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Clock gene oscillations are necessary for a successful pregnancy and parturition, 
but little is known about their function during lactation, a period demanding from the 
mother multiple physiological and behavioral adaptations to fulfill the requirements of 
the offspring. First, we will focus on circadian rhythms and clock genes in reproductive 
tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations 
of clock genes provoke reproductive problems, as found in clock gene knockout mice. 
Then, we will focus mainly on the rabbit doe as this mammal nurses the young just 
once a day with circadian periodicity. This daily event synchronizes the behavior and 
the activity of specific brain regions critical for reproductive neuroendocrinology and 
maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 
protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, 
neuroendocrine cells related to milk production and ejections are also synchronized to 
daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this 
process is independent of milk output as even virgin does (behaving maternally following 
anosmia) can display circadian nursing behavior. A timing motivational mechanism may 
regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nurs-
ing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, 
women in chronic shift-work schedules show problems in their menstrual cycles and 
pregnancies and also have a high risk of preterm delivery, making this an important field 
of translational research.
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inTRODUCTiOn

Few studies have explored the relation between circadian rhythms and reproduction. Most of the 
early works focused on lactation and maternal behavior (MB), largely in rodents. However, the 
discovery of functional molecular clock machinery in reproductive tissues, and the use of clock 
gene mutant models have revealed that such genes play a main role in orchestrating reproductive 
processes in mammals. First, we will focus on circadian rhythms and clock genes in reproductive 
tissues, from implantation through lactation, mainly in rodents. Then, we will focus on the rabbit, 
a lagomorph with a striking circadian rhythm of lactation, unique to this class of mammals. Our 
studies in this animal are revealing, entraining of behaviors and neuroendocrine processes in specific 
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FiGURe 1 | Behavioral, physiological, and neural changes throughout circadian lactation in the rabbit doe. Abbreviations: A10vr, A10 ventral rostral; A10m,  
A10 medial; A10p, A10 posterior; FOS, c-Fos protein; mPFC, medial prefrontal cortex; NA, nucleus accumbens; OT, oxytocin; PHDA, periventricular hypophysial 
dopaminergic cells; POA, preoptic area; PVN, paraventricular nucleus of the hypothalamus; SON, supraoptic nucleus; TIDA, tuberoinfundibular dopaminergic cells; 
VTA, ventral tegmental area. In non-pregnant, non-lactating females FOS protein rhythms reach a peak at different hours in different structures, but in lactating does  
all of these rhythms shift to the hour of nursing. Figure derived from data previously published in Ref. (44, 49, 62–64, 66, 79, 80).
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brain structures as a consequence of suckling by pups (Figure 1). 
Finally, we will explore the translational importance of a “healthy” 
circadian clock for proper rhythms in reproduction.

CiRCADiAn RHYTHMS AnD CLOCK 
GeneS in RePRODUCTive PROCeSSeS

Many physiological processes and behaviors in mammals are 
rhythmic. The most evident daily change is the sleep/wake cycle, 
but there are clear changes in the blood concentration of several 
hormones and specific metabolites throughout the day (1). 
These changes allow organisms to adapt to the environmental 
light/dark cycle and consequently to the resources available at 
specific times of day or night. These rhythms are controlled by an 
endogenous molecular clock within the suprachiasmatic nucleus 
(SCN), located in the forebrain of mammals, which is entrained 
by the light/dark cycle. The molecular clockwork is composed of 
a group of core clock genes, Per, Cry, Clock, and Bmal1, organ-
ized in a transcription–translation feedback loop that oscillates 
every 24 h. Their oscillations are associated with self-sustaining 
redox rhythms, known as nontranscriptional clocks as well as 
metabolic rhythms in an organ-specific manner [Reviewed in 
Ref. (1)]. Reproductive tissues have also functional molecular 
clocks and, although at the top of the hierarchy are the SCN oscil-
lations, it is now recognized that the circadian system is organ-
ized along several axes of a redundant network that exchanges 
bidirectional timing information among the components (2, 3).  
An early study found that lesions to the SCN completely elimi-
nated phasic LH release (4), and in recent years much informa-
tion has accumulated to support the importance of the clockwork 
mechanism in reproduction by using mutant mouse models with 
various disruptions of the molecular clockwork. Recently, in 

