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Proteoglycans (PGs), important constituents of the extracellular matrix, have been 
associated with cancer pathogenesis. Their unique structure consisting of a protein 
core and glycosaminoglycan chains endowed with fine modifications constitutes these 
molecules as capable cellular effectors important for homeostasis and contributing 
to disease progression. Indeed, differential expression of PGs and their interacting 
proteins has been characterized as specific for disease evolvement in various cancer 
types. Importantly, PGs to a large extent regulate the bioavailability of hormones, growth  
factors, and cytokines as well as the activation of their respective receptors which regulate 
phenotypic diversibility, gene expression and rates of recurrence in specific tumor types. 
Defining and targeting these effectors on an individual patient basis offers ground for the 
development of newer therapeutic approaches which may act as either supportive or a 
substitute treatment to the standard therapy protocols. This review discusses the roles 
of PGs in cancer progression, developing technologies utilized for the defining of the PG 
“signature” in disease, and how this may facilitate the generation of tailor-made cancer 
strategies.
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inTRODUCTiOn

Proteoglycans (PGs) are composite molecules in which a glycosaminoglycan (GAG) chain(s) is  
covalently bound into a protein core. PGs, produced by, practically all, mammalian cells can be 
embedded into the plasma membranes, associated to the plasma membrane (pericellular), secreted 
into the extracellular matrix (ECM proper), or stored in secretory granules (intracellular). The 
enlistment of PGs to above classes is based on the following criteria: cellular and subcellular loca-
tion, overall gene/protein homology, and the use of specific protein modules within their respective 
protein cores. It must, however, be mentioned, that there is a great deal of overlapping among the 
classes (1–3). We can certainly start with the statement that PGs have an important role in the 
formation of the ECM super-assembly as well as in determining of its physicochemical proper-
ties (1). Additionally, it can be said that PGs are receptors of a varying sensitivity and serve as a 
reservoir of biologically active mediators including growth factors (4, 5). Noteworthy, a single cell 
type can produce many different PG types. Osteoblast-derived cells for example secrete various ECM 
PGs and express on their membranes a number of cell-surface PGs (2, 6). Approximately 45 PGs 
have been identified to date, but each of the PGs members exhibits enormous variability (3). This 
inherent variability is determined by protein core modifications and by the number, type, and fine 
structural modifications of its GAG chains as well as by the different stoichiometry of GAG chain 
substitution (1, 3, 7). Briefly, PGs may have a number of GAG chain attachment sites which are not 
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utilized equally or may exist as part-time PGs being expressed 
in both substituted and non-substituted forms. Furthermore, 
the fine structural modifications of PGs are tissue type and cell 
type specific. Therefore, each PG, as defined by its core protein, 
actually stands for a varying population of molecules where each 
“variant” represents a discrete structural entity (1, 3).

MAin PG TYPeS

All PGs in respect to their cell location, as mentioned above, can 
be classified into intracellular, pericellular, ECM proper, and intra-
cellular PGs. The unique intracellular PG serglycin (8) which is 
mostly involved in inflammatory reactions presents a category on 
its own. Pericellular PGs, heparan sulfate (HS)-carrying perlecan 
and agrin as well as Collagens XVIII and XV are mostly involved in 
the assembly of basement membranes. The largely HS-decorated, 
cell-surface PGs consist of the seven transmembrane members, 
e.g., syndecans 1–4 and the six GPI-anchored glypicans (1, 9, 10). 
Syndecans have important roles in integrin, growth factor, and 
growth factor receptor signaling (10, 11) whereas glypicans (12) 
are capable of regulating key cellular signaling pathways including 
Hedgehog signaling (9) and Wnt signaling (13).

The ECM proper PGs consist of 25 members: the four hyalu-
ronan-binding hyalectans, key structural components of cartilage, 
blood vessels, and central nervous systems; the 18 small leucine-
rich proteoglycans (SLRPs) and the three calcium-binding HSPGs, 
testicans (1). As regarding hyalectins, early studies demonstrated 
that these chondroitin sulfate (CS) PGs contain lectin-like and 
growth factor-like sequences (14, 15), SLRPs are modulators of 
ligand–receptor binding (2), autophagy regulators, and damage 
associated molecular patterns (16).

