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The ion channel TRPV1 is involved in a wide range of processes including nociception,

thermosensation and, more recently discovered, energy homeostasis. Tightly controlling

energy homeostasis is important to maintain a healthy body weight, or to aid in weight

loss by expending more energy than energy intake. TRPV1 may be involved in energy

homeostasis, both in the control of food intake and energy expenditure. In the periphery,

it is possible that TRPV1 can impact on appetite through control of appetite hormone

levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may

increase energy expenditure via heat production. Dietary supplementation with TRPV1

agonists, such as capsaicin, has yielded conflicting results with some studies indicating a

reduction in food intake and increase in energy expenditure, and other studies indicating

the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated

in obesity and contributing to the development of this disease. The mechanisms behind

this dysregulation are currently unknown but interactions with other systems, such as the

endocannabinoid systems, could be altered and therefore play a role in this dysregulation.

Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore,

given its plausible involvement in regulation of energy and glucose homeostasis and its

dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes.

However, further research is required too fully elucidate TRPV1s role in these processes.

The review provides an overview of current knowledge in this field and potential areas for

development.
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INTRODUCTION

Obesity has become the fifth leading cause of death, and the second leading cause of
preventable death worldwide, closely following tobacco smoking (1, 2). There are multiple
hormonal, neurotransmitter, and receptor systems involved in the regulation of energy balance.
Pharmacological attempts to favorably modulate these systems to encourage weight loss have been
somewhat effective, although not without adverse side effects. This has led to the search for more
suitable targets. One such group of receptors/ion channels gaining attention for their possible role
in energy homeostasis are the Transient Receptor Potential (TRP) channels.
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TRP channels are a superfamily of about 28 non-selective
cation channels divided into 7 subfamilies including TRP
vanilloid (TRPV), and TRP ankyrin (TRPA) (3). They were
first identified in 1969 from an irregular electroretinogram in a
mutant strain of the Drosophila fly (4). The electroretinogram
presented a short increase in retinal potential which gave rise
to the name “transient receptor potential” (5). Since their
discovery, TRP channels have been identified as osmo- and
mechano-sensitive (6). For example, TRPA1 is associated with
pain sensations and inflammation (7), and TRPV1 is associated
with pain and temperature regulation (8).

Endotherms use energy to create heat to maintain body
temperature and in colder climates it has been shown that
humans expend more energy for thermoregulation compared
to warmer climates (9). Given the high energy costs of
generating heat to maintain an optimal cellular environment
thermoregulation can also play an important role in energy
homeostasis. TRPV1 channels are involved in thermoregulation,
making them a possible target for the modulation of energy
expenditure. Further, it is becoming apparent that TRPV1 may
be involved in the regulation of appetite via the modulation of
appetite hormones and/or by acting on gastrointestinal vagal
afferents. This is a process that may involve interaction with
the endocannabinoid system considering that endocannabinoids
such as anandamide (AEA), produced in the gastrointestinal
tract are also endogenous TRPV1 agonists. In addition,
there are suggestions that TRPV1 may be involved in the
regulation of insulin secretion in the pancreas. Studies in obese
individuals have suggested that TRPV1 may be dysfunctional or
dysregulated due to loss of effect on energy homeostasis. For
this reason TRPV1 may be a potential target for pharmacological
manipulation to aid in weight loss with recent studies suggesting
selective blockade or activation of specific functions of TRPV1.
However, due to its complexity this may prove difficult. This
review explores TRPV1 structure and modulation and will focus
on its involvement in energy homeostasis, diabetes, and possible
pharmacological manipulation.

TRPV1 CHANNELS

TPRV1, the first channel in the vanilloid family, is highly
permeable to calcium and was discovered in 1997 by cloning
dorsal root ganglia expressed genes in human embryonic kidney
cells (10). It is expressed in a wide range of central and peripheral
tissues. Centrally, TRPV1 is highly expressed in the brain stem,
mid-brain, hypothalamus and limbic system (11). Peripherally

Abbreviations: AC, adenylyl cyclase; AEA, anandamide; AMPK, adenosine

monophosphate kinase; BAT, brown adipose tissue; BGL, blood glucose level;

BMP, bone morphogenic protein; CAMK, calmodulin dependent kinase; CB,

cannabinoid; DMV, dorsal motor nucleus of the vagus; GI, gastrointestinal; GLP,

glucagon like peptide; PGC, PPAR gamma coactivator; PI3K, phosphatidylinositol

4-5 bisphosphate 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PKA,

protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PPAR, peroxisome

proliferator activated receptor; PRDM, positive regulatory domain; SIRT, sirtuin;

SNS, somatic nervous system; TRPV, transient receptor potential vanilloid; UCP,
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it is expressed in many tissues including the vagal and spinal
sensory nerves (12), stomach (13), and adipose tissue (14).

TRPV1 Structure
The TRPV1 channel consists of four identical subunits located
in the plasma membrane with each subunit (Figure 1) consisting
of an N-terminus, a transmembrane region, and a C-terminus
(15, 16). The N-terminus contains an ankyrin repeating domain
consisting of 6 ankyrin subunits (16) which in its tertiary
structure forms six α-helices connected by finger loops (15).
Sites on the N-terminus are capable of phosphorylation by
protein kinases with the S116 phosphorylation site being one of
functionality (17). A linker section connects the N-terminus to
the transmembrane region via the pre-helical segment (pre-S1),
and connects TPRV1 subunits together (15–18).

