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Second-generation antipsychotics (SGAs) are known to increase cardiovascular risk 
through several physiological mechanisms, including insulin resistance, hepatic steato-
sis, hyperphagia, and accelerated weight gain. There are limited prophylactic interven-
tions to prevent these side effects of SGAs, in part because the molecular mechanisms 
underlying SGAs toxicity are not yet completely elucidated. In this perspective article, we 
introduce an innovative approach to study the metabolic side effects of antipsychotics 
through the alterations of the mitochondrial dynamics, which leads to an imbalance in 
mitochondrial fusion/fission ratio and to an inefficient mitochondrial phenotype of muscle 
cells. We believe that this approach may offer a valuable path to explain SGAs-induced 
alterations in metabolic homeostasis.

Keywords: second-generation antipsychotic agents, mitochondrial dynamics, insulin resistance, L6 muscle cells, 
obesity

iNtrODUctiON

Second-generation antipsychotics (SGAs) are effective drugs in controlling symptoms of schizo-
phrenia and other psychotic disorders. However, SGAs are also known to induce insulin resistance, 
hepatic steatosis, and accelerated weight gain, which can lead to morbid obesity in as short as 
6  weeks (1). Herein, we introduce an innovative approach to explain metabolic side effects of 
SGAs through the impairment of the mitochondrial network morphology and insulin signaling, 
which results in a fusion/fission imbalance of the mitochondrial network. Our hypothesis is that 
the SGAs-induced disruption of the mitochondrial dynamics, manifested by a highly “fissioned” 
and inefficient mitochondrial network, results in a reduced capacity to trigger insulin-dependent 
pathways necessary to preserve adequate energy production and metabolic homeostasis. We believe  
that this approach may offer a valuable path to further understand the SGAs-induced insulin resist-
ance in different tissues.

This perspective paper briefly reviews the molecular, physiological, and clinical aspects of 
SGAs-induced metabolic toxicity. Then, we present our explanation and initial findings on an 
“over-fissioned” phenotype of the mitochondrial network and impairment of the insulin receptor 
signaling induced by olanzapine, one of the most common drugs of the SGAs pharmacological 
family. We also propose, based on in silico simulations potential sites for the interactions between 
olanzapine and the extracellular domain of the insulin receptor. The purpose of this article is not 
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only to provide definite answers on the molecular mechanisms 
underlying the SGAs-induced metabolic syndrome but also to 
present a new angle for the study of this problem, which is one 
of the most clinically relevant, and serious, side effect of SGAs. 
This perspective article offers a new insight for the development 
of prophylactic interventions against SGAs-induced metabolic 
syndrome through the screening of small molecules capable of 
rescuing SGAs-induced mitochondrial disruption.

MetABOLic sYNDrOMe AND 
ANtiPsYcHOtics

The number of psychiatric patients suffering from SGAs-induced 
metabolic side effects continues to rise (2, 3), despite all the 
international guidelines for the clinical use of SGAs, which 
strongly suggest that this pharmacotherapy should be initiated 
only after a careful evaluation of basal metabolic parameters 
to select the appropriate drug (4). Intriguingly, in spite of their 
metabolic toxicity profile, clozapine, risperidone, olanzapine, 
quetiapine, and aripiprazole have remain among the world-top 
selling pharmaceuticals over the past 10 years (5, 6). Preclinical 
and clinical studies have shown that, among the SGAs, olanzapine 
is the drug with the strongest metabolic toxicity, due to its effects 
on weight gain (7–9), plasma glucose levels, and other metabolic 
parameters (10, 11).

The published evidence regarding the molecular mecha-
nisms underlying the SGAs toxicity is still limited. However, 
it is known that the metabolic alterations induced by SGAs are 
partially mediated by hyperphagia linked to alterations in the 
D1/D2, 5-HT1B, 5-HT2, and 5-HT3 signaling (12), and GABA2 
receptor polymorphism (13). On this regard, recent research 
have demonstrated the participation of serotonin signaling in 
glucose homeostasis through serotonylation of rab4 proteins 
(14), moreover other studies have shown that 5HT2 selective 
antagonism impairs insulin sensitivity. SGAs also induce 
anomalous cellular differentiation of adipocytes (15), increase 
lipid accumulation in the liver tissue (16), upregulate the sterol 
regulatory element-binding protein (17), and inhibit of the 
glycogen accumulation in skeletal muscle cells (18). In spite 
of all the current proposed mechanisms, the generation of the 
secondary effects of SGA is still a matter of controversy. It is 
important to mention that the literature describes differences 
of the metabolic problems presented in SGA-induced when 
compared with type 2 diabetes (3, 19, 20). On this regard, 
there is also evidence suggesting that metabolic changes due to 
olanzapine are tissue specific (20–23).

