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Obstructive sleep apnea (OSA) is a common sleep disorder, effecting 17% of the total

population and 40–70% of the obese population (1, 2). Multiple studies have identified

OSA as a critical risk factor for the development of obesity, diabetes, and cardiovascular

diseases (3–5). Moreover, emerging evidence indicates that metabolic disorders can

exacerbate OSA, creating a bidirectional relationship between OSA and metabolic

physiology. In this review, we explore the relationship between glycemic control, insulin,

and leptin as both contributing factors and products of OSA. We conclude that while

insulin and leptin action may contribute to the development of OSA, further research is

required to determine the mechanistic actions and relative contributions independent of

body weight. In addition to increasing our understanding of the etiology, further research

into the physiological mechanisms underlying OSA can lead to the development of

improved treatment options for individuals with OSA.
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OBSTRUCTIVE SLEEP APNEA: CLINICAL PRESENTATION AND
PRECLINICAL MODELS

Obstructive sleep apnea (OSA) is a common sleep disorder classically characterized by apneic
events leading to intermittent hypoxia and sleep fragmentation. OSA is most commonly found in
obese, middle age men (6). Obesity is strongly associated with OSA (7) with approximately 40–70%
of the obese population diagnosed with OSA (1, 2). Unfortunately, OSA has broad detrimental
effects on health ranging from increased daytime sleepiness to a 4-fold increase in mortality (1).
As the name implies, OSA derives from obstruction of the airway. While the cause of obstruction
varies between individuals, common obstructions occur due to abnormal anatomy [e.g., narrow
airway, enlarged tonsils (8)], obese anatomy [e.g., increased fat storage in pharyngeal tissue (9, 10)],
and/or decreased neuromuscular tone (11). During a polysomnography evaluation in the sleep
laboratory, an individual with OSA experiences periods of breathing reduction (hypopnea) or
cessation (apnea) coincident with respiratory effort. The severity of an individuals’ apnea and
hypopnea is defined by the apnea-hypopnea index (AHI). An individual withmild OSA experiences
5–15 apnea-hypopnea events per hour, whereas those with moderate or severe OSA experience 15–
30 or >30 events/h, respectively (12). Apneic events lead to reductions in blood oxygen saturation,
and over the course of the night, present as intermittent hypoxia (IH) (13). It is estimated that an
individual with severe OSA may reach blood oxygen saturation levels as low as ∼76% (14) and it
is widely regarded that these drops in oxygen play a key role in many of the downstream disease
states associated with OSA. Reduction in blood oxygen and elevations in blood carbon dioxide
are sensed by chemoreceptors in the brain and carotid bodies, which trigger brief microarousals
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and result in sleep fragmentation (15). These repeated
microarousals are believed to contribute to Excessive Daytime
Sleepiness (EDS), another characteristic of OSA. EDS, as scored
by the Epworth Sleepiness Scale, measures an individuals’
perceived sleepiness. Higher levels of EDS are associated with
an increased risk of falling asleep at work or driving, and
is associated with decreased life satisfaction (15). In a large
sleep study, 76% of individuals with severe OSA exhibited
EDS, and 56% of individuals with mild or moderate OSA
exhibited EDS (16). In addition to apneic events, an individual
with OSA exhibits a blunted hypercapnic ventilatory response
(HCVR) and a blunted hypoxic ventilatory response (HVR)
(17), demonstrating impaired chemosensitivity. Interestingly,
blunted HCVR (18) and HVR (19, 20) are observed in
some obese patients without OSA, most often those with
obesity hypoventilation syndrome, suggesting that impaired
chemosensitivity may occur before the onset of apneic events.

In contrast to OSA, central sleep apnea (CSA) is defined by
the cessation of air flow without perceived respiratory effort (21).
Like OSA, individuals with CSA may exhibit multiple apneas
throughout the night. While CSA effects <5% of individuals
referred to the sleep clinic (22), an increased risk for CSA
is observed in individuals with compromised chemoreception.
For example, CSA is found in ∼24% of chronic opioid users
(23) due to opioid-induced impairments to the carotid bodies
and hypoglossal nerve signaling (23). Interestingly, ∼13–20% of
individuals diagnosed with OSA exhibit central apneas as well
(24, 25). In particular, individuals with type 2 diabetes (T2D) have
an increased chance of experiencing both OSA and CSA (i.e.,
mixed apnea) (26). Increased recognition of mixed apneic events
has led to an emerging hypothesis which postulates that OSA and
CSA share common mechanisms of action (22).

Currently, continuous positive airflow pressure, or CPAP, is
the most effective and widely used treatment for OSA (27). By
delivering a continuous flow of air, CPAP actively keeps the
airway open and can improve the AHI of OSA patients an average
of∼13 events/h (28). Despite the dramatic improvement in AHI
from CPAP treatment, compliance is low. Only 39–50% of users
will use CPAP (29) for the recommended minimum of at least
4 h per night for 5 days per week (30). Thus, improved treatment
strategies for OSA are needed.