The transmembrane region of each TRPV1 subunit comprises
6 helical segments (S1–S6), where S1–S4 contribute to the
voltage-sensing domain, and S5–S6 contribute to the pore-
forming domain (16). S1-S4 are connected to S5-S6 by a linker
segment, and act as a foundation which allows the linker segment
to move, contributing to pore opening and TRPV1 activation.
The transmembrane region also contains binding sites for several
ligands. For example, vanilloids (e.g., capsaicin) are capable of
binding to S3 and S4, and protons (H+) are capable of binding
to S5 and the S5–S6 linker (pore helix) (15).

Lastly, the C-terminus consists of a TRP domain (TRP-D)
which interacts with pre-S1 suggesting a structural role (16).
Following the TRP domain are several protein kinase A (PKA)
and protein kinase C (PKC) phosphorylation sites, and sites for
binding calmodulin and phosphatidylinositol-4,5-bisphosphate
(PIP2) (15, 16).

TRPV1 Channel Activation or Modulation
TRPV1 is activated by a wide variety of different stimuli including
heat, protons (pH < 5.9) (8, 19), capsaicin the irritant compound
in hot chilies (10), allicin and diallyl sulfides from garlic (20,
21), peperine from black pepper (22), and gingerol from ginger
(23). Spider and jellyfish venom-derived toxins are also TRPV1
agonists (24, 25).

Endogenous agonists are referred to as endovanilloids. To
qualify as an endovanilloid the compound should be produced
and released in sufficient amount to evoke a TRPV1-mediated
response by direct binding and subsequent activation of the
channel. Further, to permit regulation of the channel the signal
should have a short half-life. Therefore, the mechanisms for
synthesis and breakdown of the endovanilloid should be in close
proximity to TRPV1. As the binding sites for endogenous ligands
of TRPV1 are intracellular (26, 27) then the ligand could also
be produced within the cell or there should be a mechanism
to bring it into the cell. Three different classes of lipid are
known to activate TRPV1 i.e., N-acyl-ethanolamines [NAEs,
e.g., AEA (28)], some lipoxygenase products of arachidonic
acid and N-acyl-dopamines (e.g., N-arachidonoyldopamine,
N-oleoyldopamine) (29). Further, adipose tissue B lymphocytes
(B1 cells) that regulate local inflammatory responses produce
leukotrienes including leukotriene B4 which is also a TRPV1
agonist (30).
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FIGURE 1 | Structure of a TRPV1 subunit. (A) N-terminus containing 6 ankyrin subunits (A1–A6) and a linking region consisting of a linker and a Pre-S1 helix segment.

(B) Transmembrane region with 6 helical segments (S1–S6). (C) C-terminus containing a TRP domain and binding sites for PKA, PKC, PIP2, and calmodulin.

Intracellularly, calmodulin, a calcium-binding messenger,
mediates the negative feedback loop formed by calcium (31).
Calcium binds and activates calmodulin allowing it to bind to the
N-terminus or C-terminus of TRPV1 inhibiting TRPV1 activity
(15). Other secondary messengers such as PKA, PKC, and PIP2
are also capable of modulating TRPV1 activity. PKA can enhance
or activate TRPV1 through phosphorylation of sites (S116 and
T370) on the N-terminal (32) andmay play a role in the capsaicin
induced Ca2+ dependent desensitization of TRPV1 activation,
a phenomenon which has been extensively reviewed elsewhere
(33). PKC directly activates TRPV1 through phosphorylation
of the S2–S3 linker region (S502) and C-terminal sites (S800),
and also potentiates the effect of other ligands such as protons
(34, 35). PIP2 is a negative regulator, inhibiting TRPV1 activity
when bound to the C-terminal sites (TRP domain: K710) (36).

Interactions Between TRPV1 and the
Endocannabinoid System
The Endocannabinoid System
The endocannabinoid system consists of endocannabinoids,
their receptors and the enzymes involved in endocannabinoid
synthesis and degradation. This system is involved in many
physiological processes including memory, mood, and relevant
to this review promotion of food intake (37). Endocannabinoids
are endogenous lipid messengers (e.g., AEA and 2-arachydonoyl-
glycerol) which activate their receptors, cannabinoid receptor-1
(CB1) and cannabinoid receptor-2 (CB2) (38, 39).

These endogenous lipid messengers are synthesized on
demand and degraded by cellular uptake and enzymatic
hydrolysis [see review (40) and Figure 2]. Briefly, the first step
in the synthesis of AEA and NAEs is the transacylation of
membrane phosphatidyethanolamine-containing phospholipids
to N-acylphosphatidyl-ethanolamines (NAPEs) (41, 42). There
are a number of ways that NAPEs are metabolized to their

corresponding NAE including catalyzed hydrolysis by the
NAPE-hydrolysing enzyme phospholipase D (NAPE-PLD) (43).
In contrast, diacylglycerol lipase (DAGL) is responsible for the
formation of 2-AG (44). There is still some controversy on
whether there is an endocannabinoid membrane transporter [See
reviews (45, 46)]. Nonetheless, endocannabinoids can be cleared
from the extracellular space. Further, there are intracellular
proteins that can shuttle these lipids to specific intracellular
locations (e.g., TRPV1 for AEA) (47, 48), the best characterized
of these are the fatty acid-binding proteins (FABP e.g., FABP5
and 7) (49). The enzymes responsible for the breakdown of
AEA and NAEs are fatty acid amide hydrolase (FAAH) and N-
acylethanolamine-hydrolysing acid-amidase (NAAA). NAAA is
predominantly located in the lungs where it is localized to the
lysosomes of macrophages (50, 51). FAAH is more ubiquitous
and FAAH-1 is located on the endoplasmic reticulum whereas
FAAH-2 (not found in rodents) is located in the lipid rafts (52,
53). Monoacylglycerol lipase (MAGL) is the enzyme responsible
for the majority of 2-AG hydrolysis in most tissues (54–56).