In vivo studies in rodents using the hyperinsulinemic/eug-
lycemic clamp technique have shown that olanzapine impairs 
insulin sensitivity in the liver (24), skeletal muscle (21), and 
adipose tissue (21–23). Furthermore, a recent study showed that 
olanzapine decreases insulin-mediated glucose uptake through a 
mechanism involving an impaired hypothalamic insulin sensing 
during pancreatic euglycemic clamps (23). Altogether, these data 
seemingly confirms the results from the in vitro studies (16, 18) 
suggesting that olanzapine would induce whole-body insulin 
resistance. In the context of our hypothesis, it is worth men-
tioning that olanzapine was shown to impair lipid metabolism 

by increasing uptake of free fatty acids into peripheral tissues, 
increasing lipid oxidation in muscle cells, rising levels of long-
chain 3-hydroxylated acyl-carnitines, and suppressing the 
respiratory exchange ratio (20). These events are indicative of 
an olanzapine-mediated reduced availability of fatty Acyl CoA 
inside the mitochondrial matrix, which would limit the supply 
of precursors for the tricarboxylic acids (TCA) cycle. Altogether, 
these results support the hypothesis that mitochondrial dys-
function plays a major effect of olanzapine-induced metabolic 
syndrome and the maintenance of mitochondrial homeostasis 
should be considered as a potential therapeutic target to prevent 
SGAs-induced metabolic side effects.

In spite of the relevance of skeletal muscle for the insulin-
mediated conversion of glucose into ATP (25), the current litera-
ture still lacks enough mechanistic studies on the effect of SGAs 
on energy production and carbohydrates metabolism inside the 
skeletal muscle (Table 1). In order to explain our perspective, it 
is important to remember that the intracellular ATP is mainly 
produced inside the mitochondria, a highly specialized organelle 
involved in energy production, and that the mitochondrial 
energy production in skeletal muscle involves lipid metabolism, 
oxidative phosphorylation, and the cycle of the TCA (26). As it 
has been largely studied, mitochondrial function is, therefore, a 
sensitive indicator of the global cellular function.

MitOcHONDriAL NetWOrK AND 
MetABOLic HOMeOstAsis

During the past two decades, several studies have described 
the functional relationship between the mitochondrial func-
tion and mitochondrial dynamics, the latter is defined as the 
different processes that occur to the mitochondrial network, 
such as fusion, fission, mitochondrial movements through the 
cytoskeleton, mitochondrial biogenesis, and mitophagy (27). 
On this regard, the proper balance between all these processes 
has been directly linked to a correct mitochondrial function, 
thus opening new possibilities for regulating the mitochondrial 
metabolism through the pharmacological interventions of mito-
chondrial dynamics.

Impaired insulin signaling and mitochondrial dysfunction are 
two clear signs of abnormal metabolic response in skeletal muscle 
cells. Given these characteristics, several studies have reported 
morphological differences of the mitochondrial network in 
obese and diabetic patients (28), but none of these studies have 
looked at mitochondrial dynamics in SGAs users. Interestingly, 
an in  vitro study, by Contreras-Shannon et  al., showed that 
Clozapine, a member of the SGA family, alters mitochondrial 
morphology and ATP levels in cultured insulin-responsive cells 
in a dose-dependent manner (29).

The relationships between mitochondrial dynamics and 
insul in physiological responses in skeletal muscle cells are an 
active field of research, to which we have contributed by describ-
ing how insulin promotes mitochondrial fusion after in cardiac 
myocytes and L6 muscle cells (30). We also reported that the 
regulation of mitochondrial morphology toward incomplete 
fusion impairs insulin signaling and glucose uptake in L6 
myoblasts (31).
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tABLe 1 | Mechanisms of SGA-induced metabolic side effects.

reference experimental model Molecular mechanism Main effects

(18) L6 rat skeletal muscle cell line ↓ Insulin-stimulated IRS-1-associated PI3K activity
↓ Phosphorylation of AKT and GSK-3