Yet, despite the prevalence of OSA, the serious health
risks, and the inadequate treatment options, we have a poor
understanding of how sleep apnea develops. While clinical
studies have been instrumental in laying the foundation of OSA
research, basic science approaches using rodent models have
enabled investigators to explore the etiology of OSA. Initially, the
English bulldog was used as a naturally occurring model of OSA
which exhibited snoring, sleep disordered breathing, and daytime
sleepiness (31). While it was first believed that the apnea of the
English bulldog was occurring solely due to abnormalities of the
upper airway (e.g., narrow nares and enlarged soft palate), these
anatomical features only accounted for a subset of apneic events.
Indeed, during sleep studies, English bulldogs displayed apneic
events without respiratory effort, representative of central sleep
apnea (31). While the English bulldog was a good initial model,
and mirrored humans by exhibiting naturally occurring OSA

(23), it also experienced apnea in a lean state. To better account
for the obesity observed in many OSA individuals, lean and
obese Yucatan miniature pigs were utilized as another naturally
occurring model of OSA (32). Similar to the English bulldog,
obese pigs experienced mixed apneic events, however, lean pigs
did not experience any apneic events (32). These data suggested
that obesity may be a key factor contributing to sleep apnea.
While Yucatan miniature pigs were a naturally occurring model
of OSA, further mechanistic studies were difficult owing to sheer
size of the animals and lack of available genetic tools.

Currently, much of the mechanistic hypotheses involving
OSA are tested in rodent models. The rodent offers superior
capabilities in behavioral and genetic manipulation, allowing
more detailed investigation into the mechanisms leading
to the metabolic consequences of OSA. To examine sleep
apnea in rodent models, researchers have modeled two main
characteristics of OSA: sleep fragmentation and intermittent
hypoxia (IH). In general, sleep loss and decreased sleep
quality without the presence of OSA is associated with
obesity, impairments in glucose regulation, and reductions
in insulin sensitivity (33). While IH is associated with
many of these same outcomes, IH often leads to weight
loss instead of weight gain, perhaps due to the observed
increases in circulating leptin (see leptin section below).
Since IH mirrors both the oxygen desaturation as well as
the microarousals associated with OSA (15), many of the
mechanistic hypotheses on OSA and metabolism have sprouted
from IH studies. A wealth of data indicates that chronic IH
results in profound impairments in cardiometabolism similar
to those experienced by individuals with OSA, including
hypertension (34), ventricular hypertrophy (35), insulin
resistance, and hyperlipidemia (36, 37). Using whole-body
plethysmography, researchers have also observed similarities
between the chemosensitivity of obese rodents (measured via
the ventilatory responses to hypercapnia and hypoxia, with
and without IH) to that of individuals with OSA (38, 39).
In this way, the ventilatory responses of rodents presents
itself as another measure analogous to the physiology of
individuals with OSA. Diet-induced obese rodents can also
be used alongside lean controls to determine the effect of
obesity on ventilation parameters and IH-induced outcomes.
Indeed, just as in humans (18), diet-induced obesity leads to a
depressed ventilatory response in rodent models (38, 40). Using
a combination of clinical and rodent studies, investigators can
significantly increase our understanding of the etiology of sleep
apnea.

THE ETIOLOGY OF OSA AND ITS
BIDIRECTIONAL RELATIONSHIP WITH
METABOLIC DISEASE

In some individuals, OSA etiology is clearly associated with
anatomical obstruction. For example, most OSA diagnosed
in children is due to enlarged tonsils and is treated with
tonsillectomy (41). However, many clinical evaluations for OSA
do not reveal any obvious anatomical obstructions (42, 43). In the
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absence of a clear anatomical obstruction, much of the etiological
theory on OSA has focused on one of its most profoundly
associated factors: obesity.

Multiple studies have shown a clear, positive association
between obesity and AHI (7).More specifically, increased visceral
obesity (44) and neck circumference (45) have been linked
to OSA. While it is generally accepted that obesity is an
important prerequisite for OSA, the hypothesized mechanisms
by which obesity contributes to OSA vary widely. Indeed, the
relative contributions of an individuals’ physical weight vs. an
individuals’ metabolic physiology in the development of OSA is
an active area of debate (46–48).

Traditionally, the strong association between obesity and OSA
led many to conclude that OSA occurred due to increased fat
mass mechanically restricting airflow. Specifically, increased fat
deposits in the tongue and/or larger pharyngeal tissue (9, 10, 49)
were hypothesized to be too heavy for the reduced muscular
tone normally experienced during rapid-eye movement (REM)
sleep and thus, the tissue’s increased physical weight lead to
an obstruction the airway and apnea or hypopnea. Increased
physical mass also affects lung mechanics, reducing functional
residual capacity and tidal volume (50). For the remainder of
this review, we refer to mechanisms supporting this hypothesis as
weight-dependent (Figure 1). However, focusing only on physical
body weight as an underlying mechanism to OSA does not
explain why only a subset of obese individuals have sleep
apnea (51). Nor does physical body weight alone explain why
lean individuals develop sleep apnea (52). Nevertheless, the

association between obesity andOSA suggests that these variables
may be related to each other in ways that go beyond the physical
mechanical weight of fat.