The receptors for endocannabinoids, CB1 and CB2 are
members of the G-protein coupled receptor family, being
predominantly coupled to the Gi/oα proteins that inhibit adenylyl
cyclase thereby reducing cellular cAMP levels (57, 58). However,
coupling to other effector proteins has also been reported,
including activation of Gq and Gs proteins, inhibition of
voltage-gated calcium channels, activation of inwardly rectifying
potassium channels, β-arrestin recruitment and activation of
mitogen-activated protein kinase (MAPK) signaling pathways
(59). As a result of CB receptor signaling through multiple
effector proteins the probability of biased signaling (ligand-
dependent selectivity for specific signal transduction pathways)
increases. Biased signaling is thought to occur when different
ligands bind to the receptor causing different conformational
changes to the receptor enabling the receptor to preferentially
signal one pathway over the other (60, 61). This is attractive, in
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FIGURE 2 | Schematic of the synthesis, degradation and action of endocannabinoids at cannabinoid receptors. Endogenous lipid messengers, such as AEA and

2-AG, act on cannabinoid receptors. AEA and 2-AG are synthesized on demand and degraded by cellular uptake and enzymatic hydrolysis by FAAH and MAGL

respectively. FABP carries AEA from the cell membrane to the endoplasmic reticulum where it is finally converted to AA by FAAH. AA, arachidonic acid; AC, adenylate

cyclase; AEA, anandamide; 2-AG, 2-arachidonoylglycerol; CB, cannabinoid; DAGs, diacylglycerols; DAGL, diacylglycerol lipase; FAAH, fatty acid amide hydrolase;

FABP, fatty acid-binding protein; MAGL, monoacylglycerol lipase; NAE, N-acylethanolamines; NAPE, N-acylphosphatidylethanolamine; NAPE-PLD, NAPE-specific

phospholipase D.

terms of development of pharmacotherapies for various diseases,
as it suggests the possibility of being able to design a drug that will
activate/inhibit a specific intracellular pathway.

The endocannabinoid system drives food intake via CB1 (62).
Administration of CB1 agonists induces feeding in rodents (63)
and humans (64), while blocking CB1 reduces food intake (65).
Further, overactivity of the endocannabinoid system perpetuates
the problems associated with obesity (62) and drugs targeting
CB1 have been used therapeutically to manage obesity but
withdrawn due to CNS side effects (66). New evidence indicates
the endocannabinoid system can control food intake by a
peripheral mechanism of action (66). Peripherally-restricted CB1
antagonists, with no direct central effects, reduce food intake and
body weight in rodents (67, 68).

The Endocannabinoid System and TRPV1
Endocannabinoids, such as AEA, are also endogenous ligands
for TRPV1 (69). Capsaicin, an agonist of TRPV1, has an
anti-obesity effect in rodents (14) and reduces food intake in
humans (70). Therefore, the effects of endocannabinoids on
food intake will depend on the site of action (Figure 3). This
is complicated further as effects may be mediated via cross

talk between TRPV1 and CB1. It has been demonstrated that
CB1 can enhance or inhibit TRPV1 channel activity depending
on whether it activates the phospholipase C (PLC)-PKC or
inhibits the adenylate cyclase (AC)-PKA pathways respectively
(71) (Figure 3). This interaction appears to be dose-dependent.
Moderate to high concentrations of AEA (1–10µM) have been
shown to activate TRPV1 in a PKC dependent manner (34,
35). Conversely, low doses of AEA (3–30 nM) inhibit TRPV1
activity (72, 73), presumably through CB1 mediated inhibition
of AC (74). Therefore, enzymatic synthesis and breakdown
of endocannabinoids are potentially important determinants
of TRPV1 activity in tissue, such as neuronal tissue, that co-
express TRPV1 and CB1 (71). A clearer understanding of the
role endocannabinoids play in food intake regulation in health
and obesity is required to determine the physiological relevance
of these different interactions. In mice, the levels of AEA in
the small intestinal mucosa and plasma were elevated in high
fat diet-induced obese mice compared to controls (68) but
still within the low dose range (3–30 nM) shown to inhibit
TRPV1 (72, 73). Consistent with these observations food intake
was reduced by treatment with a peripherally restricted CB1
antagonist (68). Similar observations were made in humans
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FIGURE 3 | Interaction between endocannabinoids, TRPV1, and CB1. Endocannabinoids can: (1) directly activate TRPV1 leading to cannabinoid receptor 1

(CB1)-independent effects; (2) activate CB1 leading to activation of the phospholipase C pathway enhancing TRPV1 activity; (3) activate CB1 leading to inhibition of

the adenylate cyclase pathway inhibiting TRPV1 activity; (4) activate CB1 leading to TRPV1-independent effects.

with plasma anandamide levels elevated in obese compared to
overweight or lean individuals, again to levels consistent with
TRPV1 inhibition. Therefore, the physiological significance of
TRPV1 activation observed at moderate to high concentrations
of AEA remain to be determined.

