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The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of 
physiological functions and a fascinating evolutionary history. This review focuses on the 
Igfbps of teleost fishes, where genome duplication events have diversified gene reper-
toire, function, and physiological regulation—with six core Igfbps expanded into a family 
of over twenty genes in some lineages. In addition to briefly summarizing the current 
state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, 
we highlight gaps in our understanding and promising areas for future work.
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iNTRODUCTiON

The insulin-like growth factor (Igf) binding protein (Igfbps) are highly studied, especially in 
mammals, and a vast literature has emerged on their roles as mediators of Igf signaling events, 
and diverse functions that extend beyond Igf regulation. This review focuses on the Igfbp family 
of teleost fishes, which remains poorly understood compared to the mammalian system. Our goal 
is to summarize the status of knowledge on teleost Igfbps in an evolutionary context, considering 
work on gene function and physiological regulation, in addition to phylogenetics and genomics. 
Our coverage of literature is non-encompassing, and we point the reader to additional reviews. 
The scope of the review is exclusive to the “true” Igfbps, which each bind Igfs with high affinity, 
rather than the broader proposed superfamily containing Igfbp-related proteins [reviewed in  
Ref. (1)], that are distantly related in both sequence and function (2). We also assume that the 
reader has prior knowledge of the core genetic components of the Igf system, where comprehen-
sive reviews with a non-mammalian focus already exist (3–6).

ORiGiNS OF THe CORe igfbp SUBTYPeS

Gene duplication and subsequent divergence is central to the evolutionary “narrative” of the Igfbp 
family. While it is long-established that many vertebrates possess six ancestral subtypes (Igfbp-1, -2, 
-3, -4, -5, and -6), with the primary cDNAs first reported over 25 years ago [e.g., Ref. (7, 8)], their 
evolutionary origins were elucidated more recently. An important study reported in 2011 (9), built 
on past work revealing linkage between Igfbp genes and Hox clusters [e.g., Ref. (10); Hox clusters 
being well-established markers of genome duplication events], to present a realistic scenario for 
the origin and expansion of core Igfbp subtypes. The hypothesis is that an ancestral Igfbp gene 
was duplicated in tandem during an early stage of vertebrate evolution to produce a pair of Igfbp 
genes (9, 10). Subsequently, two genome duplication events in the ancestor to extant vertebrates 
(11) led one gene to give rise to Igfbp-1, -2, and -4, and the other to Igfbp-3, -5, and -6. A single 
Igfbp is present in amphioxus, a chordate that did not undergo the same duplications, and this 
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FiGURe 1 | Expansion of the core insulin-like growth factor (Igf) system—including Igfbps—during teleost evolution. (A) Simplified depiction of Igf system. (B) Core 
Igfbp system components (i.e., proteins encoded by distinct genes) in different vertebrate groups, contrasting a typical mammalian system with that of two teleost 
lineages. For teleosts, % identity is shown for paralogous amino acid sequences. For Atlantic salmon, the underlined % identities highlight paralog pairs residing in 
regions of the genome that experienced a delay in cytological rediploidization after genome duplication (24), a process required for paralogs to diverge in sequence 
on distinct chromosomes—hence, these genes have had less evolutionary time to diverge, leading to extremely high identity. Phylogenetic relationships of the Igfbp 
families from these different lineages, along with another group of teleosts that experienced a separate lineage-specific genome duplication event, are depicted in 
Figure 2.
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molecule failed to bind Igf-I or Igf-II, indicating that Igf-binding 
is either a vertebrate-specific function (12), or was secondarily 
lost. The same study confirmed that Igf-independent functions 
had evolved before vertebrates (12).

It is also important to remember that the diversification of 
the core vertebrate Igfbp system occurred alongside expansions 
in other key gene families within the Igf system, including both 
hormones (13) and receptors (14). It now seems certain that the 
early vertebrate genome duplication events were crucial for the 
evolution of distinct insulin and Igf systems [e.g., Ref. (15)]. For 
the remainder of this review, we focus on the Igfbp system of 
teleosts, where additional genetic expansions—some dramatic—
have been recently characterized.