There are two alternative explanations to the strong
association between obesity and OSA. The first of which is that
OSA is leading to obesity and metabolic dysfunction (Table 1).
Indeed, OSA-associated IH and sleep fragmentation have been
repeatedly found to induce and exacerbate cardiometabolic
disease (91). This directional hypothesis is generally accepted
and well-reviewed [see (53, 77, 92)]. Therefore, we only highlight
key studies supporting this hypothesis in this review. Instead, we
focus on a second intriguing possibility, that obese physiology
and not physical weight per se leads to the development of OSA
(Table 2).

Emerging hypotheses postulate that physiological
components of obesity, including glycemic control, insulin
action, and leptin signaling, contribute to the development
of OSA. It’s possible that obese physiology leads to greater
reductions in pharyngeal dilator muscle tone and results in
increased chance of obstruction during sleep (114). This greater
reduction in muscle tone may be due to chronically increased
muscle activity, due to increased autonomic response, and/or
histological changes to the muscle tissue itself via inflammatory
pathways (49). Alternatively, obese physiology may be leading
to disordered breathing and increased central sleep apnea via
decreased chemosensitivity (18–20). Given the increased risk
of mixed apneic events observed within type 2 diabetics, this
latter observation is particularly interesting. Research on this

FIGURE 1 | The bidirectional relationship between obstructive sleep apnea and metabolic disease. Sleep apnea results in intermittent hypoxia and sleep

fragmentation which lead to and exacerbate obesity and type 2 diabetes by increasing sympathetic activity, oxidative stress, inflammation, and lipolysis. Moreover,

metabolic disease can lead to, or exacerbate, sleep apnea through weight-dependent and physiology-dependent mechanisms. While weight-dependent mechanisms

are a function of the physical increase in body mass or fat mass (e.g. increased mechanical load, narrowed airway), physiology-dependent mechanisms are

physiological changes coincident with obesity or diabetes which go on to influence chemosensitivity and sleep apnea either directly or via action on sympathetic

activity, inflammation, or other mechanisms.
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TABLE 1 | Summary of presented evidence that obstructive sleep apnea and its

components are associated with decreased glycemic control, insulin resistance,

increased leptin, and decreased chemosensitivity.

Model Results References

Obstructive sleep

apnea (human)

↓ Hypoxic ventilatory

response

↓ Hypercapnic ventilatory

response

↓ Glycemic control

↑ Insulin resistance

↑ Leptin

(17, 52–66)

Type 2 diabetes +

Obstructive sleep

apnea

↓ Glycemic control

↑ Apnea-hypopnea index

↑ Central sleep apnea

↑ Insulin resistance

(26, 54–57, 67–75)

Sleep fragmentation ↓ Glycemic control

↑ Insulin resistance

↑ Leptin

(33, 76)

Intermittent hypoxia ↓ Glycemic control

↑ Insulin resistance

↑ Leptin

↓ Chemosensitivity

(36, 37, 77–89)

Obesity + Intermittent

hypoxia

↑ Insulin resistance

↓ Hypoxic ventilatory

response

↓ Hypercapnic ventilatory

response

(39, 77, 90)

front is on-going and it’s possible that other mechanisms by
which obese physiology impacts sleep apnea may soon be
defined. Collectively, we refer to mechanisms that support
these hypotheses as physiology-dependent or weight-independent
(Figure 1).

Teasing apart the relative contribution of physical,
weight-dependent mechanisms from physiological-dependent
mechanisms is inherently difficult due to the close relationship
between obesity and its associated changes in glycemic control,
insulin action, and leptin signaling. For example, obesity is
strongly associated with glucose dysregulation and weight loss
alone can substantially improve fasting glucose and glucose
tolerance within individuals with T2D (115). In the context
of OSA, weight loss through dieting can also substantially
improve AHI (116). However, it is unclear if these dramatic
improvements in apneic symptoms are from weight-dependent
or physiological-dependent mechanisms, as dieting both reduces
physical body weight and improves glucose metabolism.

A unique way to partition the effect of weight loss from
substantial changes in metabolic physiology has utilized data
from bariatric surgical procedures. Bariatric surgical procedures,
such as the Roux-en-Y Gastric Bypass (RYGB), the vertical
sleeve gastrectomy (VSG), and the laparoscopic adjustable gastric
band (LAGB) lead to significant, sustained weight loss and
improvements in glucose regulation (117). However, RYGB
and VSG are unique among bariatric surgical procedures in
that glucose metabolism is improved through both weight-
dependent and weight-independent mechanisms. In fact, due
to their ability to improve glucose regulation in part through
weight-independent mechanisms, RYGB and VSG are sometimes

TABLE 2 | Summary of presented evidence that the manipulation of glycemic

control, insulin, and leptin are associated with increased apneic events and

decreased chemosensitivity.

