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In human patients, loss-of-function mutations in the genes encoding kisspeptin (KISS1) 
and neurokinin B (NKB) and their receptors (KISS1R and NK3R, respectively) result in an 
abnormal timing of puberty or the absence of puberty. To understand the neuroendocrine 
mechanism of puberty, we investigated the contribution of kisspeptin and NKB signaling 
to the pubertal increase in GnRH release using rhesus monkeys as a model. Direct 
measurements of GnRH and kisspeptin in the median eminence of the hypothalamus 
with infusion of agonists and antagonists for kisspeptin and NKB reveal that kisspeptin 
and NKB signaling stimulate GnRH release independently or collaboratively by forming 
kisspeptin and NKB neuronal networks depending on the developmental age. For exam-
ple, while in prepubertal females, kisspeptin and NKB signaling independently stimulate 
GnRH release, in pubertal females, the formation of a collaborative kisspeptin and NKB 
network further accelerates the pubertal increase in GnRH release. It is speculated that 
the collaborative mechanism between kisspeptin and NKB signaling to GnRH neurons is 
necessary for the complex reproductive function in females.
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iNTRODUCTiON

Puberty is a transitional period between the sexually immature juvenile stage and adulthood, after 
which full reproductive function is attained. In the 1980s, the concept that an increase in GnRH 
release initiates puberty was established. Although from 1980 to 2000, it became clear that central 
inhibition over GnRH release during the prepubertal period needs to be removed or diminished in 
primates (1), the discovery that gene mutations in kisspeptin (KISS1) and its receptor (KISS1R) in 
human patients result in delayed puberty or no puberty (2, 3) has generated great progress in under-
standing the mechanism of puberty. Together, with the subsequent findings showing that mutations 
in neurokinin B (NKB) and its receptor (NK3R) in humans also result in delayed puberty or no 
puberty (4), this led us to study how kisspeptin and NKB signaling changes before and after puberty 
onset in female rhesus monkeys. This short review article summarizes our findings and perspectives 
regarding the role of kisspeptin and NKB signaling in puberty onset in females.

DeveLOPMeNTAL CHANGeS iN GONADOTROPiN SeCReTiON 
iN FeMALe RHeSUS MONKeYS

Based on developmental changes in LH and FSH levels and external signs of puberty, we have 
defined the pubertal stages as follows: The “prepubertal stage” is when female monkeys do not exhibit 
any external signs of puberty and gonadotropin levels are low, generally before 20 months of age. 
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FiGURe 1 | Developmental stages of pubertal progression in female rhesus monkeys. Based on changes in physiological characteristics and in circulating hormone 
levels during the developmental course, prepubertal, early pubertal, and midpubertal stages are defined as shown in this figure. Actual age of the onset of puberty 
and subsequent progress vary among animals.
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Prepubertal monkeys exhibit a low frequency and amplitude of 
LH pulses and there is little nocturnal increase in LH (5). The 
“early pubertal stage” is defined as the time between the appear-
ance of the first external signs of puberty and menarche. The first 
external signs of female puberty, such as a slight increase in the 
nipple size and subsequent swelling of perineal sex-skin, usually 
occur at 20–25 months of age. These external signs of puberty are a 
consequence of increased levels of circulating gonadotropins and 
ovarian estrogens: The LH pulse amplitude starts to increase and 
a nocturnal elevation of gonadotropin levels becomes prominent 
(5). Subsequently, menarche occurs at 26–30 months of age. After 
menarche, females have irregular menstrual cycles without ovula-
tion. Mean LH levels, LH pulse amplitude (not pulse frequency), 
and nocturnal LH further increase and at 36–45 months of age, 
monkeys start to ovulate. We have defined this developmental 
stage between menarche and first ovulation as the “midpubertal 
stage” [Figure 1; (5)].