eXPANSiONS iN THe TeLeOST igfbp 
GeNe RePeRTOiRe

A further round of genome duplication occurred in the ancestor 
to extant teleost fishes (i.e., around half of known vertebrate 
species) 300–350 million years ago (11). This led to retention 
of duplicated copies (paralogs) for all the core Igfbp subtypes 
barring Igfbp-4, where one paralog was lost early (9, 16). In 
different lineages that have not experienced further genome 
duplication events, the number of Igfbps retained is variable, 
but always higher than mammals and most non-teleosts. For 
example, zebrafish (Danio rerio), the most studied teleost in 

terms of Igfbp function, retains nine unique genes. This includes 
paralog pairs for Igfbp-1 (17), -2 (18), -5 (19), and -6 (20), along 
with a single Igfbp-3 copy and no Igfbp-4 gene, owing to lineage-
specific losses (9, 16). The phylogenetic relationships of teleost 
Igfbp paralogs have been established using robust methods  
(9, 16). An “-a”/“-b” nomenclature common to different teleosts 
is preferred (e.g., “Igfbp-1a” and “-1b”) (16), as it acknowledges a 
common ancestral origin from the same duplication event, while 
accommodating zebrafish nomenclature [e.g., Ref. (17–20)].

Several teleost lineages experienced additional rounds of 
genome duplication. This includes a well-studied event ~95 mil-
lion years ago in the salmonid ancestor (21, 22) that caused dra-
matic genetic expansions within the Igf system (summarized in 
Figure 1). For example, we reported in 2013 that salmonids retain 
at least 19 unique Igfbp genes, with salmonid-specific paralogs of 
igfbp-1a, -1b, -2b, -3a, -3b, -5b, -6a, and -6b (16). We proposed a 
nomenclature with either “1” or “2” after the “a” and “b” teleost 
symbols (e.g., “igfbp-1a1” and “-1a2”). Several of these Igfbp pairs 
are highly divergent compared to the genome-wide average for 
paralogs retained from the salmonid genome duplication event 
(Figure 1; e.g., sharing <80% amino acid identity, compared to 
an average of ~93% across thousands of paralog pairs) (23). This 
points to functional divergence at the protein level that remains 
entirely unexplored.

More recently, an improved understanding of the com-
plexities of genome evolution following the salmonid genome 
duplication, which was a spontaneous genome doubling event 
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(or “autotetraploidization”) (21, 24), led to the discovery of 
salmonid Igfbp paralog pairs for igfbp-4, igfbp-2a, and igfbp-5a 
(24), which share extremely similar sequences and were previ-
ously unrecognized or ignored as alleles (see Figure 1; legend 
contains additional information). Thus, some salmonid species, 
including the commercially important Atlantic salmon (Salmo 
salar), possess 22 unique igfbp genes, with 11 paralog pairs 
(Figure  1), some of which may have evolved adaptively (25). 
Remarkably, every possible Igfbp paralog generated from the 
salmonid-specific genome duplication was evidently maintained, 
despite the genome-wide paralog retention rate being around 
50% in the same species (21). We and others have also identified 
expansions to other core gene components of the Igf system due 
to the salmonid genome duplication, including Igf-I [e.g., Ref. 
(24, 26)], Igf-II (25), and Igf-1R (27). These paralogs remain of 
substantial interest, but we are at an early stage of understanding 
their roles in salmonid biology.

Additional lineage-specific genome duplication events have 
occurred in several teleost groups, including the ancestor to 
goldfish (Carassius auratus) and common carp (Cyprinus carpio). 
This event is younger than the salmonid-specific genome dupli-
cation event, occurring around 8–12 million years ago (28, 29). 
It also involved a distinct mechanism (“allotetraploidization”), 
where two species hybridized before genome duplication (28). 
This event created a large set of paralogs (28), some of which 
are known to have experienced functional divergence [e.g., 
Ref. (29, 30)]. However, no accompanying expansions to Igfbp 
repertoire are yet reported. To explore this knowledge gap, we 
performed a bioinformatic and phylogenetic analysis, revealing 
that common carp retains at least 17 unique igfbp genes, includ-
ing paralog pairs for igfbp-1a, -1b, -2b, -3a, -5a, -5b, -6a, and 
-6b (see Figure 2; methods provided therein). To avoid confu-
sion with the salmonid-specific paralogs, we suggest “α”/“β” is 
added to the existing teleost nomenclature when these duplicates 
are studied in the future (e.g., igfbp-1aα/-1aβ) (Figure 2). The 
results confirm that salmonids are not unique among teleosts in 
retaining a highly expanded Igfbp repertoire. In fact, as many 
vertebrate groups have experienced lineage-specific genome 
duplication events, both fishes and non-mammalian groups, 
including anuran frogs [e.g., Ref. (31)], it seems likely that many 
other species possess expanded Igfbp repertoires, contributing 
additional complexity to their growth regulation.

