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Metformin, a widely used anti-diabetic molecule, has attracted a strong interest in the

last 10 years as a possible new anti-cancer molecule. Metformin acts by interfering

with mitochondrial respiration, leading to an activation of the AMPK tumor-suppressive

pathway to promote catabolic-energy saving reactions and block anabolic ones that

are associated with abnormal cell proliferation. Metformin also acts at the organism

level. In type 2 diabetes patients, metformin reduces hyperglycemia and increases insulin

sensitivity by enhancing insulin-stimulated glucose uptake in muscles, liver, and adipose

tissue and by reducing glucose output by the liver. Lowering insulin and insulin-like

growth factor 1 (IGF-1) levels that stimulate cancer growth could be important features

of metformin’s mode of action. Despite continuous progress in treatments with the use

of targeted therapies and now immunotherapies, acute leukemias are still of very poor

prognosis for relapse patients, demonstrating an important need for new treatments

deriving from the identification of their pathological supportive mechanisms. In the last

decade, it has been realized that if cancer cells modify and reprogram their metabolism

to feed their intense biochemical needs associated with their runaway proliferation, they

develop metabolic addictions that could represent attractive targets for new therapeutic

strategies that intend to starve and kill cancer cells. This Mini Review explores the

anti-leukemic potential of metformin and its mode of action on leukemia metabolism.
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METFORMIN: A TALE OF DRUG REPOSITIONING IN CANCER

Metformin is an active biguanide derivative extracted from the French Lilac (Galega officinalis),
a plant discovered during the Middle Age for its healing effects on the diabetic condition.
Metformin/Glucophage R© was first prescribed in Europe in 1979, then in the United States by 1994
and is now the first-line treatment for type 2 diabetes (T2D) as more than 120 million patients are
treated worldwide (1).

In 2001 metformin appeared on the cancer scene when it was observed that in hepatocytes it
stimulated the AMP-activated serine threonine protein kinase (AMPK) (2), a sensor of the energetic
cellular status and an important tumor suppressor pathway (3, 4).

This discovery prompted clinicians and researchers tomeasure cancer frequency in T2D patients
under metformin. It was first shown in 2005 that metformin significantly reduced cancer incidence
in a cohort of 983 T2D patients (5). Other studies confirmed that metformin was associated with a
lower risk of cancer in treated diabetic patients (6–8).

These striking results led the renowned cancer researcher Lewis Cantley to consider that
“Metformin may have saved more people from cancer deaths than any drug in history” (9).
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Numerous investigations worldwide rapidly demonstrated
direct anti-cancer effects of metformin on various models (10–
12). In vitro, metformin exhibits a strong anti-proliferative action
on cancer cell lines derived from breast, colon, ovaries, pancreas,
lung, and prostate (13–15). These results were strengthened by
pre-clinical in vivo experiments using xenografts or transgenic
mice and chemically-induced cancers. As an example, in a
tobacco-induced lung carcinogenesis mouse model, metformin
decreases tumor burden by 72% (16). Evidences show that
metformin can act through an AMPK dependent (17, 18) or
independent (19) way. However, despite metformin is widely
used in clinic, its molecular mechanism of action is still under
debate.

METFORMIN: MODE(S) OF ACTION

From the different reports it appears that metformin exerts a
double action at both organism and molecular levels.

Metformin’s Systemic Effects
Within the organism, metformin has an anti-hyperglycemic
action but as it does not decrease insulin secretion there
is no risk of hypoglycemia in normal subjects (20). In
muscles, metformin reduces hyperglycemia through different
mechanisms: by enhancing insulin-stimulated glucose uptake
and reducing hepatic glucose output (21). It lowers the
production of glucose by the liver, and increases glucose
utilization by muscles and adipocytes. This results in a decreased
insulinemia and an amelioration of insulin sensitivity, likely
counteracting the increased glucose uptake by insulin, which
facilitates tumor initiation and progression (22). It was thus
envisioned that the anti-cancer effects of metformin could be
due to its ability to reduce circulating levels of glucose and
consequently of insulin and insulin-like growth factor 1(IGF-
1) that are suspected to feed different cancers expressing the
receptors for these growth factors on their surface (23–26).