ReLeASe OF GnRH AND KiSSPePTiN 
iNCReASeS AT PUBeRTY

GnRH Release
An increase in GnRH is a prerequisite for the initiation of 
puberty. This concept is based on an experiment showing that 
pulsatile infusion of GnRH in sexually immature female monkeys 
by infusion pump resulted in precocious puberty (6) and that an 
increase in GnRH release occurs at puberty onset in female rhesus 
monkeys (7). In the prepubertal female, GnRH release is pulsatile 
and characterized by low mean levels, low pulse frequency, low 
amplitude, and no nocturnal increases (7). In early pubertal 
females, mean GnRH levels, pulse frequency, and pulse ampli-
tude are all increased, and nocturnal increases in GnRH release 
start to appear (7, 8). In midpubertal females, mean GnRH levels 
and pulse-amplitude, but not pulse frequency, further increase 
reaching the highest levels (7). Additionally, nocturnal GnRH 
increases become most prominent (7, 8). A similar pubertal 
increase in pulsatle GnRH release in rodents and sheep (9–11) 
has been shown by direct measurements, and in humans by indi-
rect LH measurements (12–14). Because the pubertal increase in 
GnRH release is ovarian steroid independent (1), ovariectomized 
(OVX) females at the prepubertal stage exhibit a low mean, low 
pulse frequency, and low pulse amplitude GnRH release, similar 
to those in gonadally intact counterparts. In OVX females, at the 
early and midpubertal stages, mean GnRH levels and GnRH pulse 

amplitude are much higher than in ovarian intact females, but the 
pulse frequency stays similar, at ~1 pulse/h (8). A similar pubertal 
change in LH release in human gonadal dysgenesis patients with 
Turner’s syndrome has also been reported (14, 15).

Kisspeptin Release
As we described for GnRH release, kisspeptin is released in 
the median eminence in a pulsatile manner (16). Additionally, 
kisspeptin release in females undergoes pubertal changes, parallel 
to those with GnRH release. The mean release, pulse frequency, 
and pulse amplitude of kisspeptin release in pubertal female 
monkeys are all higher than those in prepubertal females (17). 
Again, examination of the effects of OVX on kisspeptin release 
indicates that while OVX stimulates kisspeptin release in pubertal 
females, it does not change in prepubertal females (17). That is, 
kisspepetin release in prepubertal OVX females is characterized 
with low mean release, low pulse frequency, and low amplitude 
similar to those in ovarian intact prepubertal females, whereas 
kisspeptin release in pubertal OVX females consists of higher 
mean release and higher pulse amplitude, but not higher pulse 
frequency, when compared to ovarian intact pubertal females 
(17). Therefore, the pubertal increase in kisspeptin release in 
primates is ovarian steroid independent. Importantly, however, 
similar to GnRH release (18), treatment with estradiol suppresses 
elevated kisspeptin levels in pubertal females, whereas estradiol 
does not change kisspeptin levels in prepubertal females (17).

In humans, elevated levels of circulating kisspeptin in associa-
tion with precocious puberty or premature thelarche have been 
reported (19–23). This is consistent with our results derived 
from direct kisspeptin measurements in the hypothalamus. 
Nevertheless, the validity of the finding in human studies is 
unclear, as circulating kisspeptin may not be of hypothalamic 
origin. In mammalian species, kisspeptin is synthesized not only 
in the various part of the brain (24) and placenta but also in 
peripheral tissues such as the adrenals, ovaries, testes, and kidney 
(25–28).

GnRH ReSPONSe TO THe KiSSPePTiN 
ReCePTOR AGONiST, KiSSPePTiN-10, 
iNCReASeS AT PUBeRTY

Since its discovery, kisspeptin has been identified as the most 
powerful secretagoue for GnRH release (29). GnRH neurons 
express kisspeptin receptors (Kiss1r) (30, 31), kisspeptin-10 
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FiGURe 2 | Changes in release of GnRH and kisspeptin (area under the curve in response to challenge of secretagogues). GnRH in response to human 
kisspeptin-10 (hKP10) (A) and senktide (B) in female rhesus monkeys are shown. Kisspeptin response to senktide (C) is also shown. ***p < 0.001; ****p < 0.0001 
vs. vehicle control (within a group). ####p < 0.0001 vs. lower dose (within a group). aa: p < 0.01; aaa: p < 0.001; aaaa: p < 0.0001 vs. prepubertal stage (between 
groups at the same dose of challenge). Modified from Ref. (35) with data from Ref. (34) with Copyright Permission.
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(hKP10) directly depolarizes GnRH neurons and sensitivity of 
GnRH response to kisspeptin undergoes pubertal changes in 
rodents (30). In humans and monkeys, contacts between GnRH 
and kisspeptin neuroterminals in the median eminence, which 
is indicative of a non-synaptic signaling mechanism, have been 
reported (32, 33).

