, the FSHR and BMPR1B expression 
is reduced along with the BMP ligands 4, 6, 7, and 15, and this 
may facilitate up-regulation of granulosa cell LHR expression 
(61). The follicles with granulosa cells expressing LHRs are able 

to continue to produce estrogens, and are recruited into the 
dominant cohort. FSHR is protective against apoptosis; therefore, 
as the FSHR level falls, apoptosis increases (4).

During continued growth of the selected dominant follicle, 
the estrogen levels rise to a critical level and trigger luteiniza-
tion. Luteinization down-regulates the BMPR1B and the FSHRs 
in the ovulatory follicle. The reduction in FSHR and the ces-
sation of proliferation momentarily reduces estrogen synthesis 
and the balance between proapoptotic and antiapoptotic factors. 
In older women, the dysregulation of granulosal FSHR and the 
BMPR1Bs would alter this balance and would be expected to 
change the apoptosis levels. An altered profile of BMPR1B 
expression in granulosa cells was also observed in young 
compared to older sheep (47, 62). Moreover, the BMPR1B 
mutation-induced reduction in apoptosis levels associated with 
the high ovulation rate in the Booroola sheep (47) was recently 
confirmed by the reduced GADD45A levels in the follicles of 
the Booroola sheep (62). (GADD45 alpha is a growth arrest 
and DNA-damage-inducible protein that is a gene marker for 
apoptosis.)

The cumulus granulosa cells surrounding the oocyte have 
reduced apoptosis levels compared to the mural granulosa cells 
(2, 63). The reduced apoptosis level is associated with the BMP 
ligand concentration gradient emanating from the oocyte (36). At 
the time of ovulation, luteinization expands the oocyte-cumulus 
complex, which closes the communication gap junctions between 
the oocyte and the cumulus cells. The disruption of the concen-
tration gradient of BMPs results in an increase in the apoptosis 
level and reduced expression of LHR (64). Once luteinization 
has occurred, progesterone becomes the main antiapoptotic 
hormone.

THe ReLATiONSHiP BeTweeN 
APOPTOSiS AND OOCYTe QUALiTY

In IVF programs it has long been recognized that fewer than 
10% of oocytes collected become live births (65); hence, in the 
1990s there was a concerted effort to find a marker for oocyte 
quality to better determine the chance of pregnancy. This led to 
investigations into the relationship between apoptosis and oocyte 
quality. Oocyte degeneration in the form of DNA fragmentation 
was linked to oocyte quality (66), and greater levels of DNA 
fragmentation were reported in the aged mouse oocyte. The level 
of granulosa cell apoptosis was increased in older IVF patients, 
similar to that observed in mice, and this was associated with a 
reduction in oocyte quality, fertilization, pregnancy, and live birth 
rate (1, 2, 67–69).

earlier Studies and Apoptosis Theory
The close proximity of the cumulus cells to the oocyte led to the 
investigation of cumulus cell apoptosis, and its relationship to 
fertility and oocyte quality. Lee et al. (70) found a strong associa-
tion with fertility; however, conflicting results were also found 
(71). The level of cumulus cell apoptosis before the LH surge 
is reported to be less than 3% (2, 72). After the acquisition of 
LHR (73) and expansion of the cumulus away from the oocyte, 
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apoptosis levels increase in both the oocyte and in the cumulus 
cells (71).

However, the techniques initially employed for evaluat-
ing apoptosis were based on light microscopy assessment of 
pyknotic cell count or index. What was clear from these early 
studies was the variance in development of the non-ovulatory 
smaller follicles compared to the larger preovulatory follicles (7). 
Nakahara et al. (2) went on to examine the effect of the subject’s 
age, and in contrast to other reports, they observed a reduced 
rate of granulosa cell apoptosis in the 40+ years age group. This 
finding was overshadowed by emphasis on the greater level 
of granulosa cell apoptosis in patients with a “poor ovarian 
responsiveness” to gonadotrophin stimulation. For example, 
when ovarian reserve was indirectly equated to the number of 
oocytes collected >12  mm in diameter, “independent of age,” 
the granulosa cell apoptosis rate was significantly greater. This 
implies that women with low ovarian reserve, or more correctly 
poor “ovarian responsiveness” to IVF stimulation, had greater 
levels of granulosa cell apoptosis.