Diabetes, in particular T2D, and obesity are clearly associated
with an increased risk to develop various cancers (27).
However, no increased incidence was observed for hematologic
malignancies (28) suggesting at first that the systemic effects
of metformin may not apply to leukemia. Nevertheless, a
metabolic syndrome with insulin resistance has been reported in
leukemic patients exposed to high dose glucocorticoids (29). This
could favor a therapy-induced obesity with hyperinsulinemia
that supports leukemic cell survival and worsens patient’s
outcome. Insulin and IGF-1 receptors were found expressed
on acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (30, 31) and insulin stimulates in vitro the
proliferation of ALL cell lines and primary cells that were
sensitive to metformin (32). At the molecular level, an IGF1-IGF-
1R autocrine loop is responsible for activation of a leukemia-
supportive PI3K/Akt/mTOR pathway (33). Pharmacological
interference with the insulin receptor and/or IGF1R autocrine
loops affects leukemic proliferation (34) and potentiates the
apoptotic action of etoposide (31). Similarly, targeting IGF-1R
interferes with the growth of chronic lymphocytic leukemia
(CLL) (35).

If insulin/IGF-1 do not appear to be strong oncogenic drivers
for acute leukemias, they are likely trophic factors, supporting the
rational use of metformin to decrease hyperinsulinemia and to
indirectly affect leukemic cells.

Metformin’s Molecular Effects
As shown in Figure 1, metformine inhibits oxidative respiration
by acting on the complex I of the mitochondrial respiratory
chain (17, 18), leading to a drop in ATP synthesis, tilting the
AMP/ATP balance toward AMP, with the consequent stimulation
of AMPK. It is well known that the LKB1/AMPK pathway
also regulates the protein synthesis rate through the control of
mTOR. Activated AMPK stimulates tuberous sclerosis complex
1/2 (TSC1/2) through phosphorylation and its GTPase-activating
protein (GAP) function toward the small G-protein Rheb (Ras
homolog enriched in brain), thus determining the switching off
of Rheb and resulting in the inhibition of mTOR activity (36–
38). AMPK activation requires binding and phosphorylation by
the tumor suppressor liver kinase B1 (LKB1) (39, 40). Therefore,
the absence of LKB1 impedes an AMPK-negative regulation of
cancerous cell metabolism.

The AMPK pathway is a major repressor of the mTOR
pathway that uses energy and nutrients to stimulate ATP-
consuming anabolic reactions, favoring growth and proliferation
(41). Activation of the PI3K/Akt pathway, a major upstream
activator of mTOR, is restrained by the lipid phosphatase and
tumor suppressor PTEN (phosphatase and tensin homolog),
frequently inactivated in cancer (42, 43). Defects in control by
PTEN lead to a constitutive activation of the Akt pathway that is
involved in the etiology of various pathological conditions such
as diabetes, aging, and cancer (44).

The mTOR serine/threonine kinase is the active central
component of the mTORC1 and mTORC2 cellular complexes
that function to coordinately stimulate cell growth (44).
mTORC1 is crucial for the synthesis of proteins, lipids,
and nucleic acids while mTORC2 phosphorylates Akt to
stimulate proliferation and survival (45, 46). Furthermore,
AMPK promotes phosphorylation of TORC2 (transducer of
regulated CREB activity 2) to block its nuclear translocation and
association with phospho-CREB (CRE binding protein), thus
impairing the transcription of genes involved in gluconeogenesis
such as peroxisome-proliferator-activated receptor-γ co-
activator-1α (PGC-1α), glucose-6-phosphatase (G6Pase), and
phosphoenolpyruvate carboxykinase (PEPCK) (38, 47).

Through AMPK stimulation, metformin interferes with
mTORC1 activation. In addition, AMPK inhibits ATP formation
through fatty acid oxidation (FAO) (48) and stimulates glycolysis
by phosphorylation-induced activation of phosphofructo-2-
kinase (PFK2) (49). Also, AMPK modulates gene expression for
important metabolic enzymes (50) and induces a metabolic cell
cycle checkpoint through p53 activation (51). Therefore, AMPK
agonists as well as indirect activators such as metformin can be
envisioned as promising anti-cancer compounds.

AMPK-Independent Effects of Metformin
Not all actions of metformin are mediated by AMPK (19).
Metformin together with hexokinase 2 (HK2) depletion
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FIGURE 1 | The entrance of metformin is mediated by the OCT1 transporter. By blocking the mitochondrial respiratory chain complex I, metformin and phenformin

determine an increase of the AMP/ATP ratio, a condition that activates AMPK through phosphorylation by LKB1. Metformin-activated AMPK counteracts the

activation of the mTORC1 complex, impairing cell cycle progression and proliferation, angiogenesis, as well as lipid and protein syntheses. Metformin can induce

REDD1 and inhibit Rag GTPases, thus leading to the blocking of mTORC1 through an AMPK-independent way. In an AMPK-dependent way metformin promotes

TORC2 phosphorylation and blocks its nuclear translocation, its association with phospho-CREB, impairing the transcription of genes such as PGC-1α, G6Pase, and

PEPCK whose products promotes gluconeogenesis.

synergistically interferes with mTORC1 activation through
the induction of the mTORC1 inhibitor REDD1 (regulated in
development and DNA damage) in hepatocellular carcinoma
cells, even upon depletion of AMPKα1 and AMPKα2 (52).
Repression of G6Pase and of hepatic glucose production by
metformin still occurs in both AMPK and LKB1-deficient
hepatocytes (53).