INVOLVEMENT OF TRPV1 IN ENERGY
HOMEOSTASIS

Reports on TRPV1 mediated regulation of energy intake and
expenditure are conflicting. Nonetheless, epidemiological data
indicate that consumption of food containing capsaicin is
associated with a lower prevalence of obesity (75, 76). Further, in
a clinical trial capsinoid supplementation for 12 weeks decreased
body weight in overweight individuals compared to the placebo
control group (77). In a separate trial, capsinoid supplementation
for only 4 weeks resulted in a trend toward a decrease in
body weight (78). Under laboratory conditions, dietary capsaicin
supplementation had no effect on body weight (14) in mice fed
a standard laboratory diet. However, in high-fat diet-induced
obese mice, dietary supplementation of capsaicin significantly
reduced weight gain (14, 79, 80). Further, reduced weight gain
was also observed in high fat diet mice after topical application
of capsaicin (81). This appears to be consistent across species as
a study in rabbits, fed a standard laboratory diet supplemented
with cholesterol and corn oil, demonstrated that dietary capsaicin
reduced weight gain (82). In contrast, it has been shown that a 6
week dietary capsaicin treatment had no effect on body weight in
high fat diet mice (83). Weight gain in TRPV1-knockout (KO)
mice has been reported to be reduced (84), increased (85) or
unchanged (86, 87) compared to wild type mice. This variability
may reflect the study design. For example, TRPV1 channels can
be activated by the endogenous ligand AEA (69). The production
of AEA is dependent on dietary fat and therefore even slight
changes in diet will impact on research outcomes. A summary
of the effect of TRPV1 on energy homeostasis in humans can be
found in Table 1. The following sections integrate the data on
energy intake and expenditure from human and animal studies
in an attempt to draw some clear conclusions and directions for
further study.

Role of TRPV1 in Energy Intake
The effects of capsaicin supplementation on satiety and food
intake are illustrated in Table 1. In human studies, dietary
supplementation of a TRPV1 agonist such as capsaicin, or the
less pungent sweet form capsiate, caused a short-term trend or
significant decrease in energy intake along with an increase in
satiety (88, 89, 91, 92, 97). These effects could at least in part
be due to the effect of TRPV1 on appetite hormones and/or
gastrointestinal vagal afferents. This will be discussed in detail
below.

Conversely, other data from human (90, 92) and animal
studies (82, 105–108) suggest that dietary supplementation of
capsaicin has no effects on energy intake. This could be due
to capsaicin mediated TRPV1 desensitization where food intake
is initially reduced, due to capsaicin activation of the TRPV1
channel, but shortly returns to normal, due to a desensitization
of the channel following the initial transient activation (14). In
a Chinese adult cohort study, it has been shown that energy
intake depends on the amount of chili consumed with individuals
with chili consumption below 20 g per day and above 50mg per
day having reduced and increased energy intake respectively,
compared to non-consumers (76). Therefore, it is possible
that at low levels of consumption capsaicin activates TRPV1
leading to a reduction in food intake and at high levels it
could be desensitizing TRPV1 leading to an increase in food
intake. However, this is highly speculative and requires further
investigation.

Dietary supplementation of capsaicin can also influence
nutrient preference. It has been demonstrated that capsaicin
ingestion reduced the desire for and subsequent intake of fatty
foods (91, 97, 98), whilst also increasing the desire for and
intake of carbohydrates (92, 97). Conversely, in other studies,
capsaicin ingestion reduced the desire for and consumption
of carbohydrates, and increased the desire for salt rich foods
(91, 102). The sensory mechanisms responsible for the changes
in food preferences remain to be determined.

TRPV1 and Appetite Hormones
There is evidence to indicate that TPRV1 interacts with
appetite regulating hormones, most notably, ghrelin, leptin,
and glucagon-like peptide-1 (GLP-1). Ghrelin is an orexigenic

Frontiers in Endocrinology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 420

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Christie et al. TRPV1 and Energy Homeostasis

TABLE 1 | Effects of Capsaicin Supplementation on food intake and metabolism in Humans.

Capsaicin dosage Duration Appetite effects Metabolic effects References

Energy expenditure RQ value Blood glucose

Capsaicin (7.68 mg/day) 36 h ↓ Energy intake trend

↑ Satiety

– – – (88)

Chili (1.03 g/meal) 24 h ↑ Satiety ↑ Thermogenesis – – (89)

Capsaicin (7.68 mg/meal) 24 h No effects ↑ Energy expenditure

↑ Fat oxidation

↓ – (90)

Chili (1 g/meal) 1 meal ↓ Energy intake

↑ Satiety trend

↑ Energy expenditure ↓ – (91)

Chili (0.3 g/meal) 5 meals No effects – – – (92)

Chili (1.03 g/meal) 1 meal ↑ Plasma GLP-1

↓ Plasma ghrelin trend

No effect – – (93)