PGs in CAnCeR

Proteoglycans contribute to cancer pathogenesis. Malignant 
tumors have individual PG profiles, which are closely associated 
with their differentiation and biological behavior, mesenchymal 
tumors showing a different profile from that of epithelial tumors 
(17, 18). Indeed, it was recently discussed that the role of the HSPG, 
syndecan-2 in cancer pathogenesis is conditional on cancer tissue 
origin determining its use as a biomarker/therapeutic target fea-
sible (18). Noteworthy, GAG/PG effects are decidedly contingent 
on the specific correlation among their localization, expression, 
and disease type/stage. The unique, as regarding its localization, 
intracellular PG, serglycin has first been identified in hemopoietic 
cells (19). A number of later studies indicated its role in the process 
of malignant transformation of hemopoitic cells culminating with 
the suggestion that the malignant transformation of lymphoid 
cells may be characterized by, among other, increased synthesis 
of serglycin (20). In continuation, higher expression of serglycin 
was shown in aggressive lung, colon, and breast as well as prostate 
cancer cell lines (21). Furthermore, serglycin expression has been 
correlated to highly metastatic nasopharyngeal (22) and hepato- 
cellular carcinoma (HCC) metastasis to bone (23). Interestingly, 
it was demonstrated that serglycin has an obligatory participation 
in multiple myeloma cell in vivo growth and adhesion as well as 
vascularization (24).

The basement membrane PG, perlecan was initially impli-
cated in cancer pathogenesis in a liver cancer mouse model 
(25). Further studies, among other by the Kovalszky group, 
demonstrated that this PG is not expressed by liver parenchyma 
tissue but rather to tumor blood vessel walls (26). Likewise, early 
studies demonstrated an increased expression of perlecan in the 
pericellular matrix of metastatic melanoma tumor samples (27). 
In continuation it was demonstrated that suppression of perlecan 
downregulates invasive behavior of melanoma cells (28) and 
blocks tumor growth and angiogenesis in vivo (29).

The hyalectan versican was demonstrated to be overexpressed 
in a range of cancers, including prostate, malignant myeloma, 
breast, glioblastoma, laryngeal, ovarian, pancreatic, cervical, 
gastric, and testicular germ-cell cancer as reviewed by Binder 
et al. (30). Five isoforms of versican, with various GAG-binding 
abilities and signaling properties, are generated through alterna-
tive splicing (31). The role of other hyalectans in cancer is not 
well established, even though evidence shows some contribution. 
Thus, the hyalectan aggrecan is postulated as tumor suppressor 
as decreased aggrecan expression correlates with metastasis and 
poor prognosis in laryngeal cancer (32). As regarding SLRPs, 
there is an exquisite specificity of discrete members’ role in 
carcinogenesis (2). Thus, decorin is a strong tumor suppressor 
(33) whereas, the expression of lumican needs to be specifically 
correlated to the tumor type and stage during the disease progres-
sion to draw more relevant conclusions (7). On the other hand, 
biglycan, mostly due to its inflammation-regulatory roles has 
mostly a tumor-promoting function (34). Immediate correlation 
between cell membrane PGs and cancer pathogenesis has been 
established. Thus, glypican-3 (GPC3) has emerged as a candidate 
therapeutic target in HCC, involving cell-cycle arrest at G1 phase 
through Yes-associated protein signaling (35). Importantly, GPC3 
is not expressed by normal hepatic tissue but is expressed during 
the process of malignant transformation (36). On the other hand, 
downregulation of GPC3 expression in a mouse model facilitated 
ovarian cancer cell tumorigenicity (37).