Apoptosis levels within granulosa cells were also greater in 
the women who did not become pregnant, and was associated 
with patients with a high FSH level at the start of a cycle (imply-
ing poor ovarian reserve). Interestingly, when adjusted for the 
confounders of age and number of oocytes retrieved, granulosa 
cell apoptosis was related to pregnancy outcome and not the 
ovarian reserve (1). The results were significantly confounded 
by many uncontrolled variables and the methodology used to 
evaluate apoptosis had limitations.

Recent Studies and Revised Apoptosis 
Theory
With the newer technique of flow cytometry, more granulosa 
cells could be examined (~5,000 per follicle) and the white 
blood cell fraction could be selectively removed using CD45 
magnetic beads for subtraction gating to improve the accuracy 
of identifying granulosa cells. However, the common practice 
of pooling the granulosa cells collected from a range of follicle 
sizes from each patient precluded the identification of fol-
licle size-related differences. Other errors were introduced by 
selectively discarding follicles because they were contaminated 
with blood and by the spectral overlap between fluorescein 
isothiocyanate and PI that was not compensated for during flow 
cytometry (1, 68).

In the current era of research, it is possible to individually 
analyze the granulosa cells collected from a single follicle of a 
known size determined using ultrasonography (5). The granulosa 
cell population can be selectively gated to remove contaminating 
white blood cells using a CD45 monoclonal antibody. Common 
leukocyte antigen; 7AAD (far red DNA stain) can be used in place 
of PI to minimize spectral overlap or flow cytometric compensa-
tion can be performed.

The recent study of Regan et al. (4, 5) examined the relation-
ship between ovarian reserve, granulosa cell receptor density and 
apoptosis during healthy human follicle development. The effect 
of the age of women undergoing the IVF protocol on granulosa 
cell apoptosis rate related to cell surface gonadotropin receptor 

and BMPRIB receptor expression. The study showed that the 
apoptotic rate of granulosa cells was higher in follicles during 
the two critical stages of dominant follicle selection and the pre-
ovulatory maturation stage of folliculogenesis in young women 
with better ovarian reserve, as determined by ultrasound-defined 
antral follicle counts (AFCs), compared to older women with a 
decreased AFC. The reduced apoptosis was associated with low 
levels of BMPR1B at the time of dominant follicle selection, 
whereas the lack of down-regulation of the BMPR1B, FSHR, and 
LHRs was associated with reduced granulosal apoptosis at the 
time of pre-ovulatory maturation (3, 4). The authors suggested 
that this result is a reflection of a poor mitogenic turnover rate of 
granulosa cells in healthy follicles in the older patients.

Notably, administration of gonadotropin-releasing hormone 
(GnRH) was shown to increase apoptosis of both cumulus 
and mural granulosa cells. However, in clinical practice, the 
predictability of the LH surge by its suppression with GnRH 
has outlived the importance of the finding (74); however, only 
Hoechst staining was performed for apoptosis determination in 
that study. This change may have been helped by the finding 
from another study that the apoptosis level in granulosa cells 
was not correlated with oocyte quality or fertilization rate, 
which was determined by using a new technique of identifying 
very early apoptosis via Annexin V and PI and flow cytometry 
(75). In another study using PI and Bcl2 fluorescent staining of 
granulosa cells in patients with the same ovarian reserve and age, 
the fertilization rate was the same but the patients (women) who 
achieved a successful pregnancy had a reduced apoptotic index 
(76). However, variation was very wide in the non-pregnant 
group (13.61 ± 9.26). Internalization of the phospholipid mem-
brane (Annexin V assay) occurs after the caspase proteolytic 
cascade, but before DNA condensation and fragmentation 
(11). Unfortunately, unintentionally induced apoptosis by cen-
trifuging cells at >300 g would limit the value of some studies  
(67, 74). In the study of Lee et al. (70), cumulus cell apoptosis was 
found to be greater in the 40+ years age group, corresponding to 
a poorer fertilization rate; however, only 200 cumulus cells were 
counted per cumulus-oocyte complex, and only four patients 
were in the older age groups.

As new techniques were developed, and their sensitivity 
increased, the granulosa caspase activity was also analyzed  
(71, 76–79). Yuan et  al. (71) found no difference in TUNEL 
staining and caspase activity until the LH surge, whereas caspase 
activity for the combined caspases 1–9 was present before the LH 
surge but then disappeared after the LH surge (71). In a recent 
study, the same technique of counting pyknotic cells found 
that the level of apoptosis was reduced in patients who became 
pregnant (80). The finding was supported by qPCR data of a 
greater level of caspase 3 in the non-pregnant group. Although 
the results appear robust, an undisclosed number of follicles 
were sampled (between 1 and 4 per patient), and were not neces-
sarily the corresponding follicle that produced the pregnancy. 
To confound the finding further, two embryos were transferred 
per patient; therefore, the outcome of the fate for each follicle, 
pregnant or not, was unclear.