Clock/Clock mutant mice it was demonstrated that few of these 
animals became pregnant, they had a high rate of fetal reabsorp-
tion and severe dystocia and the fetuses showed morphological 
abnormalities (5, 6). However, it is possible that this is an effect 
not only of the Clock/Clock mutation as Per1, Per2, and Bmal1 
knockout mice, but also shows several abnormalities during 
pregnancy and parturition (7, 8). Very little is known about the 
possible mechanisms involved. In Clock/Clock mutants, serum 
progesterone levels are twofold lower and estradiol is significantly 
lower in mid-pregnancy compared to wild-type females, differ-
ences that have been associated with a high incidence of pup 
reabsorption (5). Indeed, impaired steroidogenesis appears to be 
a common problem in clock gene mutants as pregnant Bmal1 
(−/−) mice also have lower progesterone serum levels than 
Bmal1 (+/±) and reduced embryo implantation (9). Moreover, 
in rats, deletion of ovarian Bmal1 gene affected genes critical for 
progesterone production, leading to implantation failure; these 
effects were reversed by the implantation of a single wild-type 
ovary (10). Regarding Per1 and Per2 mutants, although fertile, 
they exhibit lower reproductive success than the control group, 
as occurs in aged wild-type mice (7). Together, the above infor-
mation indicates that proper oscillations of the core clock genes 
in reproductive tissues are necessary for successful ovulation, 
embryo implantation, and steroidogenesis (11). In Table 1, we 
summarize some effects on reproduction provoked by altera-
tions in specific clock genes. These reproductive disorders are 
observed in clock gene-deficient animals. Thus, it remains to be 
determined at which specific levels of control clock genes act, 
as the functions described in Table  1 are complex and have a 
multifactorial regulation. Moreover, as clock genes control 
transcription in a tissue-specific manner and recently nontran-
scriptional metabolic clocks have been discovered [Reviewed in 
Ref. (1)], the possibility exists that endocrine factors (i.e., specific 
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TABLe 1 | Some effects in reproductive success by changes in clock genes genotype in mammals.

Clock gene Species effect Reference

Gonads
Bmal 1−/− Mouse Ovarian size reduced (8)

Bmal 1−/− Mouse Low testosterone and high luteinizing hormone in serum; reduction in esteroidogenic  
genes in testes, reduced sperm count. Infertility

(12, 13)

Clock Human polymorphism Semen volume reduction, low sperm motility, and idiopathic infertility. Alteration  
in serum levels of testosterone and FSH

(14, 15)

Cry1 Mouse KD Reduction of meiotic process and maturation in oocytes (16)

Bmal1flx/flx Mouse Changes in phasic LH sensitivity of theca cells in ovary (17)

Bmal1flx/flx Mouse Failure to mate with receptive females. Low secretion of FSH and GnRH.  
Tyrosine hydroxylase in brain decreased

(18)

estrous and menstrual cycles
ClockΔ19 Mouse Higher proportion of irregular estrous cycles (19–21)

Clock Mouseclock/clock Irregular estrous cyclicity and failure to have a coordinated LH surge on proestrus (22)

Bmal 1−/− Mouse KO Changes in daily pattern of estrogen receptor β in tissues implicated in female reproductive functions (23, 24)

Clock Human polymorphism Irregular menstrual cycles (25)

Gestational/parturition
Per 1−/− and Per 2−/− Mouse Successful parturition reduced (7)

Bmal 1−/− Mouse Lack of implantation and embryonic development. Impaired steroidogenesis,  
low progesterone levels and embryo implantation reduced. Alterations in delivery times

(8–10, 26)

Clock Mouseclock/clock Elevated rates of fetal reabsorption (5)

Bmal 1 Human polymorphism Miscarriages increased (27)

Postpartum success
Per 1−/− and Per 2−/− Mouse KO Number of pups weaned reduced (7)

ClockΔ19 Mouse Postnatal mortality increased and low prolactin levels and reduced milk production (19, 28)
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hormones) could play a main role in the expression of reprod-
uctive disorders related to clock gene disruption.