↑ Glycogen synthesis

(41) 3T3-L1 cells ↓ The maximal insulin-stimulated glucose transport  
and lipolysis rate

Insulin resistance and alterated 
lipogenesis and lipolysis

(42) Male Sprague-Dawley rats  
(Adipocytes INWAT and SCWAT)

↓ HSL and ↑ FAS expression ↓ Lipolytic activity

(43) In vitro ligand binding assays Affinities for anorexigenic (bombesin receptor subtype 3,  
calcitonin gene-related peptide receptor, cholecystokinin receptor, 
melanocortin-4 receptor, neurotensin receptor 1) or orexigenic 
(cannabinoid receptor 1, galanin 1 receptor) and high affinity  
for 5-HT, 5-HT2A, 5-HT2C and 5-HT6, muscarinic M1, and H1Rs

Weight gain

(44) Human pre-adipocytes and rat  
muscle-derived stem cells

Activation kinase C-β (PKC-β) Weight gain for influence  
adipogenic events

(45–47) Female Sprague-Dawley rats  
(Arc and DVC)
34 male patients
Female Sprague-Dawley rats  
(coronal hypothalamic sections)

↓ Levels of POMC and ↑ NPY Weight gain is associated with  
reduced appetite-inhibiting

(48) Female Sprague-Dawley rats 
(Hypothalamus)

↑ Phosphorylation levels of AMPK Weight gain and hyperphagia

(49, 50) Female Sprague-Dawley rats  
(coronal sections brains)

Blockade acetylcholine (ACh) muscarinic M3 receptor (M3R) Inhibit the acetylcholine pathway  
for insulin secretion

(51) Young male patients ↑ Leptin and NPY levels Weight gain

(52) Male Sprague-Dawley rats (liver tissue) ↓ IRS2 levels, ↓ phosphorylation of GSK3α, and  
↑ phosphorylation of GSK3β

Disturbances of glucose homeostasis 
(suggest an increased activity of 
glycogen synthase, and therefore,  
an increased insulin sensitivity)

(53) Male 6-week-old ICR mice  
(hypothalamus)

Activates hypothalamic AMPK by antagonizing H1Rs,  
dopamine D2 receptors and α1-adrenoceptors

Hyperglycemia

(54) Female Sprague-Dawley rats  
(liver or perirenal WAT)

↑ mRNA expression of SREBP-2 and target genes for  
cholesterol synthesis and transports. ↑ mRNA expression 
of SREBP-1c and its targeted fatty acid-related genes

Dyslipidemia

(55) The glucose transporter from 
Staphylococcus epidermidis (GlcPSe)

The glucose transporter from Staphylococcus epidermidis  
(GlcPSe)

↓ Glucose transport

(56, 57) Female Sprague-Dawley rats  
(brain; hypothalamus)

↑ Expression of HDC mRNA and ↑ the hypothalamic H1R  
binding; activates AMPK by blocking the H1Rs

Hyperphagia and weight gain

(58) Female Sprague-Dawley rats (liver) ↓ AKT/GSK phosphorylation and upregulate muscarinic  
M3 receptors. ↑ The protein levels of SREBPs

Disturbances negative in glucose-lipid 
metabolic independent of weight gain

(59) Primary human peripheral blood 
mononuclear cells

↓ Glucose uptake accompanied by downregulation AMPK.  
↑ GLUT1 protein expression, ↓ GLUT1 mRNA expression, and  
GLUT1 promoter was hypermethylated. ↓ PDH complex activity

↓ Glucose uptake and affect energy 
metabolism

(60) Female C57BL/6—Htr2c-null mice Interaction with HTR2C in C57bL/6 and no interaction in  
Htr2c-null mice

Hyperphagia and weight gain

IRS, insulin receptor substrate (60); PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AMPK, 5′ adenosine monophosphate-activated protein kinase; AKT, protein kinase 
B; GSK-3, glycogen synthase kinase 3; HSL, hormone-sensitive lipase; FAS, fatty acid synthase; 5-HT, serotonin or 5-hydroxytryptamine; POMC, pro-opiomelanocortin; NPY, 
neuropeptide Y; SREBPs, sterol regulatory element-binding proteins; HDC, histidine decarboxylase; H1R, histamine H1 receptor; PDH, pyruvate dehydrogenase; HTR2C, encodes 
the 5-HT 2C receptor; SGA, Second generation antipsychotic.
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Previous results suggested a direct influence of SGAs on the 
peripheral insulin resistance. Particularly Engl et  al. demon-
strated that olanzapine impairs glycogen synthesis by disrupt-
ing insulin signaling in a model of L6 skeletal muscle cells (18). 
Ardizzone and coworkers observed that SGAs inhibit glucose 
transport in L6 myoblasts (32). These latter in  vitro studies 
suggest that SGAs would induce insulin resistance, although 
the concentrations of olanzapine used for these studies exceed 

