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Multiple lines of evidence indicate that androgens, such as testosterone, modulate the 
mesocorticolimbic system and executive function. This review integrates neuroanato­
mical, molecular biological, neurochemical, and behavioral studies to highlight how 
endogenous and exogenous androgens alter behaviors, such as behavioral flexibility, 
decision making, and risk taking. First, we briefly review the neuroanatomy of the meso­
corticolimbic system, which mediates executive function, with a focus on the ventral 
tegmental area (VTA), nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and 
orbitofrontal cortex (OFC). Second, we present evidence that androgen receptors (AR) and 
other steroid receptors are expressed in the mesocorticolimbic system. Using sensitive 
immunohistochemistry and quantitative polymerase chain reaction (qPCR) techniques, 
ARs are detected in the VTA, NAc, mPFC, and OFC. Third, we describe recent evidence 
for local androgens (“neuroandrogens”) in the mesocorticolimbic system. Steroidogenic 
enzymes are expressed in mesocorticolimbic regions. Furthermore, following long­
term gonadectomy, testosterone is nondetectable in the blood but detectable in the 
mesocorticolimbic system, using liquid chromatography tandem mass spectrometry. 
However, the physiological relevance of neuroandrogens remains unknown. Fourth, we 
review how anabolic­androgenic steroids (AAS) influence the mesocorticolimbic system. 
Fifth, we describe how androgens modulate the neurochemistry and structure of the 
mesocorticolimbic system, particularly with regard to dopaminergic signaling. Finally, 
we discuss evidence that androgens influence executive functions, including the effects 
of androgen deprivation therapy and AAS. Taken together, the evidence indicates that 
androgens are critical modulators of executive function. Similar to dopamine signaling, 
there might be optimal levels of androgen signaling within the mesocorticolimbic system 
for executive functioning. Future studies should examine the regulation and functions of 
neurosteroids in the mesocorticolimbic system, as well as the potential deleterious and 
enduring effects of AAS use.

Keywords: 3β-hydroxysteroid dehydrogenase, aromatase, cognition, Cyp17a1, estradiol, neurosteroid,  
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FIGURE 1 | A simplified illustration of the steroidogenic pathway with a focus 
on C19 steroids. For C19 steroids, fill color represents the relative binding affinity 
to the androgen receptor (4–6). Steroidogenic enzymes are represented by 
the gray arrows. Abbreviations: 3β-HSD, 3β-hydroxysteroid dehydrogenase/
isomerase; 5αR, 5α-reductase; 5α-DHT, 5α-dihydrotestosterone; 17β-HSD, 
17β-hydroxysteroid dehydrogenase; DHEA, dehydroepiandrosterone; 
DHEA-S, dehydroepiandrosterone sulfate; E1, estrone; E2, 17β-estradiol; HST, 
hydroxysteroid sulfotransferase; STS, steroid sulfatase; NB, no binding.
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INTRODUCTION

Berthold first reported the masculinizing effects of a bloodborne 
“substance” produced by the testes in male chicks (1). This 
substance is now known to belong to a class of steroids called 
androgens, which are synthesized by the male gonads and 
released into the circulatory system to regulate development, 
physiology, and behavior. Endogenous androgens are 19-carbon 
(C19) steroids and include testosterone (T) and its metabolite 
5α-dihydrotestosterone (DHT), which have the most pronounced 
androgenic effects. Other C19 steroids include T precursors 
such as dehydroepiandrosterone (DHEA) and androstenedione 
(Figure  1). Androgen synthesis from cholesterol occurs in the 
Leydig cells of the testes, stromal, and thecal cells of the ovaries, 
and the zona reticularis of the adrenal cortices in some mam-
malian species (2, 3).

Numerous studies examining the effects of gonadectomy 
(GDX), androgen receptor (AR) antagonists, androgen synthesis 
inhibitors, androgen replacement, and administration of supra-
physiological amounts of androgens [i.e., anabolic-androgenic 
steroids (AAS)] demonstrate that androgens are critical for 
reproductive behavior [reviewed in Ref. (7)] and aggressive 
behavior [reviewed in Ref. (8, 9)]. However, recent research has 
revealed that more complex behaviors and cognitive processes, 
such as executive function, are also regulated by androgens. 
We will review research that examines the role of androgens in 
regulating the neural circuitry that mediates executive function 
and behaviors associated with executive function.

In the first section “The mesocorticolimbic system and execu-
tive function,” we give a brief overview of the mesocorticolimbic 
system and its involvement in various executive functions. In 
the second section, we describe evidence for the presence of 
sex steroid receptors in the mesocorticolimbic system. In the 
third section, we summarize recent work that provides strong 
evidence for local synthesis of androgens and estrogens within 
the mesocorticolimbic system. In the fourth section, we discuss 
how AAS modulate the mesocorticolimbic system. In the fifth 

section, we explore how androgens alter neurochemical signaling 
and cytoarchitecture in nodes of the mesocorticolimbic system. 
Finally, in the last section, we review preclinical and clinical stud-
ies demonstrating that GDX, AAS, and perhaps local production 
of androgens influence executive functions such as behavioral 
flexibility and inhibitory control. Like many other neuromodula-
tor systems, androgen signaling levels are likely maintained at 
particular levels within different brain regions to achieve optimal 
executive function.

THE MESOCORTICOLIMBIC SYSTEM  
AND EXECUTIVE FUNCTION

Executive functions are a collection of cognitive operations that 
interact to facilitate selection and implementation of behaviors 
to attain chosen goals. More basic operations include selec-
tive attention, inhibitory control, and working memory (i.e., 
temporary maintenance and manipulation of information). 
These operations work in concert with those processed by other 
mnemonic, affective, and motivational systems to regulate more 
complex processes such as cognitive flexibility and cost/benefit 
decision making. It is well established from lesion and functional 
imaging studies in humans and non-human animals that various 
aspects of executive functioning are critically dependent on dif-
ferent regions of the prefrontal cortex (PFC) and its interactions 
with striatal regions, including the nucleus accumbens (NAc; 
Figure 2).

The PFC and the NAc receive dopamine (DA) input from the 
ventral tegmental area (VTA) in the midbrain, and DA trans-
mission within these regions plays a key role in facilitating both 
basic and more complex functions mediated by these circuits. 
Thus, the seminal findings of Brozoski et al. (10) revealed that 
DA depletion in the frontal lobes of monkeys markedly impairs 