Model Results References

Metabolic surgery ↓ Apnea-hypopnea index (93, 94)

Type 2 diabetes (poor

glycemic control,

insulin resistance)

↑ Apnea-hypopnea index

↑ Central sleep apnea

(26, 53, 71, 74,

75, 95)

Streptozotocin-

treatment (destroys

pancreatic β-cells)

↓ Apnea-hypopnea index

↓ Hypoxic ventilatory

response

↓ Hypercapnic ventilatory

response

(96, 97)

Type 1 diabetes (insulin

deficient)

↑ Apnea-hypopnea index

↑ Central sleep apnea

(98, 99)

Polycystic ovary

syndrome (insulin

resistance)

↑ Apnea-hypopnea index (100–102)

Metformin treatment

(insulin sensitizer)

↓ Apnea-hypopnea index

↑ Chemosensitivity

(96, 97, 103)

Leptin impairment

(leptin and/or leptin

receptor deficiency)

↓ Hypoxic ventilatory

response

↓ Hypercapnic ventilatory

response

(104–108)

Lipodystophy (low

leptin, insulin

resistance)

↑ Apnea-hypopnea index (109–113)

referred to as metabolic surgeries (118). This contrasts with
the metabolic improvements following LAGB which parallel
total weight loss without additional improvements from weight-
independent means (117, 118). Following metabolic surgeries,
improvements in glucose tolerance can occur quickly, before
significant weight loss occurs (117, 118). In some cases,
individuals can discontinue their diabetic medication before
being discharged from the hospital (117). To determine how
OSA may be affected by metabolic improvements independent
of weight loss, it would be ideal to quantify OSA on a time
scale before significant weight loss occurs. However, most
polysomnography following bariatric surgical procedures occurs
6 months to 1 year post-operatively and thus after significant
weight loss is achieved. However, quantifying EDS, closely
related to OSA, can be done without polysomnography. In
one study, individuals undergoing RYGB showed resolution of
EDS symptoms within 1 month, accompanied by only marginal
weight loss (119). While it is tempting to speculate that sleep
apnea too may be improved on a time scale indicative of weight-
independent mechanisms, this question remains unanswered.
While EDS is associated with OSA, there is also an independent
relationship between obesity and sleep. Overweight individuals
are more likely to exhibit increased sleepiness during the day
independent of OSA (120, 121). Moreover, decreased sleep
duration and sleep quality has been linked to increases in
BMI and metabolic dysfunction (122). Therefore, improvements
in EDS following bariatric surgery could be a result of small
to moderate changes in body weight and/or improvements in
metabolic physiology independent of sleep apnea. Alternatively,
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directly comparing OSA outcomes following metabolic surgeries
such as RYGB and VSG vs. weight-loss surgeries such as
LAGB can provide insight into the relative contributions of
weight-dependent and physiology-dependent mechanisms in
the etiology of OSA. A number of comparative studies have
reported that OSA resolution 1-year after RYGB or VSG is
approximately double that of individuals undergoing LAGB (93,
94). Furthermore, other studies have shown that LAGB has no
better OSA resolution compared to diet-induced weight loss,
despite more weight loss attained via LAGB (123). Given the
added weight-independent metabolic benefits following RYGB
and VSG, these data suggest that some component of obese
physiology and not body weight itself, may be involved in the
etiology of OSA.

To better address how obese physiology may impact
disordered breathing, investigators have incorporated preclinical
animal models. Indeed, the preclinical setting allows researchers
to systemically manipulate glycemic control, insulin sensitivity,
and/or leptin and examine their specific contributions to
disordered breathing. While we address each of these variables
in detail in the sections below, a commonality among these
experiments is the use of high-fat diets to induce obesity within
the animal models. Similar to humans, diet-induced obesity
leads to a depressed hypercapnic ventilatory response (40) and
a restrictive ventilatory pattern (39) in mice. Importantly, since
diet-induced obesity alone leads to both increased physical
weight and metabolic syndrome, a more detailed approach (such
as including weight as a covariate or using weight-matched
controls) must be used to specifically determine how obese
physiology contributes to disordered breathing. Moreover, the
addition of high-fat diets has also been found to exacerbate
the metabolic consequences of IH. Obese, high-fat fed mice
exposed to chronic IH demonstrate further detriments in insulin
resistance (39, 90), suggesting that obesity itself or obese
physiology may exacerbate OSA disease outcomes.

GLYCEMIC CONTROL

A prominent characteristic of obese physiology is an impairment
in glycemic control. Clinical association studies and randomized
control trials have evaluated the relationship between OSA
and glycemic control with mixed results. In support of an
association between apnea and glycemic control, a recent pilot
study found that the combination of respiratory events and
nocturnal awakenings could predict variability of fasting blood
glucose in T2D patients (67). Nocturnal hypoxemia has also
been independently associated with the development of impaired
glycemic control (54) and T2D in healthy individuals (55)
and worsened glycemic control in individuals with T2D (68).
Moreover, with the use of continuous glucose monitoring, T2D
individuals with OSA have been shown to exhibit peaks in
circulating glucose levels temporally following blood oxygen
desaturation (69). Taken together, these studies demonstrate that
OSA, and in particular nocturnal hypoxemia, likely leads to
elevated glucose levels. In non-diabetic individuals, daily, 24-h
rhythms in circulating glucose variability have been associated

with OSA severity (56), suggesting that the association between
OSA and improper glucose control may precede T2D. Whether
circulating glucose levels directly impact disordered breathing or
OSA is less clear. It would be informative to explore if individuals
with recurrent hypoglycemia or nocturnal hypoglycemia are at
increased risk for OSA and/or have reduced chemosensitivity
(124). While unexplored, this information could advance our
understanding of the involvement of glycemic control and/or
glucose sensing in the development of sleep apnea.