PGs ReGULATe CYTOKine  
SiGnALinG in CAnCeR TiSSUeS

Importantly, PGs can regulate the bioavailability of hormones, 
growth factors, and cytokines as well as the activation of their 
respective receptors (38), which affects phenotypic diversibility,  
gene expression, and rates of recurrence in specific tumor types 
(39, 40). To the cell membrane syndecans, was annotated the arche-
typal role in regulating basic fibroblast growth factor-dependent 
(FGF-2) signaling (41). Subsequently, the ability of syndecans to 
bind and to present growth factors to their respective growth factor 
receptors was associated with specific cell functions. Thus, it was 
shown that the inhibition of myogenic differentiation by FGF-1, 
FGF-2 as well as Kaposi’s sarcoma FGFs was directly correlated 
to cellular HS (42). Indeed, to this PG family was annotated the 
ability to regulate the signaling properties of GFs endowed with 
the capability to bind heparin. Indeed, to syndecan-1 was attri- 
buted the ability to act as a functional co-receptor for hepatocyte 
growth factor (HGF) that induces the initiation of the receptor 
tyrosine kinase for HGF (Met). This tyrosine kinase enhances 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


3

Nikitovic et al. PG “Molecular Signature” in Cancer

Frontiers in Endocrinology | www.frontiersin.org March 2018 | Volume 9 | Article 69

cell viability and growth of multiple myeloma cells through phos-
phatidylinositol 3-kinase/protein kinase B and RAS/mitogen-
activated protein kinase pathways (43). Recent studies, present 
the exquisite specificity of syndecans signaling in cancer (10, 18).  
Thus, syndecan-2 was found to regulate a key transforming 
growth factor beta-2/Smad2-signaling axis in fibrosarcoma adhe-
sion (44). Furthermore, this syndecan was shown to propagate 
IGF-I/IGF-IR signaling through ezrin/erk downstream activation 
(45). Anti-GPC3 therapy was found to dowregulate insulin-like 
growth factor-II expression and downstream signaling involving 
downregulation of HSPGs, deactivation of sulfase-2 as well as a 
decrease of caspase-3 gene expression. This was strongly correlated  
to attenuation of HCC progression (46).

The role of other PG classes in cytokine signaling mediation has 
been highlighted in numerous studies. Recently, the opposite role 
of decorin and versican in the regulation of the cross talk between 
estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen- 
responsive breast cancers have been discussed (47). Specifically, 
higher decorin expression in the tumor stroma in node-negative 
invasive breast cancer is correlated to better prognosis (48) due 
to the modulation of the EGF family of tyrosine kinase receptors 
downstream signaling (49). This complex mechanism of decorin 
action starts with its binding to the EGFR which results in receptor 
dimerization and protracted phosphorylation of the downstream 
MAP kinase (50, 51). The cyclin-dependent kinase inhibitor 
p21WAF1/Cip1 (p21) is thereupon induced which downregulates 
tumor growth (52). The binding of decorin to EGFR, however, 
ultimately results in receptor degradation via sustained internali-
zation, executed through caveolar-dependent endocytosis (50). 
On the other hand, Du et al., showed that the versican G3 domain 
facilitated breast cancer cell proliferation, mobility, and cap- 
ability to metastasize to distant sites by enhancing signaling path-
ways dependent on EGFR activation (53). Specifically, the same 
authors show that the CDK2 and GSK-3β (S9P) actions dependent 
on the EGFR/ERK signaling decreased the apoptosis of these cells. 
Moreover, versican G3 expressing breast cancer cells had a poorer 
response to chemotherapeutic drugs treatments, including doxo-
rubicin or epirubicin (54). The role of decorin in IGF-IR activa-
tion and endocytisis has likewise been analyzed in several cancer 
models (55). In addition, it was demonstrated that downregulated 
decorin expression facilities the process of hepatic carcinogenesis 
in vivo by permitting PDGFRα, EGFR, IGF-IR, and MSPR/RON 
tumorigenic signaling (56). The basal membrane perlecan and its 
binding ligands, including VEGF, SHH, KGF, Flt-1, and Flk-1, 
were found to be differentially expressed in oral epithelial dysplasia 
and carcinoma in situ indicating to the important contribution of 
perlecan in the regulation of these factors signaling (57). The effect 
of PGs on cytokine signaling in cancer and the resulting action on 
cancer cell function is schematically depicted in Figure 1.