Abbreviations: 17β-HSD, 17β-hydroxysteroid dehydrogenase; 3β-HSD, 
3β-hydroxysteroid dehydrogenase/isomerase; 5αR, 5α-reductase; AAS, anabolic 
androgenic steroids; ACC, anterior cingulate cortex; ADT, androgen deprivation 
therapy; AR, androgen receptor; CPP, conditioned place preference; D1R, dopa-
mine receptor D1; D2R, dopamine receptor D2; DA, dopamine; DAT, dopamine 
transporter; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone 
sulfate; DHT, 5α-dihydrotestosterone; E2, 17β-estradiol; ER, estrogen receptor; 
ERα, estrogen receptor α; ERβ, estrogen receptor β; GABA, γ-aminobutyric acid; 
GABAAR, Type A γ-aminobutyric acid receptor; GDX, gonadectomy; GPER1, G 
protein–coupled estrogen receptor 1; GPRC6A, G protein–coupled receptor family 
C group 6 member A; HST, hydroxysteroid sulfotransferase 2A1; i.c.v., intracer-
ebroventricular; i.v., intravenous; IGT, Iowa Gambling Task; ir, immunoreactivity; 
mAR, membrane-associated androgen receptor; mER, membrane-associated 
estrogen receptor; mPFC, medial prefrontal cortex; mPFC-PL, prelimbic medial 
prefrontal cortex; NAc, nucleus accumbens; NAcC, nucleus accumbens core; 
NAcS, nucleus accumbens shell; NMDA-R, N-methyl-D-aspartate receptor; OFC, 
orbitofrontal cortex; PCR, polymerase chain reaction; PFC, prefrontal cortex; 
POA/HYP, preoptic area/hypothalamus; PPI, prepulse inhibition; qPCR, quantita-
tive polymerase chain reaction; StAR, steroidogenic acute regulatory protein; T, 
testosterone; TH, tyrosine hydroxylase; TSA, tyramide signal amplification; VTA, 
ventral tegmental area; ZIP9, Zrt- and Irt-like protein 9.
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FIGURE 2 | A simplified diagram of the mesocorticolimbic system and 
associated structures in the rodent brain (sagittal view). Abbreviations: AMY, 
amygdala; HPC, hippocampus; NAc, nucleus accumbens; mPFC, medial 
prefrontal cortex; OFC, orbitofrontal cortex; VP, ventral pallidum; VTA, ventral 
tegmental area.
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working memory, and subsequent psychopharmacological 
studies revealed that these functions are dependent primarily 
on PFC D1 receptor (D1R) activity [reviewed in Ref. (11)]. 
Different forms of cognitive flexibility are also dependent on 
DA activity within the frontal lobes and/or striatal regions. 
For example, shifts between strategies, rules, or attentional 
sets are dependent on DA transmission in both the medial 
prefrontal cortex (mPFC) and NAc. D2 receptors (D2R) in the 
PFC facilitate suppression of old strategies, whereas D1R in 
the PFC and NAc facilitate establishment and maintenance of 
new strategies (11–14). In comparison, reversal learning is a 
simpler form of cognitive flexibility, entailing a shift between 
stimulus–reinforcement associations (i.e., use the same basic 
strategy, but approach a different stimulus). The orbitofrontal 
cortex (OFC) plays a key role in mediating reversal learning in 
both primates and rats (15, 16). Reversal learning is generally 
unimpaired by global depletion of PFC DA (17), and DA input 
to dorsal striatal regions appears more crucial to this form of 
flexibility (18, 19).

Dopamine transmission in prefrontal–striatal circuitry also  
mediates evaluative functions entailing a choice between a smaller, 
readily available reward vs. a larger/more palatable reward asso
ciated with some form of cost, which can diminish the subjective 
value of objectively larger or more-preferred rewards. These forms 
of decision making are exquisitely sensitive to manipulation of 
DA transmission, in that systemic treatment with DA antagonists 
reduces preference for larger rewards associated with a greater 
effort cost or uncertainty (20–22). However, the mechanisms 
through which DA regulates choice behavior can vary across 
different nodes of the mesocorticolimbic circuit. For example, 
blockade of D1R, but not D2R, in the NAc reduces risky choice 
(23), whereas blockade of either receptor in the NAc diminishes 
preference for more preferred rewards associated with a greater 
effort cost (24). Likewise, blockade of D1R, but not D2R, in dif-
ferent subregions of the mPFC shifts preference away from more 
costly rewards (25, 26) and also makes animals more risk-averse 
(27). Yet, blockade of PFC D2R impairs modifications of deci-
sion biases in response to changes in risk/reward contingencies  
(27, 28). Collectively, these studies indicate that DA transmission 
within different nodes of the mesocorticolimbic system helps to 

refine different types of decision making by promoting choice 
toward larger, yet more costly, rewards, and modifying decision 
biases when cost/benefit contingencies change. The critical 
involvement of DA in various executive functions suggests that 
other signals that can influence DA signaling, such as sex steroids, 
may also influence these functions.

THE MESOCORTICOLIMBIC SYSTEM 
CONTAINS SEX-STEROID RECEPTORS

Multiple lines of evidence indicate that receptors for sex steroids 
are present in the VTA, NAc, mPFC, and OFC. Here, we focus on 
the classical AR, the estrogen receptors (ER)α and ERβ, and more 
recently discovered membrane-associated androgen receptors 
(mAR) and ER (mER). We briefly discuss androgen metabolites 
that can act via allosteric binding sites on neurotransmitter 
receptors.

Androgens can act on target cells by binding to intracellular 
AR. Of the endogenous androgens, T and DHT have the high-
est binding affinities for AR, while DHEA, androstenedione, 
and androstenediol have weak binding affinities for AR [(4–6); 
Figure 1]. AAS have a wide range of binding affinities for AR, 
and users select different AAS according to the balance of desired 
anabolic (myotrophic) actions and unwanted side-effects (e.g., 
gynecomastia).

Androgens are lipophilic and non-polar, and thus they can 
pass through the blood–brain barrier and then the plasma mem-
brane of cells to bind with AR in the cytosol. This ligand–receptor 
complex then dimerizes, is phosphorylated, and translocates to 
the cell nucleus, where the DNA-binding domain binds to a 
specific sequence of DNA called the hormone response element 
and acts as a transcription factor (29). Such genomic effects are 
responsible for many of the peripheral effects of androgens, 
such as enhancing muscle growth (30). ARs are also found in 
multiple brain regions. Generally, ARs are found in the highest 
concentrations in hypothalamic and limbic regions that regulate 
homeostatic functions, reproductive behaviors, and aggressive 
behaviors (31). For example, male mice with reduced AR in the 
nervous system show decreases in mating and aggression (32).

One way in which androgens might influence executive func-
tion is through direct actions on the mesocorticolimbic system. 
ARs are expressed in regions of the mesocorticolimbic system, 
albeit at lower levels than in the hypothalamus. In particular, 
the VTA, NAc, and mPFC express low to moderate levels of 
AR in male and female rodents (33–37), non-human primates 
(38, 39), and humans (40). Using microdissected tissue from 
mesocorticolimbic nodes, we recently demonstrated AR mRNA 
in the VTA, NAc, and mPFC using sensitive and specific probe-
based quantitative polymerase chain reaction (qPCR) assays (36). 
The presence of AR protein immunoreactivity (AR-ir) in these 
regions has also been reported; however, the number of AR per 
cell is low, which results in immunohistochemical staining that 
is faint, challenging to quantify, and easy to overlook (41). One 
reason is that, in extrahypothalamic regions, androgen receptor 
immunoreactivity (AR-ir) is often located in neuronal processes 
and not concentrated in neuronal nuclei. Nonetheless, there are 
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FIGURE 4 | Brightfield photomicrographs depicting androgen receptor 
immunoreactivity (AR-ir) with tyramide signal amplification in nodes of the 
mesocorticolimbic system of adult male rats. AR-ir in the (A) parabrachial 
pigmented nucleus of the ventral tegmental area (VTA), (B) caudal VTA,  
(C) shell of the nucleus accumbens (NAc), (D) core of the NAc, (E) prelimbic 
subregion of the medial prefrontal cortex (mPFC), (F) infralimbic subregion  
of the mPFC, (G) lateral subregion of the orbitofrontal cortex (OFC), and  
(H) medial subregion of the OFC. Adapted from Ref. (45).