those observed in human plasma (33). However, these pre-
liminary in vitro studies suggesting insulin resistance induced 
by SGAs were confirmed and further characterized in rats by 
Martins and coworkers (34), who demonstrated that olanzapine 
administered directly to the CNS induces the expression of 
hypothalamic 5′ adenosine monophosphate-activated protein 
kinase and hepatic insulin resistance, suggesting a CNS target 
for the metabolic dysregulation of atypical antipsychotics. 
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Another confirmation came from a clinical study demonstrating 
that only 9 days of oral olanzapine treatment causes significant 
elevations in postprandial insulin, glucagon-like peptide 1, and 
glucagon coincident with insulin resistance (35). According to 
Teff et al. aripiprazole, another SGAs drug, would also induce 
insulin resistance.

In view of these findings, we decided to study effects of SGAs 
through the alterations of the mitochondrial dynamics induced 
by olanzapine and also to perform an in silico search for poten-
tial interactions between the insulin receptor and olanzapine.  
We believe this model system could help to further explain the 
multicellular metabolic toxicity of SGAs.

We also examined the question as to whether olanzapine 
would interact with residues of the extracellular domain of the 
insulin receptor. It is worth mentioning that the insulin receptor 
signaling pathways are involved in the peripheral mechanisms 
of SGAs-induced toxicity (3). We modeled the human insulin 
receptor (36) using MODELLER 9.14 (37) the crystal structure 
(PDB ID: 3W14) (38) with an identity of 99%. The best model 
obtained was refined using Charmm 33b1 with the conjugate 
gradient.

Dockings of olanzapine (http://zinc.docking.org/; olan zapine 
code: 52957434) and model of human insulin receptor were per-
formed with the AutoDock4 package (39), using a Lamarckian 
algorithm and assuming total flexibility of all compounds stud-
ied. The grid maps were made up of 40 × 40 × 40 points, with a 
grid-point spacing of 0.375 Å of the center of the molecule. The 
AutoTors option was used to define the ligand torsions, and the 
docking results were then analyzed by a ranked cluster analysis, 
resulting in conformations with the highest overall binding 
energy (largest negative −ΔGB value).

We observed that olanzapine displayed a binding energy 
of −6.89 kcal/mol located at H bond near to Pro309 (2.89 Å). 
Other interacting residues around the olanzapine were Gln276, 
Glu287, Cys288, Thr293, and Met294 (Figure  1A). Both, 
binding energy and interatomic distances suggest there are 
potential interactions between olanzapine and the extracellular 
domain of the insulin receptor. This is of course susceptible of 
experimental verification through binding experiments with 
radiolabeled ligands, directed mutagenesis of the insulin recep-
tor, or through surface plasmon resonances studies.

The changes in mitochondrial morphology were assessed 
in L6 myoblasts incubated with 400  nM MitoTracker green in 
Krebs solution for 25 min and then washed with Krebs solution 
for 5 min. Confocal images stacks of the mitochondrial network 
were captured with a Nikon C2 Confocal microscope, using a 
60× Plan-Apochromatic λ CFI oil (1,4) objective, as described by 
del Campo et al. (31). Z-stacks were deconvolved, thresholded, 
and 3D-reconstructed using ImageJ software (NIH). Number and 
volume of individual mitochondria were quantified using the 3D 
Object Counter plug-in.

The analyses of mitochondrial network assessed through vari-
ations in mitochondrial number and volume in myoblasts treated 
with olanzapine showed that this drug induces mitochondrial 
fragmentation when compared with control (no treatment) myo-
blasts (Figure 1B). This fragmented phenotype is determined by 
a significant increase in the number of mitochondria per cell 

accompanied by a decrease in the volume of each mitochondrion 
(voxels = pixels3).