STRATeGieS FOCUSeD On DeFininG  
PG MOLeCULAR SiGnATURe in  
CAnCeR PROGReSSiOn

Due to their key roles in tumorigenesis a number of methods 
has evolved to determine PG “molecular signature” in cancer. 

Thus, a combination of comparative genomic expression profiling 
and immunohistochemical staining of tissue microarrays from 
patients followed by multivariate analyses exhibited serglycin as 
an unfavorable independent indicator of distant metastasis-free 
and disease-free survival (22). This allowed the characterization 
of serglycin as an independent prognostic indicator of metastasis-
free survival and disease-free survival in patients. An innovative 
approach was the utilization of Matrix-assisted laser desorption 
ionization-time of flight mass spectrometry to characterize the 
serum peptide profile of HCC patients with bone metastasis. 
Indeed, a diagnostic model was determined using a learning algo-
rithm of radial basis function neural network which identified 
a serglycin-derived peptide as one of seven peptides which may 
be utilized as a diagnosis tool for HCC metastasis to bone (23). 
Furthermore, the usage of quantitative tissue proteomics analysis 
indicated versican as a promising biomarker for the detection of 
HCC at an early stage (58).

Genome-wide methylation analysis of bladder cancer tissues 
discovered hypermethylation in the promoter region of a number 
of genes; with the combined hypermethylation of SOX1, PITX2, 
or versican identifying patients with a higher risk of bladder 
cancer morbidity (59). The utilization of microarray expression 
profiling on a group of 84 matched clear cell renal carcinoma 
and normal renal tissues determined a higher expression of the  
hyalectan, versican in tumor tissues. This was positively corre-
lated to metastasis and worse prognosis (60).

Furthermore, upon applying an unsupervised method of data 
analysis, using singular value decomposition to microarray data 
sets of ovarian cancer tissues, a total of 151 targets was identified. 
Evaluation of the selected target genes by Real-time PCR showed 
that dermatan sulfate PG3 and LOX were strongly associated with 
overall as well as with disease-free survival (61).

Upon utilizing multiple microarray cohorts for genome screen-
ing, especially focused on genes correlated to disease relapse in 
stage II-III colon cancer patients, stromal versican expression 
was identified as a biomarker (62). When the Cancer Genome 
Atlas data set of 540 glioblastoma patients was analyzed with a 
R2 analysis webtool (R2 Genomics and Visualization Platform, 
Oncogenomics, AMC) and correlated to matching transcriptome 
and survival data their serglycin expression was shown to be 
grade dependent as well as positively associated with tumor tissue 
infiltration by mast cells (63).

Recently, Brézillon et al., have demonstrated that Raman micro- 
spectroscopy allows recording of the discrete GAG profiles of 
individual live cells making feasible its use for cell screening 
purposes. This method can potentially be utilized for identify-
ing specific molecular signatures of GAGs as a marker of cancer 
progression in tissues (64). This is important as during tumor 
progression there is a remodeling of PG glycosylation of both cell 
surfaces and the ECM, among other, through heparanase action 
(65). Heparanase, is an enzyme that cleaves PG HS-side chains 
(66), thus strongly modulating various regulatory pathways, 
including the bio accessibility of HS-binding growth factors and 
cytokines (10). A clinical application of “glycan signature” is 
illustrated by a study showing that the type of PG glycosylation 
can affect the ability of immune cells to infiltrate tumor tissues 
and engage in the immune response (67).