In animal models, simulation of OSA using chronic IH has
greatly advanced our knowledge of how OSAmay impact disease
states via cyclic drops in blood oxygen. Rodents exposed to
chronic IH have increased gluconeogenesis in the liver (78–
80), fasting hyperglycemia, and decreased glucose tolerance (81).
Acute, 3-h, exposures of IH in healthy humans also leads to an
increase in circulating glucose levels before noticeable changes to
insulin sensitivity (125). Indeed, much of the effects on glycemic
control from OSA may be attributed to IH (126). Moreover,
altering metabolic state prior to IH impacts the outcome,
indicating a bidirectional relationship between glycemic control
and IH. For example, fasting can mitigate some cardiovascular
consequences of IH, including the activation of glycogen synthase
in the myocardium (127). Additionally, treatment with a lipolysis
inhibitor ameliorates hyperglycemia and glucose intolerance
induced by IH in mice (81), highlighting an important role
for the adipose tissue and lipolysis in many of the downstream
consequences of IH and perhaps OSA (77, 128). Taken together,
it is likely that circulating and fasting glucose is increased by OSA
and that elevated glucose before the theoretical onset of OSA is
likely to exacerbate the cardiometabolic outcomes of OSA.

Another way to explore the relationship between glycemic
control and OSA is by intervention and treatment studies. One
would hypothesize that if alterations in glucose were downstream
of OSA, then treatment of OSA alone would improve glycemic
control. While there are randomized controlled studies which
support this hypothesis (129), others report no improvement
in glycemic control with CPAP use (130). One possibility for
these conflicting results is the presence of existing glycemic
impairment. For example, in a recent study, higher glycemic
variability was associated with sleep disordered breathing in both
T2D and non-diabetic individuals, however CPAP treatment
only improved glycemic variability in those without T2D (57).
Similarly, a meta-analysis concludes that CPAP may prevent the
development of T2D in non-diabetic individuals (131), again
pointing to the effectiveness of CPAP on glycemic control before
T2D develops. However, withdraw from CPAP in both obese
T2D and non-diabetics leads to an increase in nocturnal glucose
without affecting glucose tolerance, production, or insulin
(132), suggesting that CPAP use is leading to a reduction in
glucose. Together, these data point to the likelihood that glucose
impairment is downstream of OSA in non-diabetic individuals,
but it remains to be elucidated the relationship between glycemic
control and OSA within those with T2D.

One possible mechanism linking glucose dysregulation and
OSA is via autonomic dysfunction. T2D leads to autonomic
dysfunction and this directly affects respiratory control and
cardiac outcomes consistent with the presentation of OSA (133).
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This mechanism is supported by impaired autonomic activity
observed in individuals with central hypoventilation syndrome
which exhibit sleep disordered breathing, hypoglycemia and
hyperinsulinemia (134). Sympathetic activity is also directly
involved in modulating fasting hyperglycemia following
exposure to IH (135), pointing to the ability of the sympathetic
system tomodulate glucosemetabolism in addition to respiratory
outcomes (133). Chronic IH has also been observed to increase
tonic and reactive afferent chemoreceptor outputs from the
carotid body which in turn effects catecholamine to modulate
the autonomic nervous system (82–84) and leads to fasting
hyperglycemia (136) and hypertension (84). An interesting area
of research positions the carotid bodies as key integrators of
glucose metabolism, OSA, and autonomic function. Glomus
cells in the carotid bodies sense oxygen, carbon dioxide, and
glucose. Interestingly, oxygen and glucose signals can potentiate
one another, leading to scenarios where dysregulation of glucose
may lead to a dysregulation of O2 and CO2 sensing which in
turn may affect breathing (137). Addition of 2-deoxy-d-glucose
(2DG; a glucoprivic agent) in the drinking water of rats can
prevent phrenic long-term facilitation, a form of respiratory
motor plasticity, suggesting that alterations in glucose sensing
can directly alter breathing (138). Work in this field is ongoing
and shows great potential in elucidating bidirectional pathways
between glucose control and disordered breathing via the
sympathetic system.

INSULIN

A key player in glucose metabolism and tightly linked to
obesity, insulin action has also been investigated in the context
of OSA (95, 139). OSA is correlated with an increased risk
of T2D (53) and within the diagnosed OSA population,
approximately 15–30% exhibit symptoms of T2D (140, 141).
Moreover, a meta-analysis of longitudinal studies concludes that
the relative risk ratio of an individual with moderate/severe
OSA developing T2D is 1.63 (95% CI: 1.09–2.45) compared
to an individual without significant apneic events (58). Within
the T2D population, reportedly 58–86% of individuals also
present with OSA (70–72). Moreover, in individuals with
existing T2D, a dose-dependent relationship is found between
worsening glycemic control and the severity of OSA independent
of obesity (68, 73, 74). If autonomic neuropathy is present
alongside T2D, the individual is at an increased risk for
mixed apneic events due to the degradation of respiratory
neurons resulting in overall decreases in chemoreception and
increased HCVR (75). While these statistics may suggest that
T2D precedes the development of OSA, this hypothesis has not
been supported by clinical longitudinal studies (142) or meta-
analysis (143). Instead, the clinical data point to the likelihood
that OSA exacerbates existing T2D through an insulin-related
mechanism.