PHYSiOLOGiCAL ROLeS OF TeLeOST 
igfbps

Many studies have investigated the physiological roles of 
Igfbp genes in the teleost lineage. Barring a few model species  
(e.g., zebrafish), it has been historically challenging to perform 
functional analyses in most teleosts, although this is changing 
in light of emerging genome-editing methods (see Perspectives 
and Future Work). Hence, while in mammals, Igf-dependent 
and Igf-independent functions have been widely demonstrated, 
the majority of studies in teleosts have failed to reach similar 
levels of functional insight. In fact, most work has focused on 
expression-level regulation of igfbp genes or proteins under a 

diverse set of experimental stimuli. It is also important to note 
that most teleost Igfbp research has focused on aquaculture spe-
cies of high commercial value, including the salmonid, perciform 
(perch-like fish), pleuronectiform (flatfish), cypriniform (carp 
spp. and relatives), and siluriform (catfish) groups. This has led 
to a bias toward physiological processes relevant to commercial 
production, especially growth, muscle development, stress, and 
disease resistance. In this section, we briefly summarize the 
literature on teleost Igfbp function and regulation, considering 
the core vertebrate subtypes separately. We make attempts to 
distinguish Igfbp paralogs according to the evolutionary histories 
and nomenclature described above, although this is often not 
possible as many studies failed to distinguish paralogs, especially 
for the most recently discovered genes.

igfbp-1: A Negative Regulator of Teleost 
Growth
In mammals, Igfbp-1 is mainly produced in the liver and secreted 
to circulation, where it acts to limit Igf signaling in catabolic 
contexts, such as fasting, stress, and hypoxia (39). It is widely 
considered a negative regulator of somatic growth, reproduc-
tion, and development (4, 40); and interacts with cell surface 
integrins to stimulate cellular motility (41). It has Igf-dependent 
and Igf-independent functions, along with important roles in the 
regulation of metabolism [reviewed in Ref. (42)].

In salmonids, Igfbp-1a and Igfbp-1b are two of the three 
major circulatory Igfbps (43), first identified by molecular 
weight (20–15 and 28–32 kDa, respectively) (4, 44). It is likely 
that similar molecular weight Igfbps detected in others teleosts 
plasma are Igfbp-1 orthologs (45–49). Igfbp-1 encoding genes, 
as in mammals, are mainly expressed in teleost liver (16, 50–55). 
In zebrafish embryos, igfbp-1a mRNA is expressed during early 
development; while igfbp-1b is expressed later, after which time 
both paralogs become restricted to liver (17, 50). At the func-
tional level, both Igfbp-1a and -1b of zebrafish can bind to Igf-I 
and Igf-II, but Igfbp-1b had a lower affinity for each hormone, 
and a lesser ability to downregulate Igf-I signaling (17). In other 
species, it has been reported that igfbp-1a genes are expressed 
in non-hepatic tissues, but typically at lower levels than in liver  
(16, 51, 52, 54–58). This supports the hypothesis that Igfbp-1a 
evolved more localized functions than Igfbp-1b (6).

Several teleost studies have reported protein or transcript 
level upregulation of Igfbp-1 genes during catabolic a process, 
which probably serves to downregulate growth by sequestering 
Igfs from Igf-1Rs, allowing allocation of resources to metabolic 
processes essential for survival. Consistent with these findings, 
overexpression of igfbp-1a (and igfbp-1a in zebrafish) in cyprini-
form embryos (17, 54, 59) caused growth and developmental 
retardation. Nutrient deprivation has been shown to increase 
circulatory Igfbp-1 proteins and igfbp-1 gene expression in liver 
(for both teleost paralogs, when distinguished) and skeletal mus-
cle igfbp-1a expression, which is reversed by a return to anabolic 
conditions (50, 51, 55, 60–65). It has also been shown that dietary 
amino acid deficiency can upregulate igfbp-1 gene expression 
through a not well-described mechanism (64). Teleost igfbp-1 
genes are also negatively regulated by growth hormone (Gh) 
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FiGURe 2 | Independent evolutionary expansions to the Igfbp family of teleosts. A phylogenetic analysis was performed, including 71 unique Igfbp amino acid 
sequences from a standardized set of taxa: Human Homo sapiens (“Hs”), coelacanth Latimeria chalumnae (“Lc”), zebrafish Danio rerio (“Dr’”), common carp 
Cyprinus carpio (“Cc”), Atlantic salmon Salmo salar (“Ss”), and northern pike Esox lucius (“El,” from a sister lineage to salmonids that did not undergo the 
salmonid-specific genome duplication). Accession numbers are given for all sequences, which were gathered from the NCBI RefSeq database, facilitated by 
BLAST analyses (32). The sequences were aligned using Mafft V.7 (33) with default settings. Alignment quality filtering was done using the Guidance2 algorithm 
(34) to remove the least confidently aligned regions. This led to a high-confidence alignment of 212 amino acids positions (SI file 1). The alignment was used in 
Bayesian phylogenetic analysis, using methods published elsewhere (35). Briefly, this was done in BEAST v. 1.8 (36) using the best-fitting amino acid substitution 
model (JTT+G+I), determined by maximum likelihood via the IQ-tree server (37), along with a relaxed molecular clock model (38), allowing probabilistic 
estimation of the trees root [consistent with previous studies (9, 16)]. The tree is annotated to show genome duplication events in teleost evolutionary history, 
including in the teleost ancestor (“3R”) and additional events in the salmonid and carp lineages. The nomenclature for salmonid and carp paralogs is given as 
described in the text. Branch support values (posterior probability) are highlighted by circles placed on nodes, with colors matching a legend. Minor 
inconsistencies in branching patterns in some Igfbp clades (e.g., relating to the 3R or salmonid 4R) compared to other studies (16), can be explained  
by the short alignment length. Nonetheless, the tree demonstrates independent expansions within the salmonid and carp Igfbp repertoire, additional  
to paralogs retained in many other teleosts.
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and Igf-I, consistent with a negative role in growth regulation  
(44, 46, 48, 53, 57, 62).