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | Schematic presentation of proteoglycan (PG) localization and regulation of cancer relevant cytokine signaling. PGs are located to the extracellular matrix 
(ECM) proper, pericellular matrix, cell membrane, or intracellular granules. Decorin (Dec), bound in to collagen fibers to the ECM specifically binds growth factors 
including TGF to create ECM “pools”; whereas pericellular decorin binds to EGFR and/or IGFR to attenuate their downstream signaling and induce growth arrest. 
Versican binds to through its EFG motif to EGFR and facilitates cancer cell growth, migration, and invasion in a CDK2/GSK-3β-dependent manner whereas through 
hyaluronan–hyaluronan receptor interaction it regulates cancer progression in a positive or negative manner depending on the context. Pericellular matrix, perlecan 
regulates VEGF, SHH, KGF, Flt-1, and Flk-1 bioavailability to affect cancer progression. Cell membrane, syndecan-2 was found to regulate, in fibrosarcoma,  
a transforming growth factor beta-2 (TGF-β2)/Smad2-signaling axis and to propagate IGF-I/IGF-IR signaling through ezrin/erk downstream activation.
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However, previously well-established methods can likewise 
detect changes in PG molecular signature in some tumor types. 
Indeed, in urothelial bladder carcinoma the utilization of enzyme-
linked immunosorbent assays (ELISA) showed that serum levels 
of SLRPs lumican, biglycan, and decorin were significantly altered 
in patients as compared with healthy controls (68). Additionally, 
the increased expression of lumican in urothelial cancer patients 
has been suggested as potential non-invasive marker for early 
detection of bladder cancer (68). Moreover, measurement of 
shedded syndecan-1 serum levels by ELISA in prostate patients 
revealed a correlation of higher levels with advanced cancer 
stage as well as with adverse overall survival and DSS in a multi-
variable pre-operative model. These findings suggest that the 
evaluation of sSDC1-levels is a promising tool for pre-operative 
risk-stratification in this group of patients (69).

Potential utilization of PGs as markers for therapy evaluation 
has also been proposed. Thus syndecan-4 mRNA expression 
has been indicated as a novel marker for the prediction of 
glioblastoma multiforme patient’s response to treatment with 
the WT1 peptide vaccine (70). Furthermore, an increase in 
plasma glypican-1 positive exosomes and a reduction in plasma 
miR-96-5p and miR-149 expression were correlated to colorectal 
cancer diagnosis; whereas a normalization of these markers’  
levels was achieved after successful colorectal cancer surgery. The 
exosomes were isolated by ExoCapTM Exosome Isolation and 
Enrichment kit and analyzed by transmission electron micros-
copy and flow cytometry. Through this approach, glypican-1 
positive exosomes as well as plasma miR-96-5p and miR-149  
are suggested as markers for colorectal cancer diagnosis and 
therapy evaluation (71) Furthermore, in the case of colorectal 
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TABLe 1 | Expression of proteoglycans (PGs) in tumor tissues and role in cancer pathogenesis.

PG Class expressed by tumor tissue Cancer cell function affected

Serglycin Intracellular Lung, colon, breast, prostate cancer (21), hematological cancer (20), 
nasopharyngeal cancer (22), hepatocellular cancer (23)

↑ Cancer growth (21)
Hematological cancer malignant transformation (20)
↑ Nasopharyngeal cancer metastasis (22)
↑ Hepatocellular cancer metastasis to bone (23)

Perlecan Basement membrane Liver tumor blood vessels (26), melanoma (27), tumor blood vessels ↑ Melanoma invasion (28)
↑ Melanoma growth and angiogenesis (29)

Versican Pericellular matrix Prostate, breast, glioblastoma, laryngeal, ovarian, pancreatic,  
cervical, gastric cancer (30)

↑ Breast cancer growth, mobility and metastasis54

↓ Poor breast cancer response to chemotherapeutic  
drugs (54)

Aggrecan Pericellular matrix Laryngeal cancer (32) ↓ Laryngeal cancer metastasis (32)

Decorin Extracellular matrix (ECM) 
proper

Tumor stroma (33) Tumor suppressor (33)

Lumican ECM proper Breast, osteosarcoma, colorectal, prostate, pancreatic, lung, cervical 
cancer (7)

Role dependent on expression and tumor type (7)

Biglycan ECM proper prostate, colorectal, melanoma, pancreatic, bladder cancer (34) Tumor promoter (34)