In AML cells metformin can block proliferation at either
G0/G1 or S-G2/M, depending on the cell line analyzed.
Furthermore, by using a siRNA of AMPKα1/2, Scotland and
colleagues showed that metformin-induced cell death is not
dependent by AMPK activation in AML cells (54). In prostate
cancer cell lines, metformin has AMPK-independent anti-
proliferative effects through induction of REDD1 (55). In breast
cancer cells metformin interferes with purine/pyrimidine and
glutathione synthesis upstream of AMPK (56).

Metformin and resveratrol synergistically block pancreatic
cancer cell proliferation in vitro and in vivo by inhibiting vascular
endothelial growth factor B (VEGF-B) signaling pathway (57).

LEUKEMIA

Leukemia represent 2.8% of all cancers and 3.4% of deaths from
cancer worldwide, with 351,000 new cases/year. Leukemia results
from the transformation of hematopoietic stem-progenitor cells
(HSPCs). Acute lymphoid or myeloid leukemia (ALL/AML)

show an intense proliferation of immature leukemic blasts
arrested at various stages of differentiation (58, 59). Despite
important progress in treatments, the 5-year survival for T-ALL
is 70–75% for children and only 35–40% for adults (59). New
therapeutic strategies should therefore be identified to eradicate
leukemia.

Finding New Therapeutic Options for
Leukemia
Targeting the energetic metabolism of cancer cells is emerging as
an attractive option (60) as cancer/leukemic cells reprogram their
metabolism to fulfill their intensemetabolic needs. Consequently,
they develop metabolic addictions that can be used as new
targeting options to starve and kill them (60).

The PI3K/Akt/mTOR Axis Supports
Leukemic Growth
The control of the PI3K/Akt/mTOR axis by PTEN is fundamental
for the self-renewal of HSCs and PTEN knock-out generates
leukemia in mice (61). A common biochemical feature among
acute leukemia is the abnormal and constitutive activation of
the PI3K/Akt/mTOR pathway (62, 63). Separated or combined
pharmacological targeting of PI3K, Akt, or mTOR triggers
leukemic cell death in AML and ALL (64, 65). PI-103, a
dual inhibitor of PI3K and mTOR displays anti-leukemic
properties (66). Unfortunately, the immunosuppressant rapalogs
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(Temsirolimus, Everolimus) that target mTORC1 activation,
showed a limited anti-cancer activity as they failed to inhibit
mTORC2 activity and reactivated the tumor supportive Akt
pathway (41, 67, 68). Torkinibs, ATP-competitive inhibitors of
the mTOR kinase activity, target both mTOR complexes (69, 70)
and have already displayed promising anti-cancer properties on
leukemia models (71–73).

Metformin: A New Treatment for
Leukemia?
Metformin represents an interesting opportunity to target
leukemia through inhibition of constitutive mTOR, a
pathological hallmark in leukemogenesis. In 2010 metformin
was shown to interfere with AML proliferation and clonogenic
activity and to induce apoptosis in human immortalized cell
lines and primary samples while it did not affect normal CD34+
HSCs (37). Metformin, after blocking mTORC1 activation,
prevents initiation of translation, in particular of c-myc, cyclin
D1, and Bcl-xL that are crucial for cancer proliferation (37).
Metformin induces apoptosis of leukemic megakaryoblasts from
acute megakaryoblastic leukemia (AMKL) which is a rare type
of leukemia with poor prognosis (74). Metformin could be
an option for the DNA repair defective Fanconi Anemia pre-
leukemic disorder as it is toxic after inhibiting the respiratory
chain (75).

In T-ALL cells, metformin stimulates AMPK to inhibit mTOR
and trigger an autophagic response that precedes apoptosis.
By affecting protein synthesis, metformin strongly decreases c-
myc and Bcl-xL levels (76). This apoptotic action of metformin
in T-ALL also involves an AMPK-dependent activation of the
ER stress/unfolded protein response (UPR) (77). In this model,
metformin induces a compensatory, anti-apoptotic activation
of Akt and of PIM-2, that could be reversed by inhibitors,
synergizing with metformin for cell death induction.

