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Here we review how immune activation and insulin resistance contribute to the metabolic

alterations observed in HIV-infected patients, and how these alterations increase the risk

of developing