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In healthy humans, seasonality has been documented in psychological variables,

chronotype, sleep, feeding, metabolic and autonomic function, thermoregulation,

neurotransmission, and hormonal response to stimulation, thus representing a relevant

factor to account for, especially when considering the individual susceptibility to disease.

Mood is largely recognized as one of the central aspects of human behavior influenced

by seasonal variations. This historical notion, already mentioned in ancient medical

reports, has been recently confirmed by fMRI findings, which showed that seasonality

in human cognitive brain functions may influence affective control with annual variations.

Thus, seasonality plays a major role in mood disorders, affecting psychopathology, and

representing the behavioral correlate of a heightened sensitivity to factors influencing

circannual rhythms in patients. Although the genetic basis of seasonality and seasonal

affective disorder (SAD) has not been established so far, there is growing evidence that

factors affecting the biological clock, such as gene polymorphisms of the core clock

machinery and seasonal changes of the light-dark cycle, exert a marked influence on the

behavior of patients affected by mood disorders. Here we review recent findings about

the effects of individual gene variants on seasonality, mood, and psychopathological

characteristics.
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INTRODUCTION

Seasonality is a central aspect of environmental variability, which has strongly influenced life on
Earth by driving the development of biodiversity among living organisms and the evolution of
extreme physiological adaptations and behaviors, such as migration and hibernation. In most
species, periodic variations of environmental conditions, particularly those related to the light-dark
cycle and depending on latitude, season, and time of day, require that internal timing mechanisms
induce the adaption of behavioral or physiological functions to such changes (1).

Biological rhythms with an approximate 24-h period, close to the daily light-dark cycle, are
known as circadian rhythms and defined by three fundamental properties: persistence of an∼24-h
rhythm, entrainability, and temperature compensation (2). The observation that these endogenous
processes are also present among organisms such as cyanobacteria, which represent one of the
earliest and most primitive species, suggests that circadian rhythms implicated a clear evolutionary
advantage (1).
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CLOCK GENES AND MOOD REGULATION

At the cellular level, circadian rhythms are generated
by a core molecular clock consisting of multiple
transcriptional/translational feedback loops (3). The
transcription factors circadian locomotor output cycles kaput
(CLOCK) and brain and muscle Arnt-like (ARNTL), or neuronal
pas domain protein 2 (NPAS2) proteins, dimerize and initiate
the expression of the clock proteins PERIOD (PER1, PER2,
PER3), and CRYPTOCHROME (CRY1, CRY2). With rising
accumulation, PER1-3 and CRY1/2 inhibit CLOCK:ARNTL
(or CLOCK:NPAS2) activity and therefore block their own
expression (3). An additional feedback loop is generated by
CLOCK:ARNTL (or CLOCK:NPAS2) mediated transcription
of REV-ERB and RORs, which in turn also regulate ARNTL
transcription (see Figure 1).

As recently reviewed by Albrecht, there is already solid
scientific evidence showing that the above-mentioned proteins
“not only self-promote their own temporally fluctuating
transcription, but also regulate the transcription of a large
number of clock-controlled genes (CCGs) and/or modulate key
molecular pathways via protein–protein interactions, such as the
monoaminergic system, the HPA axis or neurogenic pathways”
[(4), p. 1]. Several cellular processes in the brain are under the
control of the circadian clock, including “differentiation,
growth, motility and apoptosis, immune functions and
neuroinflammation, neurogenesis, and neuroplasticity” [(5),
p. 236]. A desynchronization of the circadian gene network
and disruption of its downstream mechanisms has therefore
widespread potential implications for a vast array of physiological
processes.

Hampp et al. demonstrated that the functional triade of PER2,
ARNTL, andNPAS2 and their encoded proteins, directly regulate
the activation of the monoamine oxidase A gene (Maoa). In
fact, the transcription and activity of the MAOA enzyme in
the mesolimbic neurons is decreased in mice carrying a genetic
deletion of the Per2 gene, causing an increase of the dopamine
levels and an altered neuronal activity in the striatum, as well as
behavioral changes (6, 7).