Genetic defects in the PTEN tumor suppressor gene are
leading to the constitutive activation of the PI3K/Akt/mTOR
pathway in T-ALL (78) and are associated with a poor outcome
in pediatric T-ALL (79). Tumor cells from a mouse T-ALL
model generated by the T-cell specific deletion of PTEN display
a constitutive activation of PI3K/Akt/mTOR that could be
inhibited by metformin through AMPK activation and by
torkinibs (80). Deletion of LKB1 in mice with a PTEN+/-
background increases lymphoma incidence that appeared with a
shorter latency and were sensitive to metformin (81).

Metformin counteracted the activation of the
PI3K/Akt/mTOR pathway triggered by several oncogenes
such as the Bcr-abl fusion tyrosine kinase in CML and Phi+
T-ALL and B-ALL and the Tax oncoprotein in HTLV-1-induced
ATL (human T-lymphotropic virus type 1-induced adult-T-cell
leukemia). Through AMPK activation, metformin suppresses
proliferation and clonogenic activity of various CML lines,
including those expressing the imatinib-resistant T315I Bcr-abl
mutant (82). In ATL, LKB1/AMPK activation by metformin
inhibits leukemic proliferation by reducing Tax expression (83).
In CLL, metformin prevents cell cycle entry of leukemic cells
in vitro after engagement of a CD40-CD40L proliferative

stimulus (84). CLL cells that are sensitive to the tyrosine
kinase inhibitor dasatinib appears to be selectively killed by
metformin (85).

Leukemic stem cells (LSCs) are the rare cells at the
origin of leukemia and also of relapse because of their
intrinsic mechanisms of resistance to chemotherapies (86).
Interestingly, in T-ALL metformin targets the Hoescht 33342low

side population and the CD34+CD7-CD4- subset that are known
to be enriched in LSCs (76). Similarly, cancer stem cells (CSCs) in
different solid tumors appears to be highly sensitive to low doses
of metformin (87, 88).

Metformin in Combination Therapies
The eradication of cancer will require the combination of
multiple therapeutic strategies in a personalized manner. Anti-
cancer clinical protocols and drug cocktails would need to
be adapted to the specific genetic defects of each patient.
Nevertheless, targeting a common dysregulated cellular function
such as the reprogrammed cancer metabolism with a metabolic
disruptor such asmetformin is likely to be an interesting adjuvant
approach.

Metformin has already been associated to several classical
chemotherapeutic drugs with promising results. Metformin
shows additive effects with anthracyclines (doxorubicin,
daunorubicin) to reduce growth and survival of lymphoma cells
(80), T-ALL cells (89), and ALL (32). The use of metformin could
help to reduce the dose of doxorubicin necessary to prolong
remission (88) and consequently to reduce cardiac toxicity of
anthracyclines.

In T-ALLs metformin synergizes with dexamethasone, the
glucocorticoid used as first line treatment for acute leukemias
(80), and also potentiates the effect of the microtubule-disrupting
agent vincristine (90) and of the topoisomerase II inhibitor
etoposide (32).

All-trans retinoic acid (ATRA) is used in acute promyeloid
leukemia (APL) to overcome the differentiation block induced
by the PML-RAR fusion oncoprotein. By inducing PML-RAR
degradation, metformin synergized with ATRA to induce APL
cell death (91).

Triggering leukemia apoptosis at the mitochondrial level with
the bcl-2 inhibitor ABT-737 is a promising therapy which was
shown to be enhanced by metformin-induced mitochondrial
membrane depolarization (92). The anti-leukemic activity of
the Flt3 inhibitor sorafenib, that was developed to target poor
prognosis-ITD Flt3 AML cells, could be enhanced by metformin,
thus inducing a strong decrease in the expression of several
components of the mTOR pathway (93).

Metformin and Other Metabolic Disruptors
In several studies metformin displays strong potentiating
effects when combined with molecules affecting metabolism,
in particular glycolysis, such as ritonavir in multiple myeloma
(MM) (94) and CLL (95). In silico, metformin was predicted to
combine with an inhibitor of the Glut4 glucose transporter to
affect MM (96).