At this time, the mechanisms of apoptosis were being inves-
tigated to determine whether various factors were proapoptotic 
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or antiapoptotic (81). Whole ovary investigations also took 
place and revealed the level of DNA fragmentation (TUNEL 
assay) and caspase 3 activity to be undetectable in adult pri-
mordial, primary, and secondary follicles (59, 78, 82), whereas 
high levels of caspase-dependent apoptosis were recorded in 
antral follicles. However, in pre-ovulatory follicles, apoptosis 
was again rarely found (59). This change in apoptosis corre-
sponds to the two critical times of FSHR down-regulation and  
LHR acquisition during dominant follicle selection; and later 
during pre-ovulatory down-regulation of LHR, FSHR, and 
BMPR1B (3, 5).

Early research by Sadraie et  al. (67), reported that young 
patients produced more oocytes that were mature compared to the 
older age groups, which is consistent with the recently reported 
lack of down-regulation of BMPR1B, FSHR, and LHR, and final 
maturation of the follicle in older women (3–5). However, Jancar 
et al. (83), found no effect of granulosa cell apoptosis on fertiliza-
tion rate or blastocyst development. Even though CD45-coated 
beads were used to purify the granulosa cells, they were pooled 
from multiple follicles. Moreover, the cells were centrifuged at 
400  g, which is known to induce apoptosis. These factors may 
limit the significance of this study as well as a similar study 
examining granulosa cells from pooled follicles, where cells were 
also centrifuged at 400 g (84).

In older patients, the follicular levels of oxidative stress were 
increased, which can be associated with reduced oocyte quality 
(29). However, both the embryo and the oocyte produce reactive 
oxygen species (ROS) as a normal part of metabolism, and the 
production of the ROS may reflect other changes to the ovarian 
environment that are associated with aging and not necessarily a 
result of changed apoptosis levels (29, 70, 85–88).

Recently, in human fetal whole ovaries, granulosa cells from 
primordial follicles were reported to be positive for caspase 3 
and DNA fragmentation (89). This limited semi-quantitative 
study also reported high levels of BAX in primordial follicles 
and Bcl2 in secondary follicles. However, the level of caspase 
dependent apoptosis was not commensurate with the expected 
loss of primordial follicles before birth or postnatally (89, 90). The 
inconsistent low levels of apoptosis indicate that other forms of 
caspase-independent cell death are in operation.

Several new proposals have surfaced in relation to the 
mechanisms of programed cell death that do not have features 

typically associated with apoptosis. These include autophagy (91), 
self-sacrifice to provide nutrients for neighboring follicles (92) 
and neuronal-endocrine induced apoptosis via the endoplasmic 
reticulum (93). Clearly, there are still many unanswered questions 
associated with the mechanism of cell death in the follicle.

CONCLUSiON

The complex control of folliculogenesis, ovulation, and the luteal 
phase of follicle development relies on the balance of proapop-
totic and antiapoptotic factors to regulate cell survival. Apoptosis 
in the granulosa cell is predominantly via caspase-dependent 
signaling pathways, and the majority of apoptosis results in 
terminal differentiation of the granulosa cell at the antral surface 
of the follicle. The type of apoptosis and the signaling pathway 
depends on the stage of development of the follicle and the origin 
of the intrinsic or extrinsic trigger. A large volume of granulosa 
cell apoptosis within the granulosa membrana leads to death of 
the follicle.

Optimal receptor expression during folliculogenesis ensures 
maximum estrogen synthesis, which is essential for follicle 
survival. Cessation of estrogen driven-proliferation leads to 
ovulation, which imposes a new regulatory paradigm. The pro-
gesterone dominated luteal phase is also regulated by receptor 
expression to promote cell survival and corpora lutea function.

Using the techniques available at this time, it is apparent 
that apoptosis levels of the granulosa cells are reflective of the 
proliferative stage of the follicle rather than a predictor of oocyte 
health. Apoptosis is not used as a marker in the clinical setting 
because of its poor predictive capability regarding oocyte quality 
and ensuing pregnancy rate. Recent studies challenge the long-
held view that increased granulosa cell apoptosis is typical of 
older patients and is related to oocyte quality. Rather, granulosa 
cell apoptosis appears to be an integral part of normal follicle 
development and reflects the mitogenic growth of the follicle that 
varies in a stage-dependant manner.
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