In rats, delivery occurs at daytime, i.e., during the rest period 
[Reviewed in Ref. (29)], and destruction of the SCN disrupts 
the timing of birth (30). Takayama et al. (31) explored the role 
of the pineal gland hormone melatonin (MEL) and found that 
pinealectomized rats gave birth at either day or night and that 
MEL replacement at night (but not during the day), across 
pregnancy, restored the timing of parturition during the day in 
most subjects. Interestingly, in rodents, the placenta expresses 
functional clock genes and also glucocorticoid receptors (32) 
and MEL receptor MT1 (33), which are rhythmically expressed. 
Thus, it is possible that maternal central hormonal secretions also 
drive the activity of the placenta in pregnancy and parturition 
(34). By contrast, in primiparous rabbits kept under laboratory 
conditions (14 h light:10 h dark) parturition occurs throughout 
the day, regardless of litter size delivered (35).

Regarding lactation, mother rats nurse more often during 
the resting phase, i.e., across daytime (36, 37). In mice, maternal 
crouching (nursing posture) peaks during the day and is less 
frequent during the night and, concomitantly, prolactin serum 
levels are higher during the day (28). By contrast, Clock mutant 
mice do not have a significant peak of either crouching or 
prolactin, and the amount of milk secreted from mutant mice is 
lower (as calculated by a significant lower body weight of pups) 
when compared to wild-type dams (28). Additionally, pups from 
homozygous Bmal1 null mice are 30% lighter at weaning (8), 
supporting the importance of a circadian molecular clock in 
timing MB and lactation. In cows, the mammary gland’s demand 
for nutrients in early lactation is several-fold increased over 

that seen during pregnancy and this demand is not met just by 
increasing food intake (38), a finding from which a compensatory 
circadian mechanism was proposed. During the transition from 
pregnancy to lactation, there is an upregulation of the positive 
limb of the core clockwork as well as of clock regulatory genes 
in specific metabolic pathways of the rat’s mammary gland, liver, 
and adipose tissues to support the increased nutritional demands 
of lactation [Reviewed in Ref. (39)]. Accordingly, in mice Per1 
and Bmal1, mRNA levels are elevated in late pregnant and lactat-
ing mammary tissues supporting their role in mammary gland 
development and differentiation (40).

nURSinG wiTHin A CiRCADiAn 
COnTeXT: THe RABBiT MODeL

Doe rabbits nurse the young once a day, for approximately 3 min, 
inside a nest constructed by the mother across pregnancy (41). 
This invariability in the nursing pattern is observed throughout 
lactation (ca. 30 days), despite a marked increase in milk output 
across the first 20  days and a gradual decline thereafter (42). 
Nursing occurs at night, under light:dark or continuous light 
conditions, with circadian periodicity (43, 44). A threshold of 
suckling stimulation is essential for this regulation as reducing 
litter size below six kits disrupts the circadian expression of 
nursing (35). Although deliveries occur throughout the day,  
a population of parturient rabbits becomes synchronized to initi-
ate and maintain nursing at around the same time from lactation 
day 1 onward. A Rayleigh analysis of the hour of nursing in the 
population of studied does indicated that, despite the hour of 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


4

Caba et al. Clock Genes in Reproduction and the Rabbit Model

Frontiers in Endocrinology | www.frontiersin.org March 2018 | Volume 9 | Article 106

delivery most nursing episodes occurred during the night, at 
03:51 h, from postnatal days 1–15 (35). This adjustment is possi-
ble because a negative correlation exists between time of delivery 
and time of nursing on lactation day 1, i.e., mothers giving birth 
in the early morning show longer “parturition-nursing” intervals 
than does delivering at later hours.