To clarify the role of kisspeptin signaling in the pubertal 
increase in GnRH in female monkeys, we first assessed the man-
ner in which the GnRH response to hKP10 changes throughout 
puberty. GnRH neurons in gonadally intact prepubertal and 
pubertal females respond to human hKP10 at 0.01 and 0.1 µM 
doses in a dose-responsive manner (34). Importantly, the GnRH 
response to hKP10 at the same dose in pubertal females is larger 
than that in prepubertal females [Figure 2; (34)]. This indicates 
that GnRH neurons in pubertal monkeys are more sensitive than 
in prepubertal monkeys.

Because circulating gonadal steroid levels between prepubertal 
and pubertal animals differ, higher sensitivity of GnRH neurons to 
kisspeptin signaling in pubertal females may be due to circulating 
steroids, namely estradiol. Accordingly, we examined the effect 
of OVX on the developmental changes in GnRH responses to 
hKP10 in female monkeys (34). While OVX in prepubertal ani-
mals does not alter GnRH response to hKP10, OVX completely 
abolished the hKP10-induced GnRH release in OVX pubertal 
females. Importantly, estradiol replacement in OVX pubertal 
females only partially restores the hKP10-induced GnRH release, 
suggesting that circulating estradiol is important for kisspeptin 
action on GnRH neurons in pubertal females (34). One can argue 
that the absence of GnRH response to hKP10 in OVX monkeys is 
due to the limitation of the maximized kisspeptin neurosecretory 
capacity after OVX. We believe this is not the case, because (1) 
two doses (10 and 100 nM) of hKP10 failed to stimulate GnRH 
release in pubertal OVX females, whereas in prepubertal females, 
the lower dose (10 nM) is sufficient to stimulate GnRH release 
(34), and (2) hKP10 (10  nM) can stimulate GnRH release in 
OVX pubertal females after priming with estradiol (34), although 

GnRH release in estradiol primed OVX pubertal females was 
much smaller than that in ovarian intact pubertal females (34). 
Therefore, it is likely that once KISS1R is exposed to estradiol 
after the onset of puberty, the properties of KISS1R are altered, 
such that normal KISS1R function requires the presence of cir-
culating estradiol or, at least, a periodical exposure to estradiol. 
This speculation, however, needs to be experimentally confirmed 
by examining whether changes in the KISS1R properties occur 
in the presence or absence of estradiol and how developmental 
factors are involved in the mechanism of the estrogen-induced 
KISS1R property change.

Collectively, we can interpret our findings to mean that the 
contribution of kisspeptin signaling to the pubertal increase in 
GnRH release in female monkeys is twofold: first, after puberty 
onset, a larger amount of kisspeptin is available to stimulate GnRH 
release, and second, sensitivity of KISS1R on GnRH neurons is 
higher because of the pubertal increase in circulating estradiol.

GnRH ReSPONSe TO THe NKB AGONiST, 
SeNKTiDe, DOeS NOT UNDeRGO 
PUBeRTAL CHANGe

Neurokinin B action is primarily mediated by NK3R encoded by 
the TACR3 gene. Whether GnRH neurons express NK3R is some-
what controversial. While direct application of the NK3R agonist 
senktide on sliced brain preparation stimulates GnRH neuronal 
activity in mice (36) and the NK3R is described in close proximity 
to GnRH neuroterminals in rats and sheep (37, 38), only a small 
number or no GnRH neuronal cell bodies express NK3R in rat 
and mice (37, 39, 40). In mice and sheep, however, kisspeptin, 
NKB, and dynorphin (KNDy) neurons expressing NK3R in the 
arcuate nucleus (ARC) appear to mediate NKB action to GnRH 
neurons (39–41). Importantly, however, NKB neurons can signal 
to GnRH neurons directly at the median eminence, as similar 
to GnRH fibers, abundant NKB fibers project into the median 
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eminence and GnRH neuroterminal fibers readily express NK3R 
in the median eminence of rats and humans (33, 37, 42, 43).

We examined the effects of the NKB agonist, senktide, on 
GnRH release in gonadally intact prepubertal and pubertal female 
monkeys. Senktide infusion into the median eminence at 0.1 and 
10  µM stimulated GnRH release in a dose responsive manner 
within the same developmental stage [(35); Figure 2]. However, 
neither 0.1 nor 10 µM senktide results in developmental amplifi-
cation. The results indicate that the NKB system appears not to be 
sensitive to the pubertal increases in steroid hormones. We have 
not conducted the parallel experiments in OVX monkeys.