Syndecan-2 Cell membrane Fibrosarcoma, osteosarcoma, breast, lung cancer (10, 18) Role dependent on tumor type (10, 18)

Syndecan-1 Cell membrane Multiple myeloma (43) ↑ Multiple myeloma growth and viability (43)

Glypican-1 Cell membrane Colorectal cancer ↓ Metastasis

GLypican-3 Cell membrane Hepatocellular cancer (36) Cell-cycle arrest at G1 phase (36)

TABLe 2 | Proteoglycans (PGs) as biomarkers and/or therapy targets.

PG Biomarker/therapy target Tumor type

Serglycin  – Unfavorable marker of 
metastasis-free disease and 
disease-free survival (22)

 – Mast cell recruitment (63)
 – Theranostic target (22) 

unfavorable marker of  
metastasis (23)

Nasopharyngeal  
cancer (22)
glioblastoma (63)
Nasopharyngeal  
cancer (22) Hepatocellular  
cancer (23)

Versican  – Early disease marker (58) 
disease relapse marker (62)

Hepatocellular cancer (58) 
colon cancer (62)

Aggrecan  – Metastasis marker (32) Laryngeal cancer (32)

Decorin  – Serum levels are a disease 
marker (68)

Bladder cancer (68)

Lumican  – Serum levels are a disease 
marker (68)

Bladder cancer (68)

Biglycan  – Serum levels are a disease 
marker (68)

Bladder cancer (68)

Syndecan-1  – Shedded syndecan-1 serum 
levels are of advanced cancer 
stage and adverse overall 
survival (69) 

Prostate cancer (69)

Syndecan-4  – mRNA expression is marker of 
response to therapy (70)

Glioblastoma (70)

Glypican-1  – Positive exosomes are cancer 
diagnosis and therapy response 
marker (71)

Colorectal cancer (71)

Glypican-3  – Target for peptide  
vaccine (79–83)

Hepatocellular cancer 
(79–83) ovarian cancer (83)

Glypican-2  – Target for antibody-drug  
conjugate (76)

Neuroblastoma (76)
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cancer patients with peritoneal metastases, it was found that 
high epithelial versican expression in combination with high 
vascular endothelial growth factor levels were markers of better 
response to cytoreductive surgery and hyperthermic intraperi-
toneal chemotherapy, resulting in higher overall survival (72).  
PG expression and mechanisms of action in cancer are sum-
marized in Table 1.

PGs AS THeRAPeUTiC TARGeTS in 
CAnCeR

The idea of using PGs as therapeutical targets in cancer dates 
more than 30 years as Real et al  in 1985 identified CSPG4 as a 
specific surface antigen of melanoma cells (73). This early report 
was followed by numerous studies performed by cancer research-
oriented groups which resulted in multilevel approaches targeting 
PGs during cancer progression. Indeed, as recently discussed 
by Ilieva et al., CSPG4 “has been associated with the pathology 
of multiple types of cancer such as melanoma, breast cancer,  
squamous cell carcinoma, mesothelioma, neuroblastoma, adult 
and pediatric sarcomas, and some hematological cancers” and has 
become the goal of different, under development, therapeutical 
strategies (74).

Recently, cancer-selective tetra-branched peptides, with the 
ability to bind with high specificity to the GAG components of 
HSPGs have been developed. These peptides’ chemical structure 
allows coupling with various functional units utilized in cancer 
therapy. Noteworthy, peptides bearing methotrexate were found 
to by-pass the obtained, by breast cancer cells, resistance to 
the drug (75). The HSPG glypican-2 was recently shown to be 
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GPC3-derived peptide vaccine resulted in the stabilization of 
disease for over 1 year (83) (Table 2).

COnCLUSiOn

The evidence that PGs have a key role in pathogenesis of cancer 
has led to the conclusion that understanding the changes in PG 
expression, fine structure as well as localization may lead to 
the development of innovative biomarkers and selective, more 
efficient therapies.
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