A normal duration of nursing bouts also depends on a thresh-
old of suckling as mothers given four kits or less spend longer 
times inside the nest box (45). Yet, milk output per se is not essen-
tial to display a normal nursing behavior as virgins induced to 
behave maternally (by lesioning the main olfactory system) can 
enter the nest box, crouch over the litter, allow suckling, and exit 
ca. 3 min later. This behavioral pattern is observed with circadian 
periodicity in 55% of maternal virgins (46).

PeR1 PROTein RHYTHMS SHiFT BY THe 
TiMinG OF nURSinG

Suckling induces oxytocin (OT) secretion in all mammals 
and, in rabbits, the amount secreted is directly related with the 
number of suckling kits (47). Does OT participate in translating 
the suckling stimulus received at the nipple to the brain regions 
regulating nursing periodicity and duration? The number and 
size of OT-immunoreactive (IR) neurons increases in the para-
ventricular hypothalamic nucleus (PVN) from estrus, through 
pregnancy, and into lactation (48). Following suckling, the total 
number of c-FOS-IR cells increases significantly in this structure 
(49). Bilateral lesions to the PVN of lactating rabbits abolish or 
disrupt the circadian display of nursing, but do not modify dura-
tion of suckling bouts (50). Although in rabbits no OT receptors 
are evident in the PVN, they are abundant in the prefrontal cortex, 
preoptic area (POA), and lateral septum [LS (51)], regions that 
participate in regulating specific aspects of the doe’s MB (52, 53).

The doe’s circadian nursing pattern is, in turn, a timing signal 
for the kits (54). By scheduling the hour of nursing we have 
shown that this predictable event entrains rhythms of locomo-
tor behavior, metabolic parameters, plasma corticosterone 
hormones, and also several brain structures in 7–9-day-old kits 
(55–57). From these findings, we proposed that rabbit kits are 
a natural model of food entrainment (57, 58). The synchroni-
zation of brain structures was determined by quantifying the 
expression of the PER1 protein, product of the Per1 clock gene. 
The rhythm of this protein can be synchronized to a particular 
stimulus, e.g., food cues, in specific brain regions (59). Thus, 
while the clockwork oscillations of the SCN are synchronized 
to the light/dark cycle, the rhythm of clock genes in peripheral 
tissues and in the brain can be entrained by stimuli other than 
light, like food (60, 61). From the findings that: (a) single or 
multiple entrances to the nest depend on the number of suckling 
kits (35, 45); (b) preventing suckling by kits on lactation days 
7–9 significantly decreased the amount of PER1 protein at peak 
time in both PVN and supraoptic nucleus (62, 63), we consider 
that suckling can be an entraining signal for PER1 protein 
rhythms on particular neuroendocrine populations, specifically 
oxytocinergic and also in dopaminergic (DAergic) cells. Thus, 
in estrous does maintained under light:dark conditions [12:12; 

lights on at 07:00  =  time (ZT) 0], PER1 protein in the PVN 
peaks at ZT15, as occurs in tyrosine hydroxylase (TH)-IR cells 
that co-express PER1. By contrast, in lactating rabbits the peak 
of PER1 and PER1/TH appears 4 h after the timing of scheduled 
nursing. DAergic populations from the tuberoinfundibular and 
periventricular hypophysial regions, related to the control of 
prolactin release in the hypophysis, also shift their rhythm of 
co-expression with PER1 protein according to the timing of 
suckling. In contrast, no change was observed in incertohy-
pothalamic DAergic cells, which are not related to the control 
of prolactin secretion (63). Therefore, our results suggest that 
periodic suckling is a time signal for the synthesis and/or secre-
tion of OT and prolactin at a predictable time.