Capsaicin 26.6mg 1 meal – – – ↓ (94)

Capsaicin + green tea 3 weeks ↓ Energy intake

↑ Satiety

– – – (95)

Chili 3 g + caffeine 200mg 24 h ↓ Energy intake

↓ Fat intake

↑ Energy expenditure

↑ SNS activity

– – (70)

Capsaicin 150mg 1 meal – ↑ Fat oxidation ↓ – (96)

Chili 0.9 g/meal 2 days ↓ Energy intake

↑ Satiety

– – – (97)

Chili with meal 1 meal ↓ Energy intake trend

↓ Fat intake

– – – (98)

Capsaicin 3.5mg with glucose drink 1 meal – – – ↓ (99)

Capsaicin 135 mg/day 3 months ↓ Plasma leptin (likely due to

weight loss)

↑ Fat oxidation ↓ ↓ (100)

Capsaicin 3 mg/meal 1 meal – ↑ Energy expenditure

↑ SNS activity effects lost in

obesity

– – (101)

Chili 6 g in appetizer 1 meal ↓ Energy intake

↓ Carbohydrate intake

↑ SNS activity – – (102)

Chili 10 g/meal 1 meal ↓ Energy intake trend

↓ Protein and fat Intake

↑ Thermogenesis

↑ Fat oxidation

↓ – (102)

Chili 10 g before meal 1 meal – No effect ↑ No effect (103)

Chili 10 g/meal 1 meal – No effect ↑ – (104)

peptide mainly expressed in the stomach as an endogenous
ligand for the growth hormone secretagogue receptor (GHSR)
(109). It is involved in many processes including appetite
regulation, secretion of gastric acid, gastrointestinal motility, and
regulation of energy storage (110). It has been reported that
TRPV1 activation reduced plasma ghrelin levels (93), which may
account for the reduced food intake observed after capsaicin
supplementation (88, 89, 91, 92, 97). However, this requires
more intensive investigation. Within the stomach ghrelin maybe
involved in the interaction between the endocannabinoid system
and TRPV1. CB1 receptors co-expressed with ghrelin in
specialized cells within the stomach wall (111). Ghrelin reduces
gastric vagal afferent mechanosensitivity, in a manner dependent
on nutritional status, via action at GHSR expressed on vagal
afferents (112–115). Therefore, although the eating stimulatory
effects of ghrelin are not thought to be mediated by vagal
afferents (113), ghrelin acting on vagal afferents may impact
on the amount of food consumed after the initiation of a
meal. Inhibition of CB1 decreases gastric ghrelin secretion with

subsequent, vagal afferent mediated, reductions in food intake
(111). Therefore, part of the effect of endocannabinoids on vagal
afferent activity maybe mediated indirectly via the activation
of CB1 on ghrelin-producing cells. It is conceivable that the
inhibitory effects of ghrelin are mediated via TRPV1 considering
that, in the CNS, ghrelin effects on supraoptic magnocellular
neurons are mediated via TRPV1 (116). Similar, interactions
with the endocannabinoid system are observed centrally in areas
associated with appetite regulation, including the hypothalamic
arcuate and paraventricular nuclei (117). A comprehensive
investigation of the interactions between the endocannabinoid
system, ghrelin and TRPV1 is required to fully understand their
role in appetite regulation.

Leptin is a satiety hormone produced and secreted in
proportion to the amount of white adipose tissue (WAT). Data
suggests that it is also secreted by gastric cells (118). There is
evidence to suggest that TRPV1 and leptin may interact, since
TRPV1 -/- mice exhibit increased basal leptin levels, even when
normalized to WAT mass (85). Exogenous administration of
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leptin normally results in decreased food intake; however, this
was not observed in TPRV1 -/- mice (85). Furthermore, there
is evidence for direct interactions between leptin and TRPV1
in certain brain stem regions. For example, TRPV1 activation
increased the frequency of miniature excitatory synaptic currents
in leptin receptor containing neurons of gastric-related dorsal
motor nucleus of the vagus (DMV) (119). These data suggest
that TRPV1 may mediate the effects of leptin; however, further
research is needed to substantiate these claims and to determine if
leptin effects in the periphery are also mediated through TRPV1.

GLP-1 is a peptide hormone secreted by intestinal L-
cells, pancreatic α-cells, and neurons in the brainstem and
hypothalamus (120). Evidence suggests it is involved in appetite
regulation, gastric emptying, gastrointestinal motility (121),
insulin secretion, and glucagon inhibition (122). Capsaicin
supplementation enhanced the increase in plasma GLP-1 levels
observed after a meal (93) suggesting TRPV1 channel activation
may play a role in GLP-1 secretion. This requires further
investigation but has the potential to be a peripheral target for
the treatment of obesity and/or diabetes.