FIGURE 3 | Androgen receptor (AR), neuronal nuclei (NeuN, neuronal 
marker), and glial fibrillary acidic protein (GFAP; glial marker) immunoreactivity 
(ir) in the medial prefrontal cortex (mPFC) of adult male rats. (A,B) 
Pseudocolored confocal photomicrographs of androgen receptor 
immunoreactivity (AR-ir) in coronal hemisections of the mPFC (A) without 
tyramide signal amplification (TSA−) and (B) with tyramide signal amplification 
(TSA+). TSA-enhanced detection of AR in the mPFC of male rats. (C–E) 
Confocal photomicrographs of mPFC with (C) AR-ir cells (green), (D) NeuN-ir 
cells (red), and (E) AR-ir and NeuN-ir cells merged. Cells that co-express 
AR-ir and NeuN-ir appear orange–yellow, suggesting that AR is primarily 
expressed in neurons. (F–H) Confocal photomicrographs of (F) AR-ir cells 
(green), (G) GFAP-ir cells (red), and (H) AR-ir and GFAP-ir cells merged. AR-ir 
is not co-expressed with GFAP. Adapted from Ref. (33); Reprinted by 
permission of SAGE Publications.

4

Tobiansky et al. Androgens and Executive Function

Frontiers in Endocrinology  |  www.frontiersin.org June 2018  |  Volume 9  |  Article 279

many processes and nuclei that express AR in the cerebral cortex, 
which has been verified by immunoelectron microscopy (35, 41).  
By adding a Tyramide Signal Amplification (TSA) step in the immu-
nohistochemistry protocol, we recently showed that AR-ir cells 
are present in the VTA, NAc, mPFC, and OFC [(33); Figures 3 
and 4]. Double-label immunofluorescence coupled with confocal 
microscopy demonstrates that AR-ir cells in the PFC are neurons 
(Figure 3). In the VTA, AR-ir cells express tyrosine hydroxylase 
(TH), a marker of DA-synthetic neurons (42). Furthermore, 
perikarya in the VTA that project to the NAc and mPFC express 
AR (43). Of the VTA neurons that project to the prelimbic mPFC 
(mPFC-PL), the proportion of DAergic (TH-positive) efferents 
containing AR is higher in male rats than female rats (~30 vs 
<5%), but the proportion of TH-negative efferents containing AR 
is similar between males and females (44). Thus, androgens can 
influence the male mPFC via actions on these DAergic projection 
neurons (42). Taken together, these data suggest that AR are well 
positioned to modulate executive function.

In addition, T can be locally aromatized to E2 and bind to ER 
in the mesocorticolimbic system (Figure 1). Many brain regions 
contain aromatase, the enzyme that catalyzes the conversion of 
androgens to estrogens (36). Aromatase expression is high in the 
hypothalamus (46, 47), and aromatase is also present in other 
regions including the mesocorticolimbic system (see below). The 
VTA, NAc, and mPFC contain some cells that express ERα or 
ERβ in female and male rats (48, 49). However, the VTA neurons 
that project to the NAc do not express ERβ. Instead, in both sexes, 
VTA neurons that express ERβ project principally to the ventral 
caudate putamen and amygdala (43). VTA neurons that project to 
mPFC-PL (TH-positive and TH-negative) lack ERα and less than 
10% contain ERβ (44). In general, in female and male rodents, the 
NAc also has little intracellular ERα and ERβ (49–51).

In addition, androgens can modulate the mesocorticolimbic 
system through other mechanisms. First, hypothalamic nuclei that 
have high concentrations of AR, ERα, and ERβ directly innervate 
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mesocorticolimbic nodes and influence DA release. For example, 
the medial preoptic area is rich in AR and ERs and projects to 
the VTA and modulates DAergic neurons (52–54). Second, mAR 
and mER might mediate the rapid, nongenomic effects of andro-
gens in the mesocorticolimbic circuit. Two possible candidates 
for mAR are ZIP9 and GPRC6A (55–57). However, no studies 
have examined ZIP9 or GPRC6A in mesocorticolimbic nodes, 
and whole-brain analyses have not reported either transcript 
in the VTA, NAc, or mPFC in mice (58, 59) or humans (40).  
In addition, AR variants have been found in neuronal lipid rafts 
(60). Alternatively, the G protein–coupled estrogen receptor 
1 (GPER1; formerly known as GPR30) is present in the VTA, 
NAc, and, to a lesser extent, the PFC in rats and humans (61–63). 
Thus, systemic and locally synthesized estrogens could act on the 
mesocorticolimbic system via GPER1. Third, some C19 steroids 
can rapidly (milliseconds to seconds) modulate neuronal excit-
ability via allosteric binding sites on neurotransmitter receptors, 
voltage-gated channels, and neurotrophin receptors [reviewed in 
Ref. (64)]. For example, the γ-aminobutyric acid (GABA)-gated 
chloride channel GABAA receptor (GABAAR) and the glutamate-
gated sodium/calcium channel N-methyl-D-aspartate receptor 
are sensitive to allosteric regulation by DHEA, DHEA-S, and 
3α-androstanediol (65, 66).

THE MESOCORTICOLIMBIC SYSTEM 
LOCALLY SYNTHESIZES ANDROGENS

Our understanding of the role of androgens in the brain changed 
dramatically with the first suggestion of steroid synthesis in the 
rodent brain. Baulieu, Robel, and colleagues (67, 68) originally 
suggested that levels of DHEA and pregnenolone and their sul-
foconjugates were higher in grossly dissected regions of the male 
rat brain (i.e., divided into the “anterior” and “posterior” brain) 
than in the serum. Moreover, GDX and adrenalectomy did not 
eliminate these steroids in the brain. Later, Liere and colleagues 
described how these findings were actually artifacts resulting from 
sample preparation, including oxidation of cholesterol in brain 
tissue (69). Recent studies, however, have shown that androgens 
are present at higher levels in several brain regions than in the 
blood in male rats [e.g., (36)], are directly synthesized in the brain 
in female and male rats [e.g., (70, 71)], or metabolized in the brain 
[e.g., (72)]. Local production of neurosteroids serves to influence 
gene expression or neuron excitability in an intracrine, paracrine, 
autocrine, or synaptocrine manner under normal physiological 
conditions (73) or as a compensatory mechanism when circulat-
ing steroid levels are low (74).

The steroidogenic capacity of the brain is further corroborated 
by studies demonstrating that steroidogenic enzymes are present 
in the brain. In many of the initial studies, the lower sensitivity 
of Northern blots, in situ hybridization, immunohistochemistry, 
and even PCR was insufficient to detect some steroidogenic 
enzymes in the brain. For example, Goascogne and colleagues 
(75) attempted to detect Cyp17a1 (Figure  1), which catalyzes 
conversion of progestins into androgens, in the rodent brain via 
immunostaining, but it was not until 1995 that several groups 
detected Cyp17a1 transcripts and protein in the brain (76–78), 

and even then only at very low levels or only in embryonic brains. 
Several labs did find other steroidogenic enzymes in the brain, 
including Cyp11a1 (76, 79) and aromatase (78). Guennoun and 
colleagues (80) detected mRNA and protein of 3β-hydroxysteroid 
dehydrogenase/isomerase (3β-HSD) in the hippocampus (HPC), 
hypothalamus, cerebellum, and cerebral cortex. Current tech-
niques, particularly PCR, can detect all the enzymes necessary 
for androgen synthesis and metabolism in multiple regions in the 
male and female rat brain (81–84) and human brain (85, 86).