Igfbp-1 expression in teleosts is also modulated by hormones 
others than the Igfs. For instance, igfbp-1a evidently plays a role 
in zebrafish sexual maturation, in a way that seems to differ from 
its classical anti-proliferative role. Specifically, igfbp-1a expres-
sion increases in response to T3 and the follicle stimulating (Fsh) 
hormones (well-known for stimulating spermatogonia prolifera-
tion) (58). The female sex hormone 17β-estradiol also increased 
Igfbp-1 secretion in striped bass liver explants (46).

Stress is also known to induce igfbp-1 gene expression in 
teleosts. Cortisol, the main stress hormone in vertebrates (66, 
67), and other synthetic glucocorticoids such as dexamethasone 
increases both Igfbp-1a and Igfbp-1b circulatory levels, as well 
as gene expression in liver and cultured myotubes (43, 57, 62, 
68, 69). Environmental stressors, such as hypoxia, confinement, 
temperature, heavy metals, and salinity, were also found to 
increase igfbp-1 expression (17, 49–53, 56, 61, 70, 71). It is also 
possible that igfbp-1 upregulation in response to food depriva-
tion (see above) is related to a rise in cortisol, as some studies 
have found increasing levels of circulatory glucocorticoids in 
response to fasting (70, 72, 73). There is also emerging evidence 
from salmonids that igfbp-1a1 upregulation during infection 
serves a role in linking growth to innate immunity, potentially 
promoting downregulation of growth in favor of a more effec-
tive immune response (74). This expression response represents 
an example of salmonid-specific divergence in the regulation of 
Igfbp paralogs, as igfbp-1a2 was unaltered by infection in the 
same study (74).

igfbp-2: A Major Circulatory igfbp  
in Teleosts
In mammals, Igfbp-2 is highly expressed during embryonic 
stages, and more lowly expressed in adult tissues, with highest 
levels in liver, adipocytes, the central nervous and reproductive 
systems, heart, and kidney (75). Mice embryos overexpressing 
Igfbp-2 show a reduced growth rate, likely through reduced Igf 
availability (76). However, Igfbp-2 deletion in mice embryos 
does not have any significant effect on growth or development 
(77), which may indicate compensatory effects with other Igfbps. 
While the functional roles of Igfbp-2 remain relatively poorly 
established, recent studies have linked it to several pathological 
states. For example, Igfbp-2 may act as a tumor promoter (78) by 
suppressing epidermis growth factor receptor nuclear signaling 
(79). There is also increasing evidence that Igfbp-2 plays a role in 
mammalian bone formation (80).

Igfbp-2b is the third main circulatory Igfbp in salmonids and 
probably other teleost species (41 kDa form) and the main Igf 
carrier (6, 81, 82). For a long time, Igfbp-2b was wrongly consid-
ered to be Igfbp-3 (83) due to its similar physiological regulation 
to Igfbp-3 in mammals [e.g., Ref. (83)]. Teleost igfbp-2 genes 
are expressed in a range of tissues [e.g., Ref. (16, 84–86)] with 
zebrafish igfbp-2a and igfbp-2b having different spatiotemporal 
patterns during early development, and each being expressed 
in liver in adults (18). In adult salmon, igfbp-2a was expressed 
across multiple tissues, with especially high abundance in liver, 

whereas igfbp-2b1 and igfbp-2b1 were liver-restricted (16). 
Overexpression of igfbp-2a and igfbp-2b causes a reduction in 
growth and developmental rate in early-stage zebrafish (18, 87), 
suggesting an equivalent role to that observed in mammals. 
Similar to Igfbp-1, past work has suggested a role for Igfbp-2 in 
teleost sexual maturation, with igfbp-2 mRNA being expressed 
in pre-ovulatory ovaries of rainbow trout, and upregulated in 
response to female sex hormones (83).