TRPV1 and Gastrointestinal Vagal Afferents
Gastrointestinal vagal afferents are an important link between the
gut and brain. They relay information on the arrival, amount
and nutrient composition of a meal to the hindbrain where it
is processed and gastrointestinal reflexes are coordinated with
behavioral responses and sensations such as satiety and fullness
(123–125). The role of gastrointestinal vagal afferents in the
control of food intake has been extensively reviewed previously
(126). Briefly, as food is ingested the vagal afferents innervating
the stomach respond to mechanical stimulation as undigested
food enters, fills and distends the stomach wall. There are two
fundamental classes of mechanosensitive vagal afferent ending in
the stomach according to location and response to mechanical
stimulation (127, 128): mucosal receptors respond to fine tactile
stimulation and tension receptors respond to distension and
contraction of the stomach wall. Gastric mechanosensitive vagal
afferents can be modulated by gut hormones and adipokines in
a nutritional status dependent manner (114, 129, 130). As gastric
emptying occurs, nutrients enter the small intestine and interact
with nutrient receptors on the surface of specialized cells within
the intestinal mucosa. This initiates an intracellular cascade
that culminates in the release of gut hormones (126). These
hormones can act in a paracrine fashion on vagal afferent endings
innervating the small intestine and/or act as true hormones
by coordinating activities within the gut or by entering the
circulation and acting in the brain.

It has been demonstrated that TRPV1 is expressed in rat
duodenal (131), mouse jejunal (132) and mouse gastric vagal
afferents (13, 87). Activation of TRPV1, by oleoylethanolamide
(OEA), caused depolarisation of nodose neurons and decreased
short-term food intake (133). Further, OEA increased gastric
vagal afferent tension receptor mechanosensitivity in lean but
not high fat diet-induced obese mice (87). In standard laboratory
diet fed TRPV1−/− mice, the response of gastric vagal afferent
tension (but not mucosal) receptors to mechanical stimulation
was reduced compared to TRPV1+/+ mice (13, 87). This was

associated with an increase in food intake in the standard
laboratory diet fed TRPV1−/− mice (87). However, the increase
in food intake could also be due to the involvement of TRPV1
in gut hormone release (93, 97) or its interaction with leptin in
central regions, such as the DMV (119), as described in detail
above. Nonetheless, this data suggests that TRPV1 is involved in
gastric vagal afferent signaling.

In high fat diet-induced obese mice the response of gastric
tension receptors to distension was dampened (87) an effect
also observed in jejunal vagal afferents (134). Gastric tension
receptor mechanosensitivity in high fat diet-fed TRPV1−/− mice
was not significantly different compared to standard laboratory
diet fed TRPV1−/− mice (87). This suggests that disrupted
TRPV1 signaling plays a role in the dampened vagal afferent
signaling observed in high fat diet-induced obesity, however, this
requires further investigation. Interestingly, CB1 receptors are
also expressed in vagal afferent neurons (135, 136) and therefore
it is conceivable that there is an interaction between TRPV1 and
CB1 in gastric vagal afferent signaling, however, this has yet to be
confirmed.

Role of TRPV1 in Energy Expenditure
There is increasing evidence that capsaicin ingestion may
have desirable metabolic outcomes such as increased metabolic
rate and fat oxidation. It was reported that dietary capsaicin
supplementation lowered the respiratory quotient indicating
decreased carbohydrate oxidation and increased fat oxidation
(90, 91, 96, 100). In contrast, there is data demonstrating
that dietary capsaicin increased the respiratory quotient (103,
104). The differences in study design, which may account for
the different outcomes, include method of ingestion (capsule
vs. meal), active ingredient (capsinoid vs. capsaicin) and the
population studied (habitual chili consumers, non-habitual,
normal weight, overweight, fitness level). For example, the study
by Lim et al. specifically used “runners” for their investigation
(103). There is some evidence that capsaicin can elevate energy
expenditure by action on the sympathetic nervous system (SNS)
or adipose tissue; this is discussed below.

TRPV1 and the Sympathetic Nervous System
The SNS is involved in many processes and is probably best
known for its involvement in the “flight or fight” response.
Dietary supplementation of capsaicin increases postprandial SNS
activity (70, 101, 102). Capsaicin excites TRPV1 containing
afferent nerves, carrying a signal to the spinal cord (137). Efferent
nerves are then excited by the central nervous system leading
to elevated catecholamine (e.g., epinephrine, norepinephrine,
and dopamine) release from the adrenal medulla (137–139).
Catecholamines can bind β-adrenergic receptors increasing
expenditure and thermogenic activity (104, 140). This suggests
that TRPV1 may directly stimulate heat production. Further,
these effects of TRPV1 on SNS activity are lost in obese subjects
suggesting TRPV1 dysfunction in obesity (101).

TRPV1 and Adipose Tissue
Adipose tissue plays a key role in energy homeostasis (141).
WAT generally stores excess energy as lipids, and oxidizes these
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stores when required, whereas, brown adipose tissue (BAT)
is specialized for energy dissipation (142, 143). TRPV1 has
been shown to be expressed in 3T3-L1 and HB2 adipocyte
cell lines, brown adipocytes, BAT and WAT (144–147). Data
indicate that TRPV1 may prevent the development of mature
adipocytes from pre-adipocytes, and decrease their lipid content
by increasing lipolysis (14). This may partially explain the
decreased lipid accumulation during dietary supplementation
of capsaicin. Further, it has been demonstrated that capsaicin
induces browning in differentiating 3T3-L1 preadipocytes (145).
Therefore, TRPV1 could be involved in the browning of WAT
and the thermogenic activity of brown adipose tissue (BAT).
The levels of TRPV1 mRNA in BAT and WAT are reduced in
HFD-induced obesity and leptin receptor deficient mice (147)
suggesting possible involvement in the development of obesity.