Little is known about the androgenic capacity of the mesocor-
ticolimbic system, and even less about the physiological relevance 
of these locally produced steroids. Most studies have measured 
steroidogenic enzymes in gross neuroanatomical regions (e.g., 
cerebral cortex, HPC), without specific attention to mesocor-
ticolimbic regions [e.g., (81, 87, 88)]. Specifically, Cyp11a1, 
Cyp17a1, and aromatase have been reported in the frontal cortex 
and midbrain or tegmentum of birds (89, 90), rodents (79), and 
humans [reviewed in Ref. (85)]. However, these reports have low 
spatial resolution, so steroidogenic enzyme levels specifically in 
the mPFC or VTA are unclear. Raab and colleagues (91) detected 
aromatase mRNA in the VTA of male and female rats, but only 
during early development. More recently, one study showed 
a behavioral effect of Cyp11a1 overexpression in the VTA, but 
not in the NAc (92). These results suggest that, if present in the 
VTA, Cyp11a1 affects reward-seeking behavior, but they did 
not demonstrate the importance of endogenous Cyp11a1 in the 
VTA. In the NAc, 3α-HSD and 5α-reductase type I, both involved 
in synthesizing DHT, are present in GABAergic medium spiny 
neurons of male mice (93). The steroidogenic acute regulatory 
protein (StAR), which is essential for de novo steroid synthesis, is 
also present in the NAc of mice (84).

We have recently shown expression of Cyp17a1, Cyp19a1 
(aromatase), and Hsd3b1 (3β-HSD type I) mRNA in microdis-
sected mesocorticolimbic nodes in the adult male rat using exon-
spanning, probe-based qPCR assays that are specific and sensitive 
[(36); Figure 5]. The VTA, NAc, and mPFC contained low levels 
of Cyp17a1 mRNA, compared to the preoptic area/hypothalamus 
(POA/HYP). In the VTA, GDX decreased Cyp17a1 mRNA at 
the 2 weeks time point. Compared to the VTA, the NAc and the 
mPFC contained much higher levels of aromatase mRNA. While 
GDX decreased aromatase mRNA in the POA/HYP, GDX had no 
effect on aromatase in VTA, NAc, or mPFC. 3β-HSD type I was 
expressed in trace amounts in the VTA, but was nondetectable in 
the NAc and mPFC. This is further evidence that the mesocorti-
colimbic system can synthesize androgens de novo from choles-
terol or from circulating steroids (DHEA, progesterone).

Using the contralateral side of the brain of the same subjects 
described above, we also examined steroid concentrations in 
mesocorticolimbic nodes via specific and ultra-sensitive liquid 
chromatography tandem mass spectrometry. Several results sug-
gested local T synthesis. First, in sham-operated animals, T levels 
were 2–4× higher in the VTA, NAc and mPFC than in the blood 
(Figure 5B). Second, in all GDX subjects, T was nondetectable in 
the blood at 2 and 6 wks postoperatively (Figure 6). In the VTA, 
NAc and mPFC, T levels were lowered by GDX but nonetheless still 
detectable in ~50% of GDX subjects at 2 and 6 wks postoperatively 
(Figures 6A–D). Third, in subjects with detectable T, VTA T levels 
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FIGURE 5 | Steroidogenic enzymes, local testosterone concentrations, and 
androgen receptors (AR) in the mesocorticolimbic system of adult male rats. 
(A) Levels of steroidogenic enzyme mRNA are based on probe-based 
quantitative polymerase chain reaction (qPCR) assays (36). (B) Local 
testosterone (T) concentrations are based on Brain T: Blood T ratios in intact 
adult male rats [fed ad libitum or calorie restricted (36)]. (C) Levels of AR 
mRNA are based on probe-based qPCR assays (36), and levels of AR 
protein are based on immunohistochemistry (33). Levels of AR mRNA and 
AR protein are not shown relative to one another.
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were similar in sham-operated and GDX subjects. Fourth, in GDX 
subjects, local T levels in the VTA might be driven by 3β-HSD 
type I, as Hsd3b1 mRNA was positively correlated with T levels 
(r = 0.316). We did not detect other significant correlations between 
local T concentrations and steroidogenic enzymes in GDX animals, 
but we did not examine all androgenic enzymes (e.g., 17β-HSD, 3β-
HSD type 2). Overall, these data suggest that androgen synthesis 
occurs in mesocorticolimbic nodes and partially compensates for 
the loss of circulating T in GDX animals. Moreover, the fact that T 
remains at physiologically relevant levels long after GDX suggests 
that it exerts a significant physiological effect. Future studies should 
examine how other androgenic enzyme isoforms may contribute to 
regulation of local androgen synthesis, as well as the physiological 
relevance of neurally produced androgens.

The presence of steroidogenic enzyme mRNA or protein 
does not necessarily indicate steroidogenic enzyme activity. 
Few studies have demonstrated steroidogenic enzyme activity 
in brain cells in vitro or in vivo. In male rats, T in the cerebral 
cortex and tegmentum (including the VTA) is metabolized 

FIGURE 6 | Continued
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FIGURE 6 | Testosterone is present in microdissected nodes of the 
mesocorticolimbic system of adult male rats at 6 weeks after GDX using 
LC–MS/MS. (A–D) Testosterone concentrations at 6 weeks after either 
SHAM surgery (n = 18–20) or GDX (n = 18–20) in the (A) whole blood,  
(B) ventral tegmental area (VTA), (C) nucleus accumbens (NAc), and  
(D) medial prefrontal cortex (mPFC). Values presented as mean ± SEM. 
(E–J) Representative chromatograms of testosterone quantifier ion (blue) 
and qualifier ion (red) for (E) testosterone standard (2 pg), (F) whole blood 
in a SHAM subject, (G) whole blood in a GDX subject, (H) VTA in a GDX 
subject, (I) NAc in a GDX subject, and (J) mPFC in a GDX subject. Arrows 
denote the retention time for testosterone. Note the differences in the 
intensity (counts per second, cps) on the y-axes. In (G–J), samples are 
from different subjects, as not all GDX subjects had detectable 
testosterone in all brain regions. Adapted from Ref. (36). Abbreviations: 
GDX, gonadectomy; SHAM, sham surgery; n.d., nondetectable.
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into 5α-androstanolone in  vitro (94). Zwain and Yen (95) 
established that neonatal rat astrocytes and neurons synthesize 
pregnenolone, DHEA, androstenedione, T, and E2 from precur-
sors in vitro. Furthermore, steroidogenesis was reduced when 
the steroidogenic enzymes were pharmacologically inhibited 
or when transcription was inhibited. In humans, adult and 
fetal brains are capable of metabolizing T and androstenedione 
in vitro to E2 and T, respectively (96, 97). More recently, studies 
demonstrate that androgens and estrogens are synthesized de 
novo in male and female rat hippocampal slices (70, 71, 98). 
Steroidogenic enzyme activity, the mesocorticolimbic system, 
however, has not yet been examined. What is more, whether 
these neurally-produced steroids modulate behavior remains 
largely unexplored.

AAS AFFECT BEHAVIOR VIA ACTION  
ON THE MESOCORTICOLIMBIC SYSTEM

Recent studies have explored the consequences of androgen 
supplementation at supraphysiological (pharmacological) doses. 
This is relevant to the problem of AAS abuse. Importantly, when 
administered at pharmacological doses, AAS may act via dif-
ferent mechanisms from those under physiological conditions.  
AAS are performance-enhancing substances derived from T (99). 
The media focuses on AAS use among elite athletes and on steroid 
detection to ensure “fairness” in sport. In reality, use of AAS is 
far more widespread, and potential risks are only now becoming 
evident (100). As many as 3 million Americans have used AAS, 
which includes use in high schools, fitness centers, and “rejuvena-
tion” clinics. A typical AAS user is a young man in his late teens or 
early 20s (100). Among U.S. high school students, 4–6% of boys 
have used AAS vs 1–2% of girls (101). This is comparable to the 
rates of crack cocaine or heroin use (101). It is estimated that AAS 
use among men in their 20s is even higher (100).