Mixed results exist on the regulation of teleost igfbp-2 genes 
by nutritional status. For example, some past studies showed 
that igfbp-2 genes are downregulated or unchanged in liver and 
skeletal muscle of fasted fish (55, 88–90), which does not support 
an obvious role in growth inhibition. By contrast, a significant 
increase of igfbp-2 expression was observed in fasted zebrafish 
(91), although this same effect was not clearly observed in a 
later study of zebrafish that distinguished igfbp-2a and -2b (65). 
In Atlantic salmon, a significant decrease in igfbp-2a (formerly 
“igfbp-2.1”) expression was reported in skeletal muscle during 
refeeding after a period of restricted food intake, suggesting 
an inhibitory role on growth (90, 92). Similarly, all three tested 
igfbp-2 paralogs (igfbp-2a, -2b1, and -2b1) were downregulated in 
Atlantic salmon liver upon post-fasting refeeding, again suggest-
ing an inhibitory role on growth (16). However, such data have 
not been replicated in vitro where neither amino acid deprivation 
nor addition of Igf-I and amino acids to Atlantic salmon cultured 
myotubes modified the expression of the same paralogs (57).

Moreover, the regulation of igfbp-2 expression by Gh does 
not clearly support a growth inhibitory role common to teleosts. 
While a study in zebrafish embryos reported that Gh inhibits 
igfbp-2 expression (91), work in Atlantic salmon demonstrated 
an increase in circulating Igfbp-2b in response to Gh (48, 81, 93). 
By contrast, treatment with dexamethasone, known to enhance 
catabolism, led to an increase in igfbp-2a expression in salmon 
skeletal muscle myotubes (57). Despite not distinguishing 
teleost paralogs, recent work revealed upregulation of skeletal 
muscle igfbp-2 expression in fine flounder (Paralichthys adsper-
sus), concomitant to a rise in blood cortisol (94). Differences 
in Igfbp-2 expression across studies suggest a complex role for 
this Igfbp family member in teleost growth, dependent on both 
physiological and species context.

igfbp-3: Divergent Physiological 
Regulation across Teleost Species
Igfbp-3 is the main carrier of circulating Igf in mammals, form-
ing a tertiary structure with the acid-labile subunit (ALS) that 
increases Igf half-life and regulates Igf bioavailability (95). Igfbp-3 
has anti-proliferative effects in many mammalian cell types, pre-
venting the interaction of Igf-I and Igf-II with Igf-1R, and it also 
has Igf-independent roles (96). In this respect, Igfbp-3 directly 
interacts with two-cell surface receptors independently of Igf-I, 
Lrp1, and Tmem29, which mediates its anti-proliferative effects 
(97, 98). However, mammalian Igfbp-3 can also enhance cellular 
proliferation in some conditions, through both Igf-dependent 
and Igf-independent mechanisms (99, 100).

In contrast to mammals, teleost Igfbp-3 proteins are not 
considered major circulatory Igfbps (6). In fact, there exists no 
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known association between Igfbp-3 proteins—or indeed any tel-
eost Igfbp subtype—and ALS (6), highlighting fundamental dif-
ferences in the way Igfs are regulated in circulation. In zebrafish, 
the single igfbp-3a (16) gene has important roles in early 
development, showing dorsalizing effects in embryos through 
an Igf-independent interaction with bone morphogenic protein 
2b (101), one of few studies demonstrating an Igf-independent 
role for a teleost Igfbp. The four distinct igfbp-3 paralogs of sal-
monids (igfbp-3a1, -3a2, -3b1, and -3b2) were lowly expressed in 
11 tested adult Atlantic salmon tissues (and each absent in liver), 
although igfbp-3a1 was among the most abundant of all Igfbp 
family member genes in heart (16) and the only detected igfbp-3 
gene in primary myotube culture (57). Conversely, igfbp-3b of 
adult fine flounder was reported as more highly expressed in 
liver (the main route for Igfbp to circulation) than several other 
tested tissues, while igfbp-3a was not considered in the same 
study (88).