Stimulatory effects of senktide on GnRH release in our study 
are consistent with those reported in juvenile orchidectomized 
male rhesus monkeys assessed by LH measurement (44). 
However, in rodents, both stimulatory and inhibitory effects of 
NKB on LH/GnRH release (depending on sex, gonadal status, 
and ages) have been reported (39, 40, 45–47).

KiSSPePTiN ReSPONSe TO THe NKB 
AGONiST, SeNKTiDe, UNDeRGOeS 
PUBeRTAL CHANGe

Kisspeptin, NKB, and dynorphin (KNDy) are 100% co-localized 
in the ARC and express estrogen receptor alpha in sheep. Based 
on the anatomical characteristics along with the self-regulating 
stimulatory and inhibitory circuitry between NKB, kisspeptin, 
and dynorphin, Goodman and co-workers (48, 49) have proposed 
the hypothesis that KNDy neurons in the ARC are responsible for 
GnRH pulse-generation (50). Subsequently, this concept, includ-
ing the 100% colocalization rate of three peptides in the ARC, 
and KNDy neurons as a driver of GnRH pulse-generation, has 
been confirmed in several species, including rats, mice, and goats 
(51–54). Nevertheless, we have hypothesized that kisspeptin, 
NKB, and dynorphin neurons in the hypothalamus of monkeys 
form a network as each independent unit. This hypothesis is 
based on the reports that (1) in the human hypothalamus the 
co-localization rate of kisspeptin, NKB, and dynorphin in the 
infundibular nucleus (aka ARC) is considerably lower than in 
other species (33, 55), (2) co-localization of kisspeptin and NKB 
fibers in the median eminence in humans is relatively rare (33) 
although this is not the case in male monkeys (56), and (3) unlike 
in rodents (57, 58), perikarya of kisspeptin neurons in monkeys 
and human and perikarya of NKB neurons in humans are seen in 
the median eminence (32, 33).

As the first step to test this hypothesis, we measured kisspeptin 
in the same samples collected from the median eminence, in 
which the effects of senktide on GnRH release were examined. 
The effects of senktide on kisspeptin release in females are strik-
ingly parallel to its effects on GnRH (35). Kisspeptin responses 
to senktide at 0.1 and 10  µM in females are dose dependent 
within the developmental stage. However, senktide at both 0.1 
and 10 µM doses yield an approximately twofold developmental 
amplification of kisspeptin release in females [(35); Figure 2]. We 
speculate that circulating estradiol is responsible for the develop-
mental amplification of senktide-induced kisspeptin release, as 
the female kisspeptin system is highly sensitive to estradiol.

The important question here is why a larger release of kiss-
peptin induced by senktide in pubertal females than prepubertal 
females is not directly transduced to a larger GnRH release? 
We speculate that this is due to involvement of opioid input, 
as opioid tone increases after puberty onset. In fact, it has been 
shown that opioid tone increases along with the pubertal increase 
in estradiol/testosterone. For example, while administration of 
antagonists for opioid peptides, such as naloxone and naltrexone, 
in prepubertal children, chimpanzees, and rhesus monkeys failed 
to stimulate LH/GnRH release (59–64), these opioid antagonists 
consistently suppress pulsatile LH release in sexually mature 
humans and monkeys (65–68). Moreover, proopiomelanocortin 
mRNA expression increases along with progress of puberty 
in male monkeys (69) and β-endorphin release in the median 
eminence increases in association with puberty onset in female 
monkeys (70). A similar view has been reported in ewe (71). 
Perhaps, the pubertal increase in stimulatory kisspeptin and NKB 
signaling tones is counterbalanced by opioid peptides. Additional 
investigations are needed to confirm this view.

DeveLOPMeNTAL CHANGeS iN THe 
NeUROCiRCUiTS iNvOLveD iN THe 
PUBeRTAL iNCReASe iN GnRH ReLeASe