Commonly abused AAS include both aromatizable and non-
aromatizable androgens (102). Elite athletes choose T because 
it is challenging to differentiate exogenous from endogenous 
sources (103). Rank-and-file users choose T because of its low 
cost and easy availability. Furthermore, most AAS users do 
not limit themselves to a single dose or type of steroid (104). 
Instead, users combine different steroids (“stacking”) in cycles 

of increasing and decreasing concentrations (“pyramiding”). 
AAS users take steroids orally, transdermally, or by intramus-
cular injection (105).

Recent research highlights a range of adverse health effects 
from chronic AAS abuse, including cardiovascular, hepatic, repro
ductive, and psychiatric dysfunction (105). However, the dangers 
of AAS abuse are not limited to the medical consequences of 
high-dose steroids themselves, but also result from risk-taking in 
non-social [e.g., drinking and driving (106)] and social contexts 
[e.g., aggression, sexual violence (107–110), and risky sex (106, 111, 
112)]. Understanding the interplay of AAS and social behavior in 
risk-taking is particularly important in adolescents and young 
adults. This age group is strongly influenced by peer interactions 
(113, 114), exquisitely sensitive to rising levels of endogenous 
gonadal steroids (115), less risk-averse (116), and especially vulner-
able to substance abuse (117). In part, this stems from adolescent 
immaturity in mPFC development (118).

Because it is not ethical to administer supraphysiological doses 
of AAS to normal volunteers, most of our knowledge of the behav-
ioral effects of these drugs comes from studies of illicit users in the 
field and from animal studies. Furthermore, animal studies can 
explore consequences of AAS in an experimental context, where 
appearance and athletic performance are irrelevant. These studies 
have revealed that AAS appear to be rewarding and have potential 
to cause dependence. Rodents will voluntarily self-administer 
AAS orally (119) and by i.v. or i.c.v. injection (120). Moreover, 
they demonstrate tolerance, withdrawal, and fatal overdose with 
self-administration (121). T self-administration (i.c.v.) is blocked 
by the AR antagonist flutamide (121), although it appears that 
classical AR are not required for androgen reinforcement (122). 
The behavioral and physiological effects of supraphysiological 
doses of T resemble those of opioid overdose and are rapidly 
reversed by opioid antagonists (121). Likewise, many human 
AAS users meet DSM criteria for psychoactive substance depend-
ence, including continued use despite negative side-effects, and 
withdrawal symptoms when steroids are discontinued (123).

The effects of AAS on reward and reinforcement strongly 
implicate involvement of the mesocorticolimbic system, since 
drugs of abuse act, in part, via DA release in NAc (124). Male rats 
form conditioned place preference (CPP) in response to intra-
NAc infusion of T (125) or its metabolites (126), similar to the 
effects of DA-releasing drugs (127). Conversely, systemic or intra-
NAc treatments with D1R and D2R antagonists block T-induced 
CPP (128, 129). Nonetheless, the manner in which androgens 
modulate DA release and signaling is still unclear. For example, 
acute administration of T does not induce NAc DA release (130), 
and in fact, AAS can reduce cocaine- or amphetamine-evoked 
DA release in NAc (131, 132). This latter finding is consistent 
with the observation that the acquisition of T self-administration 
is slow compared with cocaine or other addictive drugs (119).  
On the other hand, T upregulates the Fos protein, a marker of 
cellular activity, in regions of the mesolimbic DA system (133). 
Thus, the reinforcing effects of exogenous T may be due to its 
ability to modulate neural activity and DA signaling within 
the mesocorticolimbic circuit, but may do so without directly 
affecting DA release. Indeed, chronic AAS administration alters 
GABAAR subunit expression throughout the brain (including 
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mesocorticolimbic regions), thus altering the physiological 
response to DA-independent GABAergic signaling (134, 135).

ANDROGENS MODULATE THE 
NEUROCHEMISTRY AND STRUCTURE  
OF THE MESOCORTICOLIMBIC SYSTEM

Many androgen-dependent behaviors are mediated by neuro-
chemical changes and neuronal activity in the mesocorticolimbic 
system. In several mammalian species, GDX of adult males 
diminishes expression of copulatory behavior, which can be 
restored by chronic T treatment (136). Copulatory behavior, par-
ticularly ejaculation, is correlated with a T-dependent increase in 
DA release in the NAc (137, 138). In this section, we will discuss 
how androgen deprivation, AAS, and androgen synthesis influ-
ence the neurochemistry and structure of the mesocorticolimbic 
system.

Most studies examining T regulation of the mesocorticolimbic 
system have focused on DAergic transmission in the NAc and 
mPFC. GDX alters DA tone in the mPFC of male and female rats 
(139). In the mPFC, GDX decreases basal DA after 4 days but 
increases it after 28 days. This is likely a result of GDX increasing 
bursting of VTA DA neurons, altering activity of mPFC efferents 
to the VTA, and gradually increasing TH in the VTA (140, 141).  
In contrast, in the NAc, basal DA is unchanged after GDX, but the 
DA metabolites 3,4-dihydroxyphenylacetic acid and homovanil-
lic acid are increased after GDX (142). This finding suggests that 
GDX increases DA turnover in the NAc, which might indicate 
faster clearance of DA from the synapse and higher rates of 
DA signaling at baseline. GDX also modulates evoked electro-
physiological and DAergic responses in the mPFC and NAc.  
In superfused striatal tissue, K+-simulated DA release was higher 
in GDX compared to GDX + T adult male mice (143). In the same 
study, reserpine, a drug that depletes DA, had the opposite effect, 
whereby DA release was higher in GDX + T male mice. This is in 
line with studies demonstrating that GDX affects storage, uptake, 
and/or synthesis of catecholamines in mesocorticolimbic nodes 
(142, 144) and helps to maintain NAc DA levels when exposed to 
methamphetamine (145).

Androgen-mediated structural plasticity and alterations in 
neurotransmitter receptor densities in the mesocorticolimbic 
system are other potential mechanism through which these hor-
mones may alter cognitive/behavioral functions of this system. 
GDX decreases and high doses of T increase dendritic spine 
density in limbic regions, including the amygdala and HPC, in 
male rats (146, 147) and male monkeys (148). In a recent study, 
male rats were treated chronically with high-dose T, and brains 
were stained by Golgi–Cox to analyze neuronal morphology in 
medium spiny neurons of nucleus accumbens shell (NAcS) (149). 
T decreased spine density throughout the dendritic tree in the 
NAcS. However, T treatment did not affect total spine number, 
dendritic length, or arborization. Similarly, in the mPFC, GDX 
reduces and DHT increases dendritic spine formation in male 
mice (150). The effect of DHT on dendritic spine formation was 
reduced, but not absent, in GDX testicular feminization mutant 
male rats (a naturally occurring mutant with severely attenuated 

AR binding capacity), which suggests both androgenic and non-
androgenic influence on synaptic remodeling.