Studies in zebrafish, flounder, and yellowtail reported a sig-
nificant increase in the expression of igfbp-3 genes in liver and/
or muscle in response to fasting (55, 88, 102), which may act to 
restrict Igf signaling. However, on the other hand, studies in sal-
monids have reported no changes in muscle igfbp-3 gene expres-
sion in response to food deprivation (57, 89) with an increase in 
igfbp-3a1 expression in liver during post-fasting refeeding, more 
consistent with a growth-promoting function (16). Similarly, in 
coho salmon (Oncorhynchus kisutch), igfbp-3a1 muscle expres-
sion was increased by Gh transgenesis (103), again supporting a 
growth-promoting role. However, stress caused a downregulation 
of igfbp-3b gene expression in skeletal muscle of fine flounder 
(94), which is inconsistent with a role in growth inhibition.

Overall, there is a relatively limited body of research on teleost 
Igfbp-3 genes, leaving their roles unclear in many species, with 
the available evidence suggesting functional divergence among 
different lineages.

igfbp-4: Growth-Promoting Role in Some 
Teleosts?
In mammals, Igfbp-4 is expressed in many cell types and tissues, 
where it is often considered to inhibit Igf action (104, 105). 
However, it is also considered to have growth-promoting roles 
during early embryogenesis, where it enhances Igf-II activity 
(106). Some studies have reported Igf-independent actions 
for Igfbp-4, including in relation to the inhibition of apoptosis  
(104, 105) and cardiogenesis (107).

In teleosts, igfbp-4 was expressed in most tissues for each spe-
cies investigated, including Atlantic salmon (16), tiger pufferfish 
(Takifugu rubripes) (108) and fine flounder (88). Moreover, 
in Atlantic salmon, igfbp-4 was described as showing high 
abundance in gill (108). Atlantic salmon was recently shown to 
retain two highly similar Igfbp-4 paralogs (see Figures 1 and 2), 
which show conserved regulation across tissues (24). In tiger 
pufferfish, fasting caused upregulation of igfbp-4 expression in 
several tissues, consistent with an inhibitory role on growth (108). 
In addition, the expression of recombinant pufferfish Igfbp-4 
in zebrafish embryos resulted in significant growth retardation 
(108). However, these findings contrast studies of several species 

(including salmonids and fine flounder), where igfbp-4 expres-
sion in response to nutritional status manipulation suggested a 
growth-promoting role. Such work revealed no change in igfbp-4 
expression during fasting (57, 65, 88–90, 92), but upregulation in 
response to subsequent refeeding (57, 65, 88–90, 92, 109–111). 
A study of Arctic charr (Salvelinus alpinus) showed that dwarf 
populations with highly restricted growth had lower constitu-
tive igfbp-4 expression in muscle than populations reaching 
larger body size (112). A growth-promoting role for igfbp-4 in 
salmonids was also supported by a strong positive correlation 
between igfbp-4 and several pro-myogenic gene markers during 
in vitro myogenesis in Atlantic salmon (110). Studies of Igfbp-4 
expression in response to stress also suggest a growth-promoting 
role. For instance, addition of dexamethasone to Atlantic salmon 
myotubes (57), and stress confinement in fine flounder (94) 
induced a significant reduction in igfbp-4 expression. Conversely, 
an increase in igfbp-4 expression was reported in skeletal muscle 
during maturation-induced atrophy in rainbow trout (113).

Overall, the available evidence suggests that the physiologi-
cal role of Igfbp-4, when conserved, differs across species and 
physiological contexts, though for some lineages, particularly 
salmonids, a growth-promoting function is implicated.

igfbp-5: Conserved Roles in Muscle 
Growth
Igfbp-5 is the most conserved Igfbp family member. In mammals, 
it forms a ternary complex with ALS, similar to Igfbp-3, although 
much more circulating Igf is carried by Igfbp-3-ALS (114). Igfbp-5 
represents an essential regulator of many processes in mamma-
lian bone, kidney, mammary gland, and skeletal muscle (114) and 
can assert both stimulatory and inhibitory effects (depending 
on cell type) through Igf-dependent or Igf-independent routes. 
For instance, it has growth factor-like actions, stimulating bone 
growth in Igf-I knockout mice (115), and smooth muscle cell 
migration (116). There is also evidence that Igfbp-5 can trans-
locate into the nucleus (117) and have nuclear functions (118). 
It is thought that Igfbp-5 cellular internalization is achieved by 
interaction with membrane proteins such as heparin sulfate 
proteoglycans, and that the Igfbp-5 N-terminal region has an Igf-
independent transcriptional activity (118). Furthermore, Igfbp-5 
can interact with transcription co-activators such as the four and 
half Lim domains 2 (119).