The daily spontaneous return of the mother to the nest coin-
cides with an increase in locomotor behavior (62), suggesting that 
she is in a state of high arousal to access the kits. Indeed, DAergic 
cells of the A10 mesolimbic system increase their cellular activity, 
anticipating daily nursing, supporting the assumption that she 
is in a high motivational state to visit the kits for nursing (64). 
Moreover, timing the suckling stimulus also synchronizes the 
POA and LS, essential for the expression of MB (65), as indicated 
by rhythms of PER1 (66). These results, together with those of the 
mesolimbic system (64), suggest the establishment of a “maternal 
entrainable circuit” where suckling seems to be the entraining 
signal. Taken together, the entraining of PER1 oscillations points 
to the importance of the Per1 gene in specific brain regions for 
uncoupling their oscillations from the master clock to fulfill a 
specific reproductive demand, the care, and nourishment of the 
litter.

TRAnSLATiOnAL iMPORTAnCe OF 
CiRCADiAn RHYTHMS AnD CLOCK 
GeneS DiSRUPTiOn

Disruption of circadian rhythms has profound consequences 
in humans. Light during the day is the main synchronizer 
for our circadian rhythms and controls the timing of our 
neuroendocrine system. For example, the hormone melatonin 
is secreted only during the night and seems to be a humoral 
entraining signal for peripheral organs to show proper circadian 
rhythms (1). Epidemiological studies were the first to indicate 
that the exposure to artificial light during the night, which 
disrupts the normal secretion of melatonin (67), is associated 
with circadian disruptions and to breast cancer [Reviewed in 
Ref. (68)]. Regarding reproduction, women shift-workers (in 
which the master clock is exposed to artificial light at night) 
have an increased risk of endometriosis, irregular menstrual 
cycles (with pain and unusual menstrual bleeding), delayed 
ovulation, increased miscarriage rate, preterm delivery, and 
infant low birth weight (69, 70). It has also been proposed that 
MEL can be a zeitgeber for the timing of parturition in women 
(29). The above evidence highlights the importance of central 
signals from the master clock and pineal MEL to peripheral 
reproductive organs for proper fetus development, as shown in 
rats (71). Besides, other organs (e.g., placenta) may play a direct 
role. Full-term placenta expresses circadian rhythms of Clock 
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and Bmal1 (72), and clock gene polymorphisms are associated 
with placental abruption (73) and even a single polymorphism 
of Bmal1 is associated with an increase in miscarriages (27). 
Finally, RNA microarray analysis of human milk fat globules 
indicates differential daily expression of 7% of transcripts (74). 
Moreover, there are daily changes in the concentration of anti-
bodies and complement proteins of the immune system among 
several other cellular and soluble components of human milk 
(75). Interestingly, baby milk formula and food enriched with 
tryptophan (a precursor of MEL) helps to improve infant sleep 
when consumed at night (76, 77). This is an emerging area of 
research known as “chrononutrition” (78).

COnCLUSiOn

Clock genes in reproductive tissues, together with those in the 
SCN and other brain structures, play a central role in orches-
trating circadian rhythms in all reproductive processes from 
implantation to lactation. Lesion studies of the SCN as well as 
alterations of the molecular clockwork using mutant mice models 
have revealed multiple disruptions in all reproductive processes. 
In contrast, very little is known about circadian rhythms and 
reproduction in wild-type animals, except in the rabbit. This 

species offers an extraordinary opportunity for exploring this 
issue, particularly during lactation as, in lagomorphs, nursing 
usually occurs once a day with circadian periodicity, a unique 
characteristic among mammals. Consequently, it is possible to 
explore in neuroendocrine cells of this species the relevance of 
particular components of the circadian clockwork with minimal 
manipulations to the animals, as opposed to rodents, that nurse 
several times a day. The translational importance of circadian 
rhythms in reproduction was first recognized through studies of 
women in shift-work and recently through the finding of differ-
ences in the components of breast milk across the circadian cycle, 
results that could improve the health and well-being of infants.
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