Androgens can influence the function of the mesocorticolim-
bic nodes by their local metabolism to more potent androgens 
(e.g., T→DHT), further metabolism to weak androgens (e.g., 
T→DHT→3α-androstanediol), or metabolism to estrogens (T→E2). 
3α-androstanediol, for example, has weak androgenic effects 
but also acts as a robust and rapid neuromodulator via allosteric 
binding to GABAAR (66, 151). Indeed, 3α-androstanediol in the 
NAc facilitates CPP (a DA-dependent behavior) in rodents, likely 
through allosteric agonism of GABAAR in GABAergic medium 
spiny neurons (152). Concurrently, the aromatization of T into 
E2 may also influence activity in the mesocorticolimbic system.  
E2 decreases striatal DA transporter density, enhances DA synthe-
sis and degradation (153, 154), and downregulates DA binding 
to D2R in the NAc (155). In contrast, systemic treatment with 
the aromatase inhibitor letrozole decreases basal DA turnover in 
the mPFC of male and female adult rats (156). The regulation 
of DA turnover in the brain may be directly related to changes 
in phasic DA signaling. Indeed, direct pulsatile application of 
E2 to striatal slices induces DA release (157) and enhances K+-
mediated DA release (158). Patch clamp analysis of ion transfer 
across the membrane in dissociated NAc medium spiny neurons 
demonstrated that there is a prompt diminution of Ca++ currents 
in response to acute E2 (159). Taken together, these data suggest 
that local production of E2 in males and females modulates DA 
signaling and postsynaptic neural excitability in the mesocorti-
colimbic system.

Few studies have examined whether neurosteroids produced 
in the mesocorticolimbic system influence neurochemistry. 
Pharmacological inhibition of Cyp17a1 regulates a DA-dependent 
behavior [prepulse inhibition (PPI)], but the study did not exa
mine the direct effect on DA signaling (160). Inhibition of Cyp17a1 
would decrease both androgen and estrogen signaling. DHEA, a 
product of Cyp17a1, is present in human, but not in laboratory rat 
or mouse, circulation. DHEA has a wide range of neurochemical 
effects, but the source of DHEA is rarely determined (161). The 
mesocorticolimbic system is sensitive to DHEA. For example, 
DHEA decreases the activity of monoamine oxidase, an enzyme 
necessary for the degradation of monoamines, in the NAc in male 
rats in vivo and in vitro (162). Pharmacological inhibition of 5αR 
suggests that DHT influences neurochemistry, particularly DA 
signaling, in the mesocorticolimbic system (163–165). Overall, 
these data suggest neurosteroids regulate DA turnover and DA 
signaling in the mesocorticolimbic system, which is important 
for regulating executive functions.

ANDROGENS REGULATE EXECUTIVE 
FUNCTION

Clinical and preclinical evidence suggest that hypogonadism and 
GDX have deleterious effects on executive functioning, which can 
often be ameliorated with androgen replacement. Furthermore, 
excessive androgen exposure (e.g., AAS) during adolescence and/
or adulthood has detrimental effects on executive functioning.  
We also examine evidence that the brain compensates for a 
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lability, and working memory, compared to matched non-ADT 
subjects (180). These findings suggest that ADT disrupts PFC func-
tion, an area particularly sensitive to androgens in males (33, 39).

However, other studies have not found an association between 
ADT and executive function (181–183). A recent meta-analysis of 
the effects of ADT on a variety of cognitive functions found that 
only visuospatial ability was reliably affected by ADT, whereas 
assays of executive functioning (e.g., Trail Making Test B, Stroop 
Interference Task) did not detect any significant differences (184). 
These findings are in line with a study in menopausal women with 
low T who were then treated with T and did not show changes 
in a range of executive functions compared to untreated subjects 
(185). However, the assessment tools for these studies might not 
be sensitive enough to detect small, yet important, changes in 
executive functions [e.g., (186)]. In addition, studies on ADT and 
executive function may lack statistical power, neglect confound-
ing variables (183, 187), or include subjects who have not received 
ADT for enough time [ADT is usually administered for 2–3 years 
(181)]. These issues reduce the ability to detect effects of ADT on 
executive functioning. For example, Alibhai and colleagues (181) 
conducted a small study that regularly administered a battery of 
neuropsychological tests to ADT patients for 36 months, and ADT 
was not associated with deficits in cognitive flexibility or working 
memory. However, this study might not have utilized cognitive 
tests sensitive enough to detect PFC-specific deficits in executive 
functioning [e.g., Iowa Gambling Task (IGT)]. Moreover, 95% of 
ADT subjects in this study were using GnRH analogs as their sole 
ADT, which may not affect androgen synthesis in the brain, as 
would androgenic enzyme inhibitors.

High Androgen Signaling
Supraphysiological levels of androgens typically seen with AAS 
use also impair executive function. This has been explored in rats 
treated with supraphysiological levels of T and trained to work 
for food reward (sugar pellets) in an operant chamber (Figures 7 
and 8). T-treated rats display deficits in different forms of cogni-
tive flexibility, including reversal learning and extra-dimensional 
set-shifting (188). These rats take longer to shift their behavior 
when stimuli associated with rewards are reversed, or when rats 
must employ a novel discrimination strategy to obtain rewards. 
Importantly, set-shifting behavior is dependent upon D1R in NAc 
(12), and AAS reduce NAc D1R (189).

Anabolic-androgenic steroids also alter different forms of cost/
benefit decision making in operant discounting tasks. In these 
tasks, rats choose between two retractable levers, one of which 
is associated with a smaller, easily obtainable reward (1 pellet) 
and the other with a larger reward (3 or 4 pellets) associated 
some cost. These costs can include effort, delay, punishment, and 
probability, which results in discounting of the larger reward (i.e., 
making it less desirable; Figure 8). AAS and DA have site- and 
task-specific effects on discounting behavior. In particular, AAS 
do not cause impulsivity with a consistent preference for small 
rewards, nor do they produce a “win-at-all-costs” strategy that 
always favors the large reward. Instead, there is a selective effect 
of AAS. Specifically, AAS-treated rats are less sensitive to effort 
(188), punishment (192), and delay (191), but are more sensitive 
to uncertainty (190). In particular, AAS may diminish sensitivity 

decrease in circulating androgens by increasing local androgen 
synthesis in the mesocorticolimbic system to mitigate deficits 
in executive functioning. These studies support the hypothesis 
that there is an optimal level of androgen signaling within the 
mesocorticolimbic system for proper executive functioning.

Low Androgen Signaling
Andrew and Rogers (166) were among the first to demonstrate 
that androgens affect executive function. In a foraging paradigm, 
young male chicks treated with T pecked grains of a familiar 
color and ignored unfamiliar, novel-colored grains, while vehicle-
treated chicks demonstrated behavioral flexibility and pecked 
both grain colors without bias (166). The authors used the term 
“persistence” (also called “perseveration”) to describe the inabil-
ity to stop using a response strategy when it is no longer relevant 
or advantageous. Rogers (167) then showed that antiandrogen 
treatment or GDX decreased persistence in adult male chickens, 
whereas systemic T replacement in GDX chickens reinstated 
persistence. Subsequent studies in adult male rodents revealed 
that GDX or an antiandrogen reduced persistence, supporting 
the initial findings in birds (168, 169). GDX also decreases male 
persistence during social investigation of female conspecifics, 
suggesting that T increases male persistence in gaining access to 
potential mates (170).