In zebrafish and grass carp embryos, igfbp-5a and igfbp-5b 
have distinctive patterns of expression during early development, 
suggesting evolutionary divergence in regulation (19, 120), which 
has also been demonstrated at the functional level (19). In adult 
zebrafish, igfbp-5a was expressed at high levels in brain and gill, 
and lower levels in several other tissues, but was absent in liver 
or skeletal muscle; while igfbp-5b was ubiquitously expressed. 
Similarly, in other studied teleost species igfbp-5 genes were 
reported to show a broad tissue distribution, with differences 
noted among species and paralogs (51, 52, 55, 63, 120), including 
three paralogs in Atlantic salmon (16, 24).

The importance of igfbp-5 genes for muscle differentiation and 
growth in teleosts is well established. Igfbp-5 expression has been 
studied across in  vitro myogenesis, with both teleost paralogs 
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(when distinguished) detected from early stages (i.e., myogenic 
progenitor cells) through to fully differentiated myotubes  
(57, 110, 111). In Atlantic salmon, both igfbp-5a (formerly: 
igfbp5.1) and igfbp-5b (formerly: igfbp5.2) showed highest 
expression in early-stage myoblasts, which decreased during 
myogenic differentiation (110). Using the same in vitro models, it 
was observed that pro-growth stimuli such as amino acids and Igfs 
increase igfbp-5 gene expression (111, 113), including both igfbp-
5a and igfbp-5b paralogs distinguished in salmonids (57, 110).  
However, igfbp-5 paralogs appear to have different patterns of 
expression in response to catabolic signals. For instance, while 
amino acid deprivation had no effect on the regulation of any 
igfbp-5 paralog in Atlantic salmon myotubes (57, 113), dexa-
methasone reduced igfbp-5a expression, while simultaneously 
increasing igfbp-5b1 (57). A past study of rainbow trout skeletal 
muscle recorded no change in igfbp-5 gene expression in response 
to fasting or re-feeding (89), though it was unclear which paralog 
was measured. Similarly, igfbp-5a and igfbp-5b muscle expres-
sion did not change in response to short- or long-term fasting 
in Atlantic salmon (90, 92). However, in grass carp, igfbp-5a and 
igfbp-5b expression decreased in skeletal muscle during fasting, 
while both paralogs were upregulated in liver, and upon injection 
of Gh in both tissues (120). In Gh transgenic coho salmon, igfbp-
5b1 was significantly upregulated (103).

There is also emerging evidence that igfbp-5 genes play a 
role in ionic homeostasis and Igf regulation in zebrafish (121), 
stickleback [e.g., Ref. (122)] and Atlantic salmon gills (123) with 
Igfbp-5a acting to regulate calcium influx in zebrafish gills (121) 
and being differentially expressed and under divergent selective 
pressures in marine vs. freshwater sticklebacks (122, 124).

To sum up, the available evidence suggests that Igfbp-5 genes 
play conserved functions in multiple aspects of teleost biology, 
with roles most clearly demonstrated in myogenesis, muscle 
growth, and gill function. There is also considerable evidence that 
both teleost and salmonid-specific Igfbp-5 paralogs have evolved 
divergent roles.

igfbp-6: A Growth inhibitor with emerging 
Roles
Igfbp-6 represents a special case among the Igfbp family.  
In mammals, it has a 50-fold binding preference for Igf-II over 
Igf-I (125, 126) (a unique feature among Igfbps), but also shows 
differences in key protein motifs, with three disulfide bonds in  
the N-terminal region instead of the 4 found in Igfbp-1 to 5 
(127). Igfbp-6 is a relatively specific inhibitor of Igf-II actions 
and, therefore, regulates processes where Igf-II is involved such as 
proliferation, survival, migration, and differentiation (125, 126).  
Igfbp-6 also has known Igf-independent actions (125, 128), 
including the inhibition of fibroblast proliferation (129), cancer 
cell migration (130), and apoptosis (131). The gene has a broad 
tissue expression distribution in mammals, including lung, liver, 
and the gastrointestinal tract.

While differences in the affinity of Igfbp-6 proteins for Igf-II 
and Igf-I are yet to be confirmed in teleosts, the main underlying 
structural features are conserved (16). In zebrafish adults, igfbp-
6a was highly expressed in muscle, and almost undetectable in 

other tissues, while igfbp-6b was only abundant in brain, heart, 
and muscle (20). In adult fine flounder, igfbp-6b was most highly 
expressed in heart, gills, and the gastrointestinal tract (88).  
In adult Atlantic salmon, neither igfbp-6a1 nor -6a2 were notably 
expressed across a panel of 11 tissues, while igfbp-6b1 and 6b2 
were each broadly expressed, with the latter being especially 
highly expressed in gill, brain, and spleen (16). Both igfbp-6b1 
and 6b2 were also reported as being highly expressed in Atlantic 
salmon gills, where they were dynamically regulated during 
smoltification (123).