Dopamine is an important neurotransmitter in the reward
system, and its levels in the nucleus accumbens show a circadian
rhythmicity (6, 8). Considering that many other brain areas of the
reward system, including the ventral tegmental area, prefrontal
cortex, and amygdala, are also involved in both mood regulation
and clock genes expression, this suggests that the entire reward
circuit may be under the influence of the circadian clock, via
dopamine metabolism (5).

Cryptochromes (CRY2 and CRY1) are key components of
the molecular clock, which drive several functions of the
circadian pacemaker (9) and are necessary for the development
of intercellular networks in the suprachiasmatic nucleus (10).
CRY2 and CRY1 proteins are functionally repressors of the
transcription-translation loops, and inhibitors of the cyclic
adenosine monophosphate signal pathway (11–14). Due to these
important molecular properties at the circadian clock level, it has
been suggested that CRY2 and CRY1 may play a major role in the
metabolism of glucose and lipids (15, 16) and contribute to mood

regulation on daily basis, as well as to seasonal variations inmood
and behavior (17).

Finally, PER3 is one of the most robustly rhythmic genes
in humans and animals, playing a significant role in the
temporal organization of peripheral tissues and being associated
with diurnal preference, mental disorders, non-visual responses
to light, as well as brain and cognitive responses to sleep
loss/circadian misalignment (18). Some genetic variants are
supposed to interfere with the stabilizing effect of PER3 on
PERIOD1/2 proteins, which play critical roles in circadian
timing. These findings suggest that PER3 may represent an
important element of the missing molecular linkage between
sleep and mood regulation by adapting these processes to
seasonal changes (19).

CLOCK GENES IN MOOD DISORDERS

Several human population genetic studies have identified specific
single nucleotide polymorphisms (SNPs) or variable number of
tandem repeats (VNTR, see Supplementary Table 1) of different
circadian clock genes that are associated with mood disorders
(20, 21). These associations remain controversial, since most
findings could either not be replicated or hold up to correction
for multiple testing (22). From a pathophysiological point
of view, recent experimental work, and mathematical models
suggest that changes in period length and/or decreased amplitude
of the circadian oscillation may depend on the impact of
specific polymorphisms on the overall function in terms of
structure and stability of a given clock protein (23). By as
of yet poorly understood processes, the resulting functional
changes of the clock-machinery and misalignment between
clock-regulated functions and the environment can influence
core psychopathological features of mood disorders, including
the timing of onset and recurrence of illness episodes, individual
symptomatology, and response to treatments (5).

Depressive Disorder
In depressive disorder (DD) (7), two TIMELESS polymorphisms
have been found to be associated with excessive daytime fatigue
among women, as well as a two-way interaction of TIMELESS
and ARNTL (rs1868049) with early-morning awakening among
men (24). Lavebratt et al. demonstrated that RORA, PER2, and
NPAS2 are associated with DD and the onset of depression
within 3 years independently from financial strain (25). Both
an increased or decreased PER3 transcriptional activity may
implicate a higher risk for MDD. In particular, Shi and colleagues
identified a missense mutation in hPER3 (hPER3-P856A), which
slightly lengthens the circadian period and is related to MDD
in females, by likely driving changes in clock-controlled genes
as opposed to SCN timing. Moreover, the authors describe
other sex-dependent associations of common polymorphisms
with a CLOCK variant protective of MDD in males and NPAS2
polymorphisms with association of MDD especially in females
(26). NPAS2 and CRY1 were also linked with DD in a study
by Soria et al. (27), with the latter finding replicated by Hua
et al. (28), who, instead, did not find any association of CRY2
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FIGURE 1 | Molecular mechanisms of the circadian clockwork. Following the dimerization of the transcription factors circadian locomotor output cycles kaput

(CLOCK) and brain and muscle Arnt-like (ARNTL) or neuronal pas domain protein 2 (NPAS2) proteins, the expression of the clock proteins period (PER1, PER2, PER3)

and cryptochrome (CRY1, CRY2) is initiated. The PER and CRY proteins interact with the serine/threonine kinases casein kinase 1 δ/ε, (CK1 δ/ε) and form a complex

allowing nuclear translocation. In the nucleus they act as inhibitors of CLOCK:ARNTL (or CLOCK:NPAS2) activity and therefore block their own expression. An

additional feedback loop is generated by CLOCK:ARNTL (or CLOCK:NPAS2) mediated transcription of REV-ERB and rar-related orphan receptor A/B (RORA/B),

which in turn also regulate ARNTL transcription. Up to 10% of the human genome is under the influence of the molecular clock (clock-controlled genes, CCG). RORE:

ROR response element.