Browning is a process whereby WAT becomes thermogenic
in nature, similar to BAT. The calcium influx from TRPV1
activation may mediate this process by activating the peroxisome
proliferator-activated receptor gamma (PPARγ) and positive
regulatory domain containing 16 (PRDM16) pathways (107).
Calcium binds and activates calmodulin-dependent protein
kinase II (CaMKII) leading to the subsequent activation of
adenosine monophosphate activated protein kinase (AMPK)
and sirtuin-1 (SIRT-1). SIRT-1 deacetylates PRDM and PPARγ

causing browning events such as thermogenesis (Figure 4) (107).
TRPV1 activation may also promote BAT thermogenesis

either through modulation of the SNS or via direct activation
of BAT. However, research in this area is limited. The PPARγ

and PRDM16 pathway, previously mentioned in WAT, has
been shown to be activated by TRPV1, via SIRT1, in BAT
(107, 108). Further, SIRT1 also activates peroxisome proliferator-
activated receptor gamma coactivator 1-α (PGC-1α). PGC-1α
transcriptionally activates PPARα subsequently leading to the
production of uncoupling protein-1 (UCP-1) (108). UCP-1 is
a mitochondrial protein that uncouples the respiratory chain
triggering a more efficient substrate oxidation and thus heat
generation (148). Lastly, TRPV1 activates bone morphogenic

FIGURE 4 | Browning of WAT by TRPV1 activation. Activation of TRPV1

results in Ca2+ influx and the subsequent activation of CaMKII. CaMKII

facilitates the subsequent activation of AMPK and SIRT1 allowing the

deacetylation of PRDM16 and PPARγ allowing their interaction and promotion

of WAT browning.

protein 8b in BAT, which also contributes to thermogenesis
(Figure 5) (108).

Regulation of BAT by TRPV1 can also be via an indirect
mechanism through modulation of the SNS. Activation of
TRPV1 in the gastrointestinal tract, by capsaicin or its analogs,
has been shown to enhance thermogenesis and activate UCP-
1 in BAT in mice (149, 150) via a mechanism mediated via
extrinsic nerves innervating the gastrointestinal tract (149). This
is consistent with reports that TRPV1 ligands (capsaicin and
acid) increase gastrointestinal afferent activity (151, 152) via
TRPV1 (152). Further, it has been demonstrated that ingestion
of capsinoids increases energy expenditure through activation
of BAT in humans (153). Gastrointestinal vagal afferents have
central endings in the nucleus tractus solitaries (NTS). The NTS
has projections to BAT (154) where it regulates the sympathetic
tone to BAT (155) and has been directly implicated in the
control of thermogenesis (156, 157). Lipid activation of duodenal
vagal afferents has been shown to increase BAT temperature via
a cholecystokinin dependent mechanism (158). In contrast, it
has been reported that vagal afferent activation decreases BAT
sympathetic nerve activity and BAT thermogenesis in rats (159).
Further, glucagon-like peptide-1 activation of gastrointestinal
vagal afferents leads to a reduction in energy expenditure and
BAT thermogenesis in mice (160). It is possible that different
subtypes of gastrointestinal vagal afferent have different roles in
the control of BAT thermogenesis, however, this requires further
investigation along with the role of TRPV1 in this gut-brain-BAT
pathway.

Capsaicin can also evoke a heat-loss response which could
conceivably result in compensatory thermogenesis to maintain
thermal homeostasis. Capsaicin evoked complex heat-loss
responses have been shown in various mammals including the
rat, mouse, guinea-pig, rabbit, dog, goat, and humans (161). In
humans, cutaneous vasodilation and sweating in response to hot
chili consumption is well recognized (161). In the rat it has

FIGURE 5 | TRPV1 mediated activation of thermogenic activity in BAT. The

calcium influx activates CaMKII leading to the eventual activation of SIRT1 and

deacetylation of PRDM16 and PPARγ. SIRT1 also activates PGC-1α leading

to the activation of PPARα. PGC-1α and PPARα transcriptionally activate

UCP-1. TRPV1 also activates BMP8b which, along with UCP-1, PRDM, and

PPARγ, cause increased thermogenic activity.
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been demonstrated that capsaicin elicited cutaneous vasodilation
resulting in a reduction in core body temperature (162).
Simultaneously, capsaicin also enhanced heat production (162).
In these experiments, it appeared that capsaicin independently
activated pathways for heat production and heat loss and
therefore the observed thermogenesis may not be a simple
compensatory mechanism in response to heat loss, however, this
requires further investigation.