Within non-diabetic and T2D individuals, insulin resistance
appears to be more closely tied with OSA than fasting
hyperglycemia or glucose variability. Clinical association studies
have generally found that insulin resistance is independently

associated with OSA (52, 59–64), however data undermining this
association, particularly from early clinical studies are present
(144, 145). Much of the research exploring the relationship
between insulin and OSA has been pioneered in rodent models
utilizing IH. Indeed, chronic IH exposure leads to insulin
resistance in lean rodents and exacerbates insulin resistance
in diet-induced obese models (39, 77, 80, 90). IH can also
affect β cell function, leading to augmented basal secretion
and reduced glucose-stimulated insulin secretion (80, 146).
Much of insulin resistance induced by IH has been attributed
to elevated sympathetic activity (147–149), as pharmacological
or surgical methods used to block the sympathetic response
prevent the development of IH-induced insulin resistance (136,
150). Indeed, individuals with OSA demonstrate increased
sympathetic nerve activity (151). Additionally, IH is observed
to increase pancreatic oxidative stress and reduce β3-adrenergic
receptor mediated insulin secretion (152). A possible mediator
between elevated sympathetic activity and insulin resistance
following IH may be increased lipolysis. Increased sympathetic
outflow contributes to lipolysis, which in turn leads to elevated
free-fatty acids and finally insulin resistance (153). This
hypothesis is supported by data from animal models where
pharmacological inhibition of lipolysis prevents IH-induced
decreases in insulin sensitivity (81). A recent clinical study
further demonstrated that lipoprotein abnormalities observed in
OSA individuals are more directly related to insulin resistance
than OSA severity itself (154). Upstream of lipolysis, hypoxia-
inducible factor-mediated transcription (e.g., HIF-1α, HIF-2α)
may play an important role in linking oxygen desaturation
induced by IH with lipolysis (155–157) and/or insulin resistance
(158).

While mounting evidence supports the conclusion that IH
leads to insulin resistance, research on how decreased insulin
sensitivity may lead to the development of OSA is scant
due in part to the challenging experimental designs. One
such way to specifically manipulate insulin is with the drug
streptozotocin (STZ). STZ leads to apoptosis of pancreatic
beta cells and, when given in low to moderate doses, is used
as a model of T2D, reflecting insufficient insulin action and
hyperglycemia. Interestingly, STZ-induced T2D (e.g., STZ-T2D)
rats have marked reductions in ventilatory control, including
reductions in the HCVR and the HVR, as well as increased
incidents of apnea (96, 97). Insulin or metformin treatment
can substantially improve disordered breathing in STZ-T2D
rats (96, 97), suggesting that insufficient insulin action may
contribute to the development of sleep apnea. However, it
is possible that observed changes in chemoreception and
disordered breathing are secondary to STZ-induced decreases in
peripheral sympathetic activity (159) as opposed to insulin action
per se. Along these lines, STZ-T2D rats exposed to chronic IH
exhibit an attenuation in fasting hyperglycemia and mitigated
(160) or improved (161) insulin resistance, perhaps reflecting
the inability of IH to stimulate a sympathetic system dampened
by STZ treatment. Notably, this effect in STZ-T2D rodents is
distinct from IH’s effect in diet-induced obese T2D animals,
which experience an exacerbation in insulin resistance (39, 77,
80, 90).
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If insulin action were central to the pathogenesis of sleep
apnea, one might expect insulin deficient, Type 1 Diabetic (T1D)
individuals to have a higher incident of disordered breathing.
In support of this conclusion, children with T1D exhibit
more total apneic events and increased CSA, associated with
hyperglycemia and autonomic dysfunction (98, 99). Conversely,
individuals with T1D are also at risk for a rare syndrome
presenting with disordered breathing and hypoglycemia. Dead-
in-bed syndrome is believed to occur due to initial bouts of
nocturnal hypoglycemia associated with excessive hypotonia of
the airway followed by IH, breathing depression, and finally
cardiac arrhythmia (162). While these two conditions are
distinct in insulin action, they share a common result on
sympathetic function. Indeed, chemoreceptors at the carotid
bodies are known to respond to elevated insulin with sympathetic
activation (163, 164) while hyperglycemic events also cause
autonomic dysfunction (99). These data suggest that it may not
be insulin action per se associated with disordered breathing,
but insulin’s effect on the autonomic system. Beyond T1D and
T2D individuals, other disease states associated with insulin
resistance have increased risk of exhibiting disordered breathing.
Women with polycystic ovary syndrome (PCOS) exhibit insulin
resistance and are 30 times more likely to exhibit OSA compared
to women without PCOS (100). Moreover, the insulin resistance
displayed by PCOS individuals predicts OSA independent of
obesity (101, 102). Hyperinsulinemia and hypoglycemia is also
present in individuals with congenital central hypoventilation
syndrome (CCHS), a syndrome associated with impairments
in chemosensitivity and sleep disordered breathing due to a
mutation in the PHOX2B gene (134). Individuals with CCHS
also exhibit dysregulation to their autonomic nervous system
which likely contributes to both their metabolic and disordered
breathing phenotype (134). Taken together, these clinical studies
suggest that insulin resistance may be an important contributing
factor in OSA pathogenesis. However, it is difficult to determine
the isolated role of insulin action as alterations in autonomic
nervous system activity and/or chemosensitivity are often
occurring simultaneously.