(rs10838524) with major depressive disorder (MDD). However,
Kovanen et al. suggested that CRY2 and the protein kinase C delta
binding protein (PRKCDBP, or CAVIN3) variants may represent
risk factors for MDD (29). Finally, the best association between
a SNP and MDD based on genome-wide association studies has
been found for NR1D1 (30).

Bipolar Disorder
The observation that patients with bipolar disorder (BD) show
alterations in circadian rhythms, and recurrent fluctuations of

mood and sleep disturbances (31) has suggested a possible
dysfunction of the biological clock in the pathogenesis of BD (32).
Moreover, since heritability in BD is estimated to be as high as
85% (33), an increasing interest in identifying genetic risk factors
has supported different association studies looking at the link
between BD and some core clock genes (7).

Significant SNPs associations with bipolar 1 disorder were
found for TIMELESS and ARNTL (34), as well as for NPAS2,
RORB 9, and CRY2 (35). Gonzalez et al. performed a family-
based association study of circadian genes and BD in a Latino
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population, reporting nominal associations between SNPs of
CSNK1E, ARNTL, CSNK1D, CLOCK, as well as statistically
significant associations between CSNK1E andARNTL haplotypes
and BD, with either increased susceptibility or protective effect
against the development of the disorder respectively (36). Shi
et al. demonstrated the three-way interaction of BHLHE40,
TMEM165 (transmembrane protein 165), and CSNK1E with
bipolar disorder (37), while McGrath et al. focusing their analysis
on the RORA and RORB genes, found that 4 RORB SNPs were
associated with bipolar 1 disorder (38). Etain et al. indicated a
significant association of TIMELESS and of RORA with BD (39),
while Lee et al. found CLOCK 3111T/C to have significant allelic
and genotypic associations with the disease (40). GSK3beta was
associated with bipolar type 2 disorder in women (41). General
associations of NR1D1 (42) and of VIP (27) with BD were also
reported. In genome-wide association studies, the associations of
ARNTL, GSK3beta, RORB, andCRY 2 gene variants with BD have
gained further support (30, 43).

Circadian Genes and Phenotypic
Characteristics in Bipolar Disorder
Genetic polymorphisms influencing clock genes functions have
shown major effects on the phenotypic clinical features of disease
(44). A SNP in CLOCK gene, which is known to influence diurnal
preference in healthy subjects (45), also impacts on bipolar
patients, leading to worsening of insomnia, higher evening
activity and delayed sleep onset. Carriers of the allelic C variant
also showed a higher episode recurrence rate and different
neuropsychological performance (46–48), while the G allele of
the same polymorphism has been linked with symptoms of
appetite disturbances in females (49). A correlation with violent
suicide attempts was shown for other SNPs in CLOCK and
TIMELESS, while the latter is also associated with the lifetime
number of suicide attempts and a positive family history of
suicide (50). A VNTR of PER3 gene was shown to influence the
general age of onset, as well as a postpartum depressive onset
of the disorder (51, 52). PER3 was also linked to an increased
preference for the evening hours in daily activity among BD
patients (42). Maciukiewicz et al. observed further associations
between SNPs of ARNTL variants with sleep, appetite and
depressive dimensions in BD (49).

A functional SNP in the promoter region of the GSK3beta
gene (nt−171 to+29), which also shows a general association to
impulsivity and suicide risk among patients with bipolar disease,
was found to influence the age at onset of BD, as well as the
response to treatment with antidepressant, lithium salts and
chronotherapeutics (53–55). This polymorphism was recently
shown to also influence white matter microstructure of bipolar
patients under ongoing lithium treatment (56) and gray matter
volumes in areas critical for the generation and control of affect
implicated in BD pathophysiology (57).