Disruption of the mitochondrial respiratory complex I by
metformin is followed by a compensatory upregulation of glucose
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uptake and glycolysis (97, 98). As a consequence metformin
was shown to synergize with the non-metabolizable glucose
analog and hexokinase inhibitor 2-deoxy-glucose (2-DG) in T-
ALL (80) and in CML (99) and with the glycolysis inhibitor
sodium dichloroacetate (DCA) in B-CLL (100). Similar effects
have been observed in Flt3-positive AML when metformin was
associated with the metabolic inhibitor 6-BT (101). Cell death
induction of MM cells after disrupting protein homeostasis
with the proteasome inhibitor bortezomib can be enhanced by
metformin, preventing a protective autophagic response (102).
ALL cells display a metabolic dependency on asparagine that can
be targeted with L-asparaginase, an effect further amplified by
metformin (80).

What Is Better: Targeting the Warburg’s
Effect or Mitochondria in Leukemia?
In the 1920s, Otto Warburg and colleagues observed for the first
time that cancer tissues were taking up enormous amounts of
glucose compared to the surrounding tissue. Later, in 1956 Otto
Warburg proposed that cancer cells have defective mitochondria
because they utilize glucose through aerobic glycolysis, unlike
normal cells which use glucose to produce ATP through oxidative
phosphorylation (OXPHOS) in mitochondria (103). It was
realized a couple of years ago that despite a far less efficient
ATP production, this metabolic reprogramming represents an
adaptation to optimize the utilization of nutrients to produce
the biomass necessary for the generation of new proliferating
cancer cells (104–106). Nevertheless, cancer and leukemic
cells need active mitochondria for their fitness. Targeting the
mitochondria respiratory function by inhibiting the electron
transport chain (80), mitochondrial translation (107), or the
FAO (108), are all new efficient approaches to kill leukemic
cells. Recently, a mitochondrial transfer from stromal cells
toward leukemic AML cells provided them with a survival
advantage toward chemotherapy (109, 110). An important
metabolic plasticity appears to take place as the environment
of leukemic cells is changing (111). AML cells can become
more sensitive to metformin when cultured in low-glucose
medium or after downregulating glycolysis with 2-DG or an
Akt inhibitor (54). Similarly, pharmacological approaches to
inhibit OXPHOSmarkedly enhanced the anti-leukemic effects of
cytarabine (112).

Metformin for Cancer Patients: Dose and
Effects
There are at least two important questions pending about the use
of metformin in cancer.

First, will the ability of metformin to control hyperinsulinemia
and glycemia in T2D patients stand for non-diabetic people?
The 306 registered clinical trials on metformin and cancer

will provide important answers. In relation to this review,
metformin is tested (NCT01324180) in relapsed childhood ALL
in association with vincristine, dexamethasone, doxorubicin, and
PEG-asparaginase that are classical drugs for these leukemias.
Metformin will be evaluated as a monotherapy for untreated or
relapsed CLL patients in a phase 2 pilot study (NCT01750567).

Second, the doses of metformin that are efficient in vitro on
cancer models are in the mM range, far above those obtained in
treated T2D patients (6–30µM) (113, 114). The cellular entry
of the highly hydrophilic metformin is limited by expression
of the organic cation transporter (OCT) (115). Interesting
areas of research aim at facilitating metformin uptake through
specific encapsulation, use of nanocarriers, or after chemical
modifications. Coupling a mitochondrial vector to metformin
(MitoMet) increases its ability to interfere with OXPHOS and
consequently its efficiency to affect proliferation and to trigger
ROS-dependent apoptosis in pancreatic cancer in vitro and in
vivo, without affecting normal fibroblasts (116).

Phenformin, a hydrophobic metformin derivative is more
active than metformin (81, 117) but was rapidly withdrawn from
the market in the late 1970s because of numerous deadly cases
of lactic acidosis. We now believe that phenformin could be
worth testing as an adjuvant molecule for cancer patients with
a monitoring of lactic acidosis. A clinical trial (NCT03026517)
will evaluate phenformin in combination with dabrafenib and
trametinib for patients with BRAF-mutated melanoma.

Recently Higurashi et al demonstrated the important role
of metformin in chemoprevention of colorectal cancer (118).
Other clinical trials are ongoing for coloncancer and other
tumor types (e.g., NCT03047837; NCT02581137; NCT01312467;
NCT01579812; NCT02581137).

CONCLUSIONS AND PERSPECTIVES

Many studies support to use metformin and derivatives like
phenformin as global adjuvants for classical anti-leukemic drugs.
Improving metformin entry and access to its cellular target(s)
through chemical modifications or the use of nanocarriers could
be important means to increase the potential of this interesting
anti-metabolic molecule.
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