In most randomized clinical trials, CPAP treatment improves
short-term insulin resistance (165), however the impact of
CPAP on long-term insulin resistance is unknown (77). Long-
term improvements in insulin action due to CPAP would
support the hypothesis that OSA leads to or exacerbates
insulin resistance and undermine the hypothesis that insulin
resistance itself was leading to OSA. Echoing the latter, a
recent randomized, placebo-controlled pilot study reported that
manipulating insulin sensitivity via treatment with pioglitazone
did not affect OSA (145). However, data from rodent models
complicate these findings. In non-obese, high-fat diet fed rats,
metformin treatment increased insulin sensitivity and prevented
the development of sleep apnea independently of body weight
(103). This discrepancy may be due to the specific type of
apnea being studied. In rats, central apneic events occurring
with relatively higher frequency than in the general human
population. If this is true, further research into differentiating
between obstructive, central, and mixed apneic events may yield
differential contributions of insulin resistance.

Overall, ample evidence demonstrates that insulin resistance
is associated with OSA independent of obesity, and that the
cyclic bouts of hypoxia experienced by OSA individuals may
be key to exacerbating insulin resistance. However, evidence
demonstrating that insulin action alone leads to or exacerbates
OSA is limited. One possibility is that insulin resistance is
one of many factors affecting sleep disordered breathing and
requires coincident impairments in the autonomic nervous
system, glycemic control, or others (see leptin in the following
section) to generate the conditions necessary for promoting OSA.

LEPTIN

Leptin is a satiety hormone released by and in proportion to
adipose tissue stores. The robustly positive relationship between
leptin and body fat makes leptin an obvious confound when
speculating on the root cause of OSA. In general, as leptin
increases with fat mass, it acts as an anti-obesity hormone.
However, too much leptin can lead to leptin resistance wherein
the anti-obesity properties are no longer triggered. Indeed,
treating obese individuals with peripheral leptin fails to reduce
body weight (166). However, leptin resistance may not impact all
of leptin actions. For example, even in obese individuals, leptin’s
action on sympathoexcitatory actions is maintained (167). It is
possible that elevated leptin and/or leptin resistance observed in
obesity may be contributing to OSA.

In non-T2D individuals, clinical studies have identified a
positive association betweenOSA and leptin independent of body
fat (61, 65). Though a causal relationship has not been defined,
there is also evidence that both leptin resistance (168, 169) and
OSA increase with aging (144). Healthy pre-menopausal women
have significantly higher circulating leptin levels compared to
men independent of body weight (168) and are also significantly
less affected by OSA (0.6% of pre-menopausal females vs. 3.9%
of males) (170), suggesting that increased leptin signaling or
elevated leptin may be protective of OSA. However, this effect
appears to be absent in post-menopausal women (171). Based on
these association studies like these, if leptin action is involved in
OSA, then the involvement of other endocrine systems including
sex-hormones and insulin resistance may be important co-
contributors to OSA.

Recently, accumulating evidence points to leptin action
upstream of disordered breathing. Clinical data from individuals
with obesity hypoventilation syndrome suggest that leptin
resistance contributes to a reduction in HCVR and HVR
likely via an impaired chemosensitivity (172). Leptin deficient
ob/ob mice exhibit a disordered breathing phenotype (104),
including a reduction in HCVR (105), and treating ob/ob
mice with leptin improves ventilation within 3 days, before
significant weight loss occurs (105). The obese Zucker rat,
which lacks leptin receptors, also exhibit a decreased HVR (106)
however maintain a stable upper airway during sleep (173).
Leptin resistant New Zealand Obese mice exhibit inspiratory
flow limitation, suggestive of sleep disordered breathing (107).
These rodent data are partially recapitulated in individuals with
lipodystrophy which exhibit chronically low levels of leptin
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(109, 110) and are at a greater risk to the development of
OSA (111), suggesting that insufficient leptin action may lead to
OSA in humans. However, lipodystrophic individuals also have
increased fat deposits around the neck and exhibit characteristic
insulin resistance (112, 113), making it difficult to determine the
individual contribution of leptin on apneic events independent
of physical body weight or other physiological variables such as
insulin.