Other polymorphisms influencing treatment response, such as
the mood stabilizer effect of lithium salts (variant in the promoter
of NR1D1) and a general association with positive treatment
response (CRY1) have been described (58). Finally, Sjöholm et al.
identified two risk haplotypes and one protective haplotype in

the CRY2 gene associated with rapid cycling in BD (59) (see
Supplementary Table 1).

GENETICS OF SEASONALITY AND
SEASONAL AFFECTIVE DISORDER

The interplay between mood variations and seasonal rhythms
in humans has received renewed interest since the diagnosis of
Seasonal Affective Disorder (SAD) was proposed by Rosenthal
in 1984, as “a condition characterized by recurrent depressive
episodes that occur annually at the same time each year”
[(60), p. 72]. The observation that many adults experience a
“subsyndromal SAD”, with milder vegetative symptoms in the
fall/winter months (61, 62), suggested that “seasonality may be
a dimensional process rather than a discrete syndrome” [(63),
p. 315].

Serotonergic Genes
Although the genetic basis of seasonality and SAD has not
yet been completely identified, several studies suggest that
both conditions have an inherited component (64–66). From
a pathophysiological point of view, the typical symptoms of
SAD, such as overeating, carbohydrate craving, weight gain, and
oversleeping, point to a dysfunction of the serotonergic system
(66). Moreover, the serotonin level in the human hypothalamus
shows seasonal variations, with a general decrease during the
winter season (67). The serotonin hypothesis is also supported by
the large therapeutic evidence that selective serotonin reuptake
inhibitors (SSRIs) and bright light therapy are effective in winter
SAD (68–71), with reversion of this effect by rapid tryptophan
depletion (70, 72).

Therefore, the first pioneer genetic studies focused on the
molecular components of the serotonergic system (73). Rosenthal
et al. showed that the short (s), as opposed to the long (l),
allele of the 5-HT transporter linked polymorphism (5-HTTLPR)
contributes to the trait of seasonality and is a risk factor for SAD
(74). First reports showing an association of this variant with
general susceptibility and several features of the clinical course
among patients with SAD (75–77) could not be corroborated by
a meta-analysis by Johansson et al., but the authors concluded
that the polymorphismmay have an effect on seasonal behavioral
traits (78, 79).

Recent Positron Emission Tomography (PET) studies showed
a significantly higher activity of serotonin transporter binding
potential in several brain regions, during fall and winter,
compared to spring and summer, in healthy volunteers (80,
81). Furthermore, “the first [11C]DASB PET longitudinal study
investigating whole-brain seasonal 5-HTT fluctuations in both
patients with SAD and in healthy individuals reported that
a whole-brain seasonal change in 5-HTT predicted symptom
severity in patients with SAD, an effect primarily driven by
females with the short 5-HTTLPR genotype (S’ carriers)” [(82),
p. 2], (83). These findings were later confirmed by other groups
(83, 84).

The serotonin 5-HT2A receptor gene has also been proposed
as major candidate gene in association studies of seasonality
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and SAD (85, 86). In particular, it has been suggested
that “downregulation of 5-HT2A receptors may underlie the
therapeutic effects of SSRIs” [(64), p. 656], (87) and the
effectiveness of light therapy in the treatment of SAD has
also been linked to an alteration of the sensitivity of 5-HT2A
receptors (76). Moreover, specific sequence polymorphisms in
the coding region of the serotonin 5-HT2A receptor gene have
been found to be associated with the clinical features and
course of depressive disorder or directly with seasonality and
SAD (64, 86, 88–90).

Circadian Genes
Apart from an extensive connection between SAD and the
serotoninergic system, genes of the core clock family have also
been implicated in the disease. After a first report of a SNP
in NPAS2 being linked to SAD (91), Partonen et al. found
further SNPs of PER2, ARNTL, and NPAS2 to be associated with
seasonality and SAD (92, 93).