T increases perseveration in operant conditioning tasks that 
require behavioral flexibility. Using a reversal learning task, van 
Hest and colleagues (171) demonstrated that GDX male rats 
perseverated less on the previously reinforced lever, while admin-
istration of T to GDX subjects displayed the highest rates of per-
severation. Additionally, GDX male rats exposed to a conditional 
discrimination task in a T-maze made fewer errors during the 
reversal phase (i.e., decrease in perseverative errors) compared to 
intact subjects (172). On a delayed spatial alternation test, GDX 
subjects made less perseverative errors than intact subjects, but 
only after a delay of 6 sec or more, suggesting a concurrent deficit 
in working memory (173).

In men, declines in executive functioning and visuospatial 
ability are the most commonly reported adverse cognitive 
effects of androgen deprivation therapy [ADT (174)]. ADTs are 
administered to nearly 50% of prostate cancer patients (175) 
and include GnRH analogs (e.g., Histrelin), AR antagonists 
(e.g., flutamide), and androgenic enzyme inhibitors (e.g., 
abiraterone, a Cyp17a1 inhibitor) [see (176) for review]. Many 
ADTs decrease systemic T but might not decrease local andro-
gen synthesis equally across tissue types (e.g., GnRH analogs). 
If a clinical study includes only subjects on ADTs that inhibit 
androgen synthesis and/or signaling in the brain, which is often 
not the case, then the effects of ADTs on executive function 
might be more clear (see below).

There is contradictory evidence on the effect of ADTs on execu-
tive functioning. For example, ADT is associated with deficits in 
attention and cognitive control [i.e., Trail Making B task, Stroop 
Interference Test (177)]. Furthermore, ADT is associated with 
decreases in gray matter volume in the dorsolateral and fron-
topolar PFC (178) and decreased neural activity and connectivity 
in the mPFC during tasks requiring inhibitory control (179).  
ADT is also associated with changes in impulsivity, emotional 
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FIGURE 7 | Testosterone influences discounting behavior of male rats.  
(A) Operant task for discounting behavior. Rats choose between two levers. 
The small reward lever delivers 1 pellet with minimal cost. The large reward 
lever delivers four pellets with increasing cost throughout the session.  
(B) For effort discounting behavior, the response requirement (number of 
lever presses) increases. (C) For probability discounting, the large reward is 
delivered with decreasing probability. Compared with vehicle controls (open 
circles), testosterone (closed circles) increases preference for the large reward 
lever in effort discounting, but reduces preference for the large reward lever in 
probability discounting. Adapted with permission from Ref. (190). Values 
presented as mean ± SEM. *p ≤ 0.05.

FIGURE 8 | Summary of effects of anabolic-androgenic steroids (AAS) on 
decision making and cognitive function. (A) Testosterone effects on 
discounting behavior for effort (190), delay (191), punishment (192), and 
uncertainty (190). (B) Testosterone effects on cognitive function and motor 
impulsivity in the go/no-go task (192), cognitive inhibition in the reversal 
learning task, and cognitive flexibility in the set-shifting task (188).
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to future negative consequences, even as they render users more 
sensitive to unpredictable outcomes.

A wealth of studies has mapped the neurotransmitters and 
brain regions responsible for discounting behavior using systemic 
treatment with neurotransmitter receptor agonists and antago-
nists and selective inactivation of NAc subregions. As discussed  
previously, D1R and D2R each promote preference for the large 
reward in effort discounting (delivery of the large reward requires 
more lever presses) and probability discounting [delivery of the 
large reward is uncertain (193)]. Studies using inactivation of 

NAc subregions have revealed that effort discounting is regu-
lated by the NAc core (NAcC), while probability discounting is 
regulated more prominently by the NAc shell [NAcS (194, 195)]. 
These findings align with modulation of D1R and D2R in NAc 
subregions by the AAS nandrolone (189) and with recent studies 
of effort and probability discounting in response to high-dose T 
(190). T reduces preference for larger reward during probability 
discounting (190), and AAS reduce DA receptors in NAcS (189). 
Conversely, T treatment increases preference for the large reward 
during effort discounting (190), and nandrolone increases D2R in 
NAcC (189). Thus, AAS might reduce sensitivity to effort during 
effort discounting by increasing D2R in NAcC.

In animal studies, it is interesting that AAS selectively alter ele-
ments of risk-taking and impulsivity. In probability discounting, 
risk is reflected by the potential for reward omission, and T makes 
rats more risk-averse, an effect that may be driven by a reduction in 
NAc D1R. At the same time, they are less risk-averse in punishment 
discounting, whereby they risk a footshock with delivery of the 
large reward (190). Together, these results reveal a nuanced effect 
of supplemental T to increase sensitivity to reward omission and 
simultaneously decrease responsiveness to punishment. A similar 
picture emerges in assessment of how T alters different aspects of 
impulsivity. T has no effect on impulsive actions as measured in a 
go/no-go task (192), wherein rats must switch between initiating 
and inhibiting a response to obtain rewards. However, the same 
study showed that T reduces impulsive choice, assessed with a 
delay discounting task, in that it increases the subjects’ willingness 
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to wait for a large, delayed reward. Given the complex manner in 
which increasing androgen activity can influence various forms of 
decision making, it is unlikely that the effects of these treatments 
are driven by uniform increases or decreases in mesolimbic DA 
activity. Rather, these findings suggest that the manner in which T 
influences the behavioral functions depends in part on the specific 
costs that are being evaluated and the underlying corticostriatal 
circuitry that is recruited in guiding these decisions.

Studies of executive function in human AAS users are limited  
and restricted to male subjects. AAS abusers show impaired visuos-
patial working memory compared to non-users, similar to deficits 
seen in ADT (184), and the level of impairment is correlated with 
lifetime AAS use (196). A variety of evidence further implicates 
androgens and AAS in risk-taking behavior in humans. In a study of 
American high school students, AAS use was associated with risky 
sex, drinking and driving, carrying a weapon, and not wearing a 
helmet or seat belt (106). Psychological evaluations of human users 
have also implicated AAS in impaired decision making, which may 
stem from feelings of invincibility (197). Deaths among AAS users 
show high rates of homicide, suicide, and drug overdose (110). 
These possible effects of AAS abuse on risk-taking in humans might 
be similar to punishment discounting in rats, in that androgens 
increase the appetite for reward despite a risk of punishment.

Risk taking induced by AAS has a potentially dangerous social 
dimension as well. AAS use has been implicated in several 
violent murders (107–110). In surveys of current AAS users 
and in studies of human volunteers, increased aggression is the 
most consistent behavioral effect of high-dose AAS exposure in 
humans (103, 105). Compared with non-users, AAS users report 
increased sex drive (198) and increases in risky sexual behaviors 
[i.e., increased numbers of partners, infrequent condom usage 
(111)], as well as unprotected anal intercourse among HIV-
positive gay men (112). Among American high school students, 
AAS use correlated with not using a condom and a history of 
sexually transmitted disease (106). Thus, a key danger of AAS 
abuse is the likelihood that users will engage in behaviors that 
harm themselves and those around them.

Individual Variation in Circulating 
Androgen Levels and Executive 
Functioning
In normal, healthy individuals, circulating levels of androgens 
vary dramatically, allowing for correlational analyses of andro-
gen levels and executive function. Interestingly, perseveration 
and risky behavior are positively correlated with endogenous 
androgens in adolescence and adulthood, similar to findings 
from animal studies (199). For example, adolescent males that 
exhibit external signs of high T (e.g., hirsutism) perform better 
on simple repetitive tasks than those without such external 
signs, independent of cognitive ability (200). This early study 
suggested a positive correlation between endogenous androgens 
and persistence. Furthermore, higher androgen levels in pubertal 
boys correlate with a greater probability of lifetime ethanol use 
(201). Therefore, circulating androgens may enhance ethanol 
effects on behavior, potentially increasing risk-taking in one or 
both sexes. To address this possibility, a study compared GDX 

male and female rats with and without hormone replacement 
in the probability discounting task, to investigate the influence 
of ethanol and gonadal steroids on the response to uncertainty 
(202). At baseline, GDX + T males showed a greater preference 
for the large reward than GDX males. Ethanol further increased 
large reward preference, but only in males. These results suggest 
that both ethanol and T at normal physiological levels increase 
tolerance for a large uncertain reward.