INVOLVEMENT OF TRPV1 IN DIABETES

Type 1 Diabetes
Insulin is a hormone, secreted by β-cells of the pancreatic
islets, which regulates blood glucose levels. Type 1 diabetes is
an autoimmune disease involving T cell-targeted destruction
of pancreatic β-cells. TRPV1 is expressed in sensory nerves
innervating the pancreas. Chemical denervation of these TRPV1
containing pancreatic afferents, using high doses of capsaicin
(approximately 150 mg/kg body weight), significantly reduced
blood glucose levels and increased plasma insulin (163),
suggesting that TRPV1 containing pancreatic afferents negatively
regulate insulin secretion. Further, chemical destruction of
TRPV1 expressing neurons in neonatal mice (164) was
able to protect the mice from autoimmune diabetes (165).
Chemical denervation of TRPV1 containing pancreatic afferents
significantly reduced the levels of pre-type 1 diabetes immune
markers such as CD4+ and CD25+ T-regulatory cells in
pancreatic lymph tissue and reduced the infiltration of CD8-
CD69 positive effector T-cells (165, 166); immune cells
implicated in the destruction of pancreatic islets in type 1
diabetes. However, as the afferents are destroyed and the
treatment is not selective for TRPV1, it is plausible that the
observed effects have nothing to do with TRPV1. Pancreatic islets
also include resident dendritic cells which are generally believed
to express TRPV1 (167–169) although there is some controversy
(170). Activation of TRPV1 channels on dentritic cells could
activate cell function including antigen presentation to CD4+ T
cells. Further, TRPV1 channels have been shown to be expressed
on rat pancreatic β-cells where they control the release of insulin
leading to reduced blood glucose levels (171) and capsaicin
has been shown to reduce blood glucose by increasing insulin
levels in a streptozotocin-induced diabetic rat model (172). Taken
together, these data suggest that TRPV1 may influence insulin
secretion and type 1 diabetes acting via a number of different cell
types within the pancreas.

Type 2 Diabetes
Insulin resistance, closely linked to obesity (173), occurs when
cells are less responsive to insulin. As a consequence there is
reduced blood glucose uptake leading to increased blood glucose
levels. Pancreatic β-cells normally respond to this by increasing
output of insulin to meet the needs of the tissues. Development
of type 2 diabetes stems from a failure of the β-cells to adequately
compensate for insulin resistance (174). It has been demonstrated
that postprandial insulin levels were lower after the consumption
of a standardized meal seasoned with cayenne pepper (175). As
the plasma glucose levels were not significantly different from

the control group the authors suggested that glucose clearance
occurred similarly with lower levels of insulin, implying increased
insulin sensitivity after the consumption of the hot meal. Further,
consumption of chili has been shown to decrease postprandial
insulin levels in obese subjects (176). In support of these studies,
TRPV1−/− mice have been shown to be more insulin resistant
than wild type mice (85).

Type 2 diabetes is believed to be associated with inflammation
(177, 178). It is believed that inflammation in the pancreas leads
to an increase in the activity of TRPV1 which contributes to
increasing levels of calcitonin gene-related peptide (CGRP) (179).
CGRP is known to promote insulin resistance and obesity by
decreasing insulin release from β-cells (180).

TRPV1 AS A PHARMACOLOGICAL
TARGET FOR OBESITY AND DIABETES

Behavioral interventions (e.g., diet and exercise) alone are seldom
sufficient for the intervention of obesity and diabetes. Combining
behavioral and pharmacological approaches is becoming
increasingly more attractive. However, pharmacological
interventions can have hard to access targets and/or adverse
side effects. TRPV1 is present in the periphery making it
an easily accessible target compared to drugs that target the
central nervous system. However, TRPV1 interacts with other
systems and shares pathways commonly used by other signaling
molecules. Therefore, without a clear understanding of the
interactions of TRPV1 with other systems, the targeting TRPV1
for the treatment of obesity and diabetes is unlikely to be
successful, as evident from the numerous contradictory studies
looking at the effect of capsaicin analogs on food intake and
weight gain. Data suggest that manipulation of TRPV1 may be
possible in such a way to reduce or eliminate any unwanted side
effects. For example, three different TRPV1 ligands known to
antagonize TRPV1 had different effects on thermoregulation
(e.g., hyperthermia, hypothermia, or no effect) (181). In fact,
TRPV1 can be manipulated in such a way, by action at different
domains, to eliminate some functions of the TRPV1 channels
without affecting others. For example, some antagonists block
activation by capsaicin and high temperatures but not activation
by low pH (182), and other antagonists block activation by
capsaicin but not the activation by high temperature (183).
However, this raises further questions on whether, for example,
the observed effects are cell type specific. Again, this highlights
the lack of fundamental knowledge on the role of TRPV1 in
energy homeostasis and therefore the current challenges of
targeting TRPV1 for the treatment of obesity.

CONCLUSION

TRPV1 appears to be involved in energy homeostasis at a number
of levels. In the periphery, TRPV1 activation or inhibition
can have an impact of appetite and food intake through the
control of appetite hormone levels or via the modulation
of gastrointestinal vagal afferents, important for determining
meal size and meal duration. In addition, TRPV1 plays a role
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in energy expenditure via heat production, either via direct
thermogenesis or as a compensatory mechanism in response
to TRPV1 induced heat-loss. Dietary supplementation with
TRPV1 analogs, such as capsaicin, has yielded conflicting results
with some studies demonstrating a decrease in food intake
and increase in energy expenditure and others indicating the
converse. This is probably reflective of the involvement of
TRPV1 in a multitude of processes regulating food intake and
energy expenditure. The story is complicated further by the
interaction TRPV1 has with other systems involved in energy
homeostasis, such as the endocannabinoid system. In addition,
TRPV1 appears to be dysregulated in obesity, possibly due to
alterations in the interaction with other systems. Therefore,
although it is clear that TRPV1 plays a role in energy homeostasis
without improved knowledge of the fundamental physiological

mechanisms involved and the interactions with other systems it
is impossible to target this system for the treatment of obesity, the
maintenance of weight loss and the metabolic diseases associated
with obesity.
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