The overexpression of either zebrafish igfbp-6 paralog caused 
a significant reduction of embryonic growth (20), suggesting 
a role in growth inhibition. Studies of igfbp-6 gene regula-
tion in skeletal muscle support a similar role in other species, 
though some conflicting data exist. For example, a study in 
Atlantic salmon reported no change in igfbp-6b expression 
in response to food intake manipulation (92), while another 
reported downregulation of igfbp-6b in tilapia skeletal muscle in 
response to feeding after a period of fasting (53). Similar results 
were observed in fine flounder skeletal muscle, where igfbp-6b 
expression decreased in response to feeding immediately post-
fasting, although expression then increased during long-term 
refeeding (88). However, igfbp-6b was repressed in fine flounder 
skeletal muscle in response to stress (94), which is less consist-
ent with a negative role in growth. Conversely, in Atlantic 
salmon myotubes treated with dexamethasone, igfbp-6a1 was 
downregulated, while igfbp-6b2 was upregulated, highlighting 
complex functions that cannot be easily interpreted without 
functional data (57).

Recent work also implies a novel role for igfbp-6 genes in 
linking growth and immune regulation in teleosts. Alzaid et al. 
observed a significant increase of igfbp-6a2 in primary immune 
tissues of rainbow trout following a bacterial infection, and pro-
vided evidence that immune-responsive igfbp-6a2 upregulation 
was stimulated by immune signaling pathways driven by pro-
inflammatory cytokines (27). Past work in salmonids has also 
shown that pro-inflammatory cytokines can promote the expres-
sion of igfbp-6 genes in skeletal muscle cell cultures (132) and 
in vivo (103), which may be linked to the balancing of energetic 
allocation toward effective immune function.

In summary, Igfbp-6 genes of teleosts are rather understudied, 
and it is difficult to draw overarching conclusions about their 
roles and functions at this time.

PeRSPeCTiveS AND FUTURe wORK

Our current understanding of the Igfbp repertoire of different 
teleosts has benefited greatly from recent expansions to genomic 
resources. We can now be confident in the existence of many 
teleost paralogs, which are expressed and presumably functional. 
However, our understanding of the functions and regulatory 
control of these genes remains highly fragmented across teleosts 
as a group and remains highly underdeveloped compared to 
mammals. It is becoming increasingly clear—perhaps with 
the exception of Igfbp-1—that teleost and mammalian Igfbp 
orthologs have evolved distinct expression-level regulation. This 
points to distinct functional roles in the regulation of growth in 
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teleosts compared to mammals, which may be related to differ-
ences in growth dynamics, for example, indeterminate growth 
in teleosts. Moreover, there is also evidence that Igfbp orthologs 
from different species have evolved distinct regulation and 
hence, potentially functions, during teleost evolution. This can 
be speculatively linked to the additional functional flexibility or 
redundancy linked to Igfbp duplication events, which has allowed 
divergent regulation of paralogs to evolve under different physi-
ological contexts.

It is also clear that differences in the expression of homologous 
Igfbp genes across teleost species are often difficult to interpret. 
In many cases, this may be linked to the historic ignorance of 
paralogous genes, either by considering one paralog in pair, or 
detecting signals from both paralogs in gene expression analyses. 
Hence, a fuller understanding of Igfbp genes will be possible in 
the presence of high-quality reference genomes, where all genes 
are properly annotated and can then be distinguished experi-
mentally. The evidence for divergent regulation of Igfbp paralog 
expression is overwhelming, even for genes with very similar 
coding sequences (24), suggesting gene expression studies should 
make every effort to distinguish Igfbp paralogs.

An additional priority for future research should be to 
characterize the individual protein-level functions of all 
teleost Igfbp paralogs in multiple species extending beyond 
model organisms. While it has classically been challenging to 
perform functional analyses in non-model teleosts, the research 

landscape is rapidly changing. For example, genome editing 
using engineered CRIPSR/Cas9 systems has been demonstrated 
in vivo for various large commercial species, including salmo-
nids (133) and catfishes (134), as well as in teleost cell culture 
(135). Hence, while even 5 years ago, the full repertoire of Igfbp 
genes was not even recognized in many teleosts, we can look 
forward to a future where every paralog within a species has its 
function cataloged by such approaches, even in lineages with 
hugely expanded Igfbp gene families. This will open the door for 
associating protein-level functional divergence in Igfbp paralogs 
with evolutionary changes in gene expression regulation, gen-
erating a fuller picture of the biological roles of this fascinating 
gene family in teleosts.
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