In adults, men with higher T are more likely to choose cards 
from decks offering large monetary gains paired with larger, 
infrequent losses in the IGT, a probabilistic, risk-based decision 
making task (203). This result is similar to patients with dam-
age to the OFC and ventromedial PFC (204, 205). As a result, 
men with higher T earned less money throughout the session, 
relative to men with lower T. High levels of endogenous T also 
correlate with economic risk-taking outside of the lab. In a study 
of London stock traders, morning T levels predicted risk-taking 
throughout the day (206). In young and menopausal women, T is 
not associated with changes in any measure of executive function 
(207–209). Taken together, such studies suggest that individual 
variation in systemic T levels in males, but not females, is cor-
related with specific aspects of executive function.

Neuroandrogens and Executive Function
In addition to acting as endocrine signals, androgens also act 
as intracrine, paracrine, and autocrine signals. Specific nodes 
within the mesocorticolimbic system might require a particular 
androgen concentration to function appropriately. Similarly, 
McEwen and Wingfield (210) posited that local glucocorticoid 
signaling is tightly regulated to alleviate allostatic load imposed 
by high circulating glucocorticoid levels. Studies utilizing 
extreme changes to circulating androgen concentrations, such 
as AAS, GDX, or ADT demonstrate the importance of systemic 
androgens for executive function, but they can not reveal the role 
of local androgen synthesis. As discussed above, local levels of 
T in the mesocorticolimbic system vary greatly from circulating 
levels and from one neural node to another. Levels of T are often 
two or more times higher in the mesocorticolimbic system than 
in the blood in intact animals, and T is still present in the meso-
corticolimbic system at 6 weeks after GDX (36). These results sug-
gest that local T synthesis is important for neural activity in the 
mesocorticolimbic system and executive functioning.

There are few data on how the local production of androgens 
in the mesocorticolimbic system influences executive function-
ing. Several studies report changes in T precursors or andro-
genic enzymes in the mesocorticolimbic system of patients with 
mood disorders or in animal models of depression (211–213). 
Depression is frequently marked by deficits in executive func-
tions (214, 215). In fact, clinicians refer to a disorder that occurs 
in geriatric populations as “depression-executive dysfunction 
syndrome” (214, 216). Low circulating DHEA and DHEA-S levels 
are correlated with depression in aged human populations, and 
DHEA has been suggested as treatment for depression (217, 218).  
In a rodent model of childhood depression, DHEA levels are 
lower in the VTA and NAc (but not amygdala or hypothalamus), 
suggesting mesolimbic-specific regulation of androgens (211). 
Expression of several steroidogenic enzymes are altered in 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


12

Tobiansky et al. Androgens and Executive Function

Frontiers in Endocrinology  |  www.frontiersin.org June 2018  |  Volume 9  |  Article 279

post-mortem analyses of depressed individuals, which include 
a decrease of 5α-reductase type I in the PFC (213) and Cyp17a1 
in the anterior cingulate cortex [ACC (212)], and an increase 
in hydroxysteroid sulfotransferase 2A1 (HST, Figure 1) in the 
ACC and StAR in the dorsolateral PFC (212). Changes in the 
expression of these specific steroidogenic enzymes suggest 
active androgen synthesis and metabolism in the VTA, NAc, 
and PFC.

Systemic administration of steroidogenic enzyme inhibitors 
that cross the blood–brain barrier hint at the role of neuroan-
drogens in modulating executive function. Using set-shifting and 
reversal learning tasks, the Soma laboratory has recently found 
that chronic systemic administration of abiraterone (a Cyp17a1 
inhibitor) enhances behavioral flexibility in intact and gona-
dectomized subjects [unpublished results (219)]. Furthermore, 
systemic administration of letrozole, an aromatase inhibitor, 
increases risk-taking behavior in human males (220) and improves 
working memory in female rats (221). In particular, the study by 
Goudriaan et al. (220) administered letrozole to healthy men for 
1 week and tested executive function and risk-taking before and 
after treatment. Importantly, this treatment was used to increase 
circulating T, but potentially influenced steroidogenesis in the 
mesocorticolimbic system. Letrozole-treated subjects demon-
strated an increase in risk-taking on the Balloon Analog Risk-
Taking task, but not the IGT or Game of Dice, compared to their 
baseline and estrogen-treated subjects. These findings highlight 
the importance of using a variety of sensitive neurocognitive 
assays to detect changes in executive function. This study, along 
with the studies of behavioral flexibility in male rats and working 
memory in female rats, suggests that androgens and local andro-
gen synthesis, and not E2 or local androgen metabolism, have the 
most profound effects on executive functioning.

There have been no studies, to our knowledge, that directly 
(e.g., i.c.v. steroidogenic enzyme inhibitor) manipulated neural 
androgen synthesis and examined executive functioning. The 
most relevant studies examined the effects of androgenic enzyme 
(i.e., Cyp17a1 and 5αR) inhibitors on PPI of the acoustic startle 
reflex and DA signaling in the NAc (160, 163, 165). Frau and 
colleagues (160) administered apomorphine (a non-selective DA 
agonist; i.p.) to male rats to cause a deficit in PPI. The effects of 
apomorphine on PPI were attenuated by microinjecting (i.c.v.) the 
Cyp17a1 inhibitor abiraterone. Along with studies using systemic 
finasteride [5αR inhibitor (163, 164, 222, 223)], these results sug-
gest that local androgen synthesis regulates DA signaling in the 
mesocorticolimbic system and DA-dependent behaviors. While 
these studies are informative, there still remains an important 
gap in our understanding of how neural androgen production 
specifically influences executive functioning.

CONCLUSION

Androgens influence a variety of behaviors and cognitive 
functions, which include executive functioning. Converging 
lines of evidence suggest that androgens can influence execu-
tive functioning via actions on the mesocorticolimbic system. 
Multiple nodes of the mesocorticolimbic system (VTA, NAc, 
mPFC, and OFC) contain AR and ER. Emerging evidence sug-
gests that multiple nodes of the mesocorticolimbic system also 
locally synthesize androgens, estrogens, and other steroids. 
However, the physiological role of these neuroandrogens still 
remains to be determined. Reducing endogenous androgens 
(GDX, ADT) and administering exogenous androgens (AAS) 
alter the neurochemistry (e.g., DA signaling) and cytoarchitec-
ture of the mesocorticolimbic system. In animal studies, both 
a reduction of endogenous androgens and pharmacological 
administration of exogenous androgens lead to alterations in 
behavioral flexibility and inhibitory control. In human studies, 
evidence suggests that ADT or AAS abuse can also lead to defi-
cits in executive functioning. Future studies should investigate 
the roles of systemic and locally produced androgens in the 
mesocorticolimbic system and cognition. Taken together, such 
studies broaden our understanding of androgen regulation of 
behavior to include decision making and executive function, 
and also highlight neurosteroid and AAS action within the 
mesocorticolimbic system.
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