Kim et al. also reported an association of NPAS2 and ARNTL,
especially with the metabolic components of seasonality (body
weight and appetite). In addition, they found increased seasonal
variations of mood and behavior among individuals carrying a
CLOCK polymorphism previously implicated in bipolar disorder
(40, 46–48, 94). These recent findings are in contrast with a
previous work from the same group, showing that the same SNP
ofCLOCK is not associated with seasonal fluctuations in a sample
of Korean college students (95).

Furthermore, another recent investigation highlighted the
impact of two rare genetic variants of the PERIOD3 gene (PER3)
on a circadian phenotype and a seasonal mood trait, which may
be especially critical under conditions of short photoperiod (e.g.,
during the winter season) (19).

Other Genetic Findings
Environmental light detection in humans is mediated by
melanopsin containing intrinsically photosensitive retinal
ganglion cells (ipRGCs), which are located in the inner retina
(96–98). Some polymorphisms of the melanopsin gene may
be linked to a greater sensitivity to light, thus determining
functional variations in ipRGC activity. During shortened
photoperiods (e.g., during the winter months) this may
contribute to inter-individual differences in sleep and alertness
(99, 100). A missense variant (P10L) in the melanopsin (OPN4)
gene, which has also been found in SAD patients, has been
proposed to contribute to changes in melanopsin sensitivity (99).
Reduced retinal light sensitivity, especially during the winter
months, as a pathophysiological hypothesis of SAD (101–103)
recently gained first supporting evidence. A study by Roecklein
et al. found a reduced post-illumination pupil response (PIPR)
in SAD patients, compared with controls, in winter but not in
summer (104).

A study by Delavest et al. investigating the rs2072621
polymorphism of the X-linked GPR50 gene, a member of the
G protein-coupled melatonin receptor subfamily, found an
association with SAD in females, thus providing the first potential
gender-specific molecular link between the hormone melatonin
and SAD (105).

Yang et al. studied the relationship between ST8SIA2 and
NCAM1, two genes forming the polysialic acid neural cell
adhesion molecule (NCAM) complex in the SCN, and circadian
preferences, as well as seasonality, in healthy adult Korean
subjects. The association of 8 SNPs of ST8SIA2 and 2 SNPs of
NCAM1with seasonality remained significant after correction for
multiple testing (106).

Another study by Nam et al. found that the GNB3 (G-protein
β3 subunit) C825T polymorphism, which is associated with
various medical conditions (107, 108) and psychiatric disorders,
including recurrent winter depression or SAD (109, 110), also
plays a role in seasonal variations in mood, body weight, energy
level, and appetite, particularly in females.

CONCLUSIONS

Gene polymorphisms of the core clock machinery and seasonal
changes of the light-dark cycle substantially impact on the
behavior of patients with mood disorders. The relationship
between biological clock and behavior suggests a specific
sensibility of these patients to psychobiological factors
that can modify the circadian timing system, such as
environmental synchronizers (light phase and seasonal
photoperiod changes), and conditions directly perturbing
the clock (sleep deprivation, or phase advance/delay). These
factors can trigger or worsen the severity of mood disorders,
but also be successfully exploited to treat manic and depressive
episodes (111).

Current models of circadian homeostasis suggest that
the hierarchical control exerted by the SCN on circadian
rhythms of behavior, physiological functions, and on peripheral
clocks (112), interacts with homeostatic mechanisms that
also contribute to these phenomena. In rodents, a similar
dependence of behavior on clock gene mutations occurs in
the absence of other regulators of circadian rhythmicity,
such as melatonin, and is abolished when these homeostatic
components are restored (113). Therefore, we suggest that
the high sensitivity of mood-disordered patients to clock
gene variants is underpinned by a deficit in homeostatic
mechanisms regulating the circadian timing system. Recent
discoveries in humans of yet unknown circulating substances
affecting the circadian phenotype and overcoming the timing
of the clock gene machinery (114, 115), lead to hypothesize
that a systematic investigation of these mechanisms will shed
new light on the nature of circadian disruption in mood
disorders.
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