Leptin action may also be instrumental in downstream
signaling of OSA. IH has been shown to lead to a significant
increase in leptin levels in both rodents and humans (37, 85–
89). Similar increases in leptin are observed in OSA patients (66)
and in those with shortened sleep (76). CPAP treatment in OSA
individuals tend to decrease leptin levels independent of body
weight, however this is not consistently observed in all studies
(128). As many patients lose weight with CPAP, noting changes
in body fat specifically (174), is particularly important to consider
when reflecting on leptin action. When exposed to IH, rodents
with deficient leptin signaling have exacerbated insulin resistance
(175) and increased cardiovascular impairments including
endothelial dysfunction (176). Leptin treatment prior to IH
reduces insulin resistance and hyperlipidemia and improves
endothelial relaxation and vascular stiffness in ob/ob mice
(175, 177). Most intriguingly, leptin treatment can mitigate IH-
induced hyperlipidemia and cardiovascular outcomes in lean,
wild type (177) suggesting that a boost in leptin signaling may
prevent downstream cardiometabolic consequences of IH. As
these studies focus on peripheral leptin treatment, it is unclear
if leptin is acting primarily on peripheral or central targets.
However, recent evidence that manipulation of specific neuronal
leptin receptors can lead to tachypnea and a decreased HCVR
(108) supports the hypothesis that neuronal leptin signaling may
contribute to disordered breathing.

Given the role of leptin in ventilatory drive and the
increases observed following IH, leptin may be acting by way
of a counterregulatory mechanism in an attempt to improve
disordered breathing. Some have proposed leptin is directly
controlled by hypoxia (86). However, leptin’s tight relationship
with other key players in OSA, including obesity and insulin
sensitivity (178), especially in T2D individuals (179), make it
difficult to draw specific conclusions about the role of leptin
in OSA. Key areas of leptin’s involvement in OSA require
further exploration, including leptin’s action in chemosensitive
regions, and the synergistic role of leptin, insulin, and other
hormones on downstream cardiometabolic outcomes associated
with OSA.

CONCLUSIONS AND FUTURE
DIRECTIONS

The strong association between obesity, OSA, and T2D has led
many to speculate about the bidirectional relationship between
metabolic disease and OSA. A wealth of clinical studies suggests
that OSA can exacerbate T2D, and animal studies have echoed
this conclusion demonstrating that rodents exposed to IH show
impairments in glycemic control, insulin resistance, and altered

leptin levels. With the aid of these animal models, a number
of mechanistic hypotheses have been posed which link OSA to
the metabolic syndrome, including an elevation in sympathetic
tone, increased lipolysis, inflammation (180), and reductions
in chemosensitivity. A more debated hypothesis positions the
physiological components of obesity, including glucose, insulin,
and leptin signaling as key contributors to the etiology of OSA.
While it is becoming clear that elements beyond the physical
weight of body fat may be leading to OSA, the field is largely
undecided on which factor(s) are critical to OSA’s etiology.
Novel hypotheses on this aspect of the directional relationship
would do well to consider the synergistic relationship between
insulin and leptin at the foundation for healthy and disordered
breathing. Other new avenues of research show great promise
in increasing our understanding of OSA and the relationship
to cardiometabolic diseases. Emerging evidence that the gut
microbiota is altered following IH (181), for example, elucidates
a novel, potential link between OSA, glucose metabolism, and
the gut (182). The involvement of the circadian biology with
OSA and sleep disordered breathing also shows great promise
(183). OSA individuals exhibit a circadian dysregulation of
cortisol (184), and treatment with melatonin has been found
to mitigate IH-induced hyperglycemia (185), insulin resistance,
and microvascular damage (186). Research in these fields are
on-going and may revel exciting new information about OSA
etiology.

Advancing our knowledge on the etiology of OSA may
lead to novel treatment strategies. Currently CPAP is the most
effective and widely used treatment for individuals with OSA
(27). Despite its low compliance (29), CPAP treatment modestly
improves blood pressure (151), attenuates heart failure (187),
and improves cardiac function (188, 189) and can significantly
reduce mortality due to cardiovascular diseases (190). CPAP can
also improve AHI (191) and blood oxygenation in individuals
presenting predominantly with CSA (192). CPAP is unique
in that it not only targets physical obstructions but also
alleviates a brain-central failure to breathe. Indeed, the success
of CPAP reflects the heterogenous nature of sleep apnea with
both anatomical and neuronal underpinnings. For comparison,
surgical treatments such as the Uvulopalatopharyngoplasty
(UPPP) target anatomical obstructions and success rates are
heavily dependent on degree of anatomical obstruction (193).
Whereas drugs targeting the brain improve OSA (194), but
not to the extent as CPAP. For example, fluoxetine (Prozac), a
selective serotonin reuptake inhibitor commonly used to treat
depression, in combination with ondansetron, improves apneic
events by ∼40% (195). Similarly, acetazolamide, a carbonic
anhydrase inhibitor used to treat glaucoma and other conditions,
has been shown to improve central sleep apnea and oxygen
saturation (196). Taken together, the current treatment data
supports a growing hypothesis that OSA involves more than
physical anatomical obstructions and implicates a physiological
component in the development of apneic events. Especially in the
cases of mixed apneic events, more common in those with T2D
(26), it becomes critical to understand the etiology of sleep apnea
in order to effectively treat it beyond physical and anatomical
obstructions.
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