Interestingly, olanzapine also disrupted the effects of insulin 
in mitochondrial dynamics (Figure  1B). As shown in previ-
ous studies, insulin 100  nM promotes mitochondrial fusion 
in L6 myoblasts, our results support the fact that a fused-like 
phenotype, given by a significant increase in the volume of mito-
chondria and a reduced number of mitochondria per cell, can 
be found in myoblasts treated with insulin. On the basis of these 
previous findings, we investigated whether the pre-incubation of 
olanzapine impairs the mitochondrial fusion promoted by insulin 
100 nM. Our results showed that the pre-incubation with olan-
zapine actually impairs the action of insulin on the mitochondrial 
dynamics by significantly decreasing the mitochondrial volume, 
compared with cells incubated only with insulin 100 nM 3 h only 
(Figure 1B). Each experiment was repeated at least three times. 
One-way ANOVA was used as statistic test and a subsequent 
Tuckey post-test was applied, statistical significance was defined 
as *p < 0.05.

These results show that olanzapine affects the mitochondrial 
network probably promoting mitochondrial dysfunction on 
its own, not only by inducing mitochondrial fragmentation 
but also by interrupting insulin-mediated changes of the mito-
chondrial network in skeletal muscle cells. The mitochondrial 
fragmentation on its own impairs insulin signaling, as proven 
by the use of antisense adenovirus toward Mfn2 and micro-
RNA toward OPA-1 in L6 skeletal muscle cells, decreases in 
Akt phosphorylation (31). We observed that olanzapine not 
only promotes a fragmented phenotype of the mitochondrial 
network but also inhibits insulin-mediated fusion and decreases 
Akt phosphorylation (Figure 1C). This is a clear indicative that 
metabolic alterations induced by olanzapine are related with the 
fragmentation of the mitochondrial network and mitochondrial 
metabolic dysfunction. This data is an indicative that olanzapine 
would limit the utilization of different molecules to produce 
cellular ATP, which subsequently could lead to maladaptation 
of the skeletal muscle.

ALterAtiONs iN tHe eXPressiON  
OF MitOcHONDriAL FUsiON  
PrOteiNs AND iNsULiN siGNALiNG

Opa-1 is a mitochondrial protein involved in inner mitochon-
drial membrane fusion and maintenance of mitochondrial cristae 
(40). As previously reported a 3 h insulin stimulus promotes an 
increase of Opa-1 protein levels through the Akt-mTOR-NFkB-
Opa-1 signaling pathway promoting mitochondrial fusion (30). 
A mitochondrial fusion-like phenotype has been associated with 
healthy metabolic homeostasis in eukaryotic cells (27, 30, 31).  
Interestingly, olanzapine decreases the insulin-induced expres-
sion of Opa-1 in L6 cells treated with insulin for 3  h. More 
specifically, we observed that in L6 skeletal muscle cells insulin 
(100  nM 3  h) induced an increase of long and short isoforms 
of Opa-1, which was impaired by olanzapine (Figure  1C). 
These results suggest that olanzapine disrupts insulin signaling, 
through a decrease in Akt phosphorylation, and also impairs the 
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FiGUre 1 | (A) Graphical representation of the interactions sites for olanzapine and the extracellular domain of de insulin receptor according to Docking Studies. 
The model of human insulin receptor and the structure of olanzapine were obtained using the AutoDock4 package. (B) Mitchondrial morphology of L6 myotubes 
and densitometry of confocal micrographies. Mitochondrial morphology in control conditions (left) and the olanzapine 160 µM treated cells (right) showing 
fragmentation of the mitochondrial network. *p < 0.05 vs control #p < 0.05 vs Ins. (c) Detection of insulin signaling proteins from L6 myotubes treated with 
olanzapine and insulin. The mitochondrial immunoblots for Opa-1, Akt, and p-Akt in L6 myotubes treated with olanzapine (OLZ) and Insulin (Ins). *p < 0.05  
vs control #p < 0.05 vs Ins.
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subsequent modification of mitochondrial dynamics, contribut-
ing to mitochondrial dysfunction.

cONcLUDiNG reMArKs

Based on our data and previous evidence in this field (29, 40), 
we here propose a new perspective to explore the mechanism 
of SGAs metabolic toxicity based on the impairment of the 
mitochondrial dynamics, which could explain the develop-
ment of accelerated metabolic syndrome manifested by insulin 
resistance, weight gain, lipid accumulation, and hyperglycemia.  
In other words, the metabolic disturbances induced by SGAs 
affect one of the most fundamental functions of living cells, 
which is ATP production in the mitochondria.
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