As described above, both hKP10 and senktide stimulate GnRH 
release in a dose-responsive manner in prepubertal as well as 
pubertal female monkeys (34, 35). We also described that sen-
ktide greatly stimulates kisspeptin release in a dose-dependent 
manner in both prepubertal and pubertal females (35). However, 
these observations in females do not suggest any hierarchical 
relationship between NKB and kisspeptin signaling. Moreover, 
the network between kisspeptin and NKB signaling may undergo 
pubertal changes. Therefore, in the next series of studies, we have 
examined whether NKB signaling is mediated through kisspep-
tin neurons or kisspeptin signaling is mediated through NKB 
neurons using respective agonists and antagonists. The results 
indicate that the senktide-induced GnRH release is blocked in 
the presence of the KISS1R antagonist, peptide 234, in pubertal, 
but not prepubertal monkeys (35). Similarly, hKP10-induced 
GnRH release is blocked by the NK3R antagonist SB222200 in 
pubertal, but not prepubertal monkeys (35). These results sug-
gest that while in prepubertal female monkeys, kisspeptin and 
NKB signaling influences GnRH release as independent units, 
in pubertal female monkeys, a reciprocal signaling network 
(i.e., NKB signaling through kisspeptin neurons and kisspeptin 
signaling through NKB neurons) is established (Figure 3). This 
cooperative mechanism by the kisspeptin and NKB networks 
appears to underlie the pubertal increase in GnRH release in 
female monkeys. We speculate that the cooperative mechanism 
between kisspeptin and NKB signaling to GnRH release would 
ensure the success of complex reproductive functions in females.

Our findings reported in this manuscript are obtained from 
dialysates collected from the median eminence, where agonists 
and antagonists for kisspeptin and NKB are directly infused. 
Because of our technical precision (72), interactions between 
GnRH and kisspeptin neurons, kisspeptin and NKB neurons, and 
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FiGURe 3 | Schematic diagram showing the developmental changes in 
kisspeptin (red) and neurokinin B (NKB) (blue) signaling to GnRH neurons in 
the stalk-median eminence (S-ME) in prepubertal (left panel) and pubertal 
(right panel) female monkeys. Note that X’s between kisspeptin and NKB 
neurons indicate the absence of signaling pathways and the blue, red and 
black dots indicate relative amount of neuropeptide release. Kisspeptin 
signaling to NKB neurons is hypothetical, as in the present study, we did not 
measure the kisspeptin-induced NKB release. Modified from Ref. (35) with 
Copyright Permission.
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GnRH and NKB neurons are likely taking place at the median 
eminence and infundibular stalk (extended median eminence). 
As we discussed above, the primate median eminence appears to 
be equipped for this purpose. In the median eminence neuroter-
minal interactions between NKB, kissepeptin, and GnRH neurons 
are likely to occur through a non-synaptic mechanism, but the 
presence of kisspeptin, NKB, and GnRH neuronal cell bodies in 
the median eminence (32, 33, 73, 74) indicates possible synaptic 
interactions as well. Nevertheless, currently, we do not know the 
degree to which the median eminence kisspeptin-NKB system is 
influenced by the infundibular (ARC) kisspeptin-NKB system. It 
will be a major task to clarify the mechanisms of developmental 
changes in these signaling pathways that regulate GnRH release.

PULSATiLiTY OF GnRH ReLeASe AND 
TiMiNG OF PUBeRTY

Genetic findings in humans indicate that both kisspeptin and 
NKB signaling is critical for the mechanism governing puberty 
onset (2–4). Similar findings in kisspeptin and NKB knockout 
mice were also reported (75, 76). As we discussed above, kiss-
peptin signaling itself (77, 78) or the KNDy network (50) is 
indispensable for pulsatility of GnRH release and an increase in 
pulsatile GnRH release is required for puberty onset (1). Here, 
a critical question arises as to whether kisspeptin and NKB 
signaling determines the timing of puberty in primates. In other 
words, does an increased activity of kisspeptin signaling/KNDy 
network during development facilitate pulsatile GnRH release 
initiating puberty onset OR is an increased activity of kisspeptin 
signaling/KNDy network a consequence of reduction in “Central 
Inhibition”? The following is our view.

In primates, GnRH neurons in the hypothalamus are already 
active at birth and elevated GnRH neuronal activity induces a so-
called “mini-puberty” during the neonatal period (79). However, 
activity of the GnRH neurosecretory system is suppressed by 
“Central Inhibition” and becomes dormant throughout the pre-
pubertal period (80). Neuronal substrates that represent “Central 
Inhibition” are currently unclear. Our previous studies indicate 
that tonic inhibition by γ-aminobutyric acid (GABA) neurons 
may be one component (1, 81) and neuroestradiol (72) might be 
another component. It has also been postulated that MKRN3 pro-
tein may be responsible for suppression of GnRH release before 
puberty, as mutations of the makorin RING finger protein 3 gene 
(MKRN3) result in precocious puberty in humans (82). More 
recently, based on the gene array comparison between castrated 
prepubertal and pubertal male monkey hypothalami, followed by 
physiological experiments, the transcriptional repressor protein, 
GATAD1, is postulated as a substrate responsible for prepubertal 
GnRH suppression (83). Nevertheless, the report that the kiss-
peptin antagonist, peptide 234, blocks the GABAA antagonist 
bicuculline-induced GnRH increase in prepubertal females (84) 
suggests that “Central Inhibition” by GABA is upstream of the 
kisspeptin signaling system. We speculate that GABA is also 
upstream of NKB signaling and the NKB antagonist SB222200 
would block the GABAA antagonist bicuculline-induced GnRH 
increase in prepubertal females. Therefore, removal or reduction 

in “Central Inhibition” is a prerequisite for allowing the pubertal 
increase in activity of kisspeptin neurons or the KNDy network 
(Figure 3). Once kisspeptin/KNDy neurons become active, kiss-
peptin and NKB signaling ensures the pulsatile GnRH release, 
resulting in the onset of puberty.

The concept of “Central Inhibition” is well documented 
in humans (85) and rhesus monkeys (1, 86), but it remains 
controversial in non-primate species. In fact, there are several 
species differences in the mechanism of puberty onset: (1) 
As described above, while neonatal castration in primates 
induces elevated LH/FSH release only transiently (87), 
the same procedure in rats and sheep results in a sustained 
increase in gonadotropin release throughout life (11, 88); (2) 
while the GnRH neuroscretory system in prepubertal monkeys 
is insensitive to estradiol and sensitivity to estradiol negative 
feedback is acquired during the early pubertal stage (18), 
the GnRH neurosecretory system in rodents is highly sensi-
tive to estradiol action during the entire juvenile period and 
sensitivity to estradiol decreases after first ovulation (88); and 
(3) while precocious puberty induced by infusion of pulsatile 
GnRH or N-methyl-d-aspartic acid (NMDA) in prepubertal 
monkeys is halted by the cessation of the infusion (6, 89), 
precocious puberty induced in rodents with a similar treat-
ment, such as NMDA administration, leads to the maintenance 
of adult gonadal function after discontinuation of treatment, 
i.e., NMDA-induced precocious puberty in rats is followed by 
cyclic ovulation (90).

Despite these species differences, however, in rodents, there are 
some parallel findings consistent with the concept of the “Central 
Inhibition” described in primates. For example, in mice, Mkrn3 
mRNA expression in the ARC is highest during the first 10–12 
postnatal days (P), starts to decrease at P15, and becomes the 
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lowest by P30, just prior to vaginal opening (82), and overexpres-
sion of human GATAD1 gene by transfection in the mouse ARC 
results in delayed puberty, as postulated in prepubertal monkeys 
(83). Collectively, it appears that “Central Inhibition” is present in 
the rodent brain, but its functional significance may differ from 
that in primates.

CONCLUSiON

We have shown that both kisspeptin signaling and NKB sign-
aling appear to contribute to the pubertal increase in GnRH 
release independently or in concert in females. That is, while 
there is no interaction between kisspeptin and NKB signaling 
in sexually immature females, increases in kisspeptin signaling 
through NKB neurons and NKB signaling through kisspeptin 
neurons both augment the pubertal increase in GnRH release 
during the progress of puberty. The contribution of direct NKB 
signaling to GnRH release, however, may be secondary, as NKB 
signaling to GnRH release does not change across puberty, 
whereas NKB signaling to kisspeptin release greatly increases 
(Figure  2). Thus, in females, kisspeptin signaling appears to 
be the main force driving the pubertal GnRH release increases 
with their signaling intensity and an increased sensitivity of 
the receptor, KISS1R [(17, 34); Figure  2]. The role of NKB 
in the pubertal increase in GnRH release, however, requires 
further experiments, measuring developmental changes in 

NKB release in the presence or absence of kisspeptin agonists/
antagonists.

We speculate that, in females, reciprocal signaling pathways 
between kisspeptin and NKB neurons would provide efficiency 
and flexibility for the stimulation of GnRH release, which ensures 
complex reproductive functions, such as cyclic ovulations and 
pregnancy. In summary, kisspeptin signaling and NKB signaling 
are both indispensable to facilitate the pubertal increase in GnRH 
after removal or diminution of “Central Inhibition.” Further stud-
ies, such as measurements of NKB release in the hypothalamus and 
examination of the role of dynorphin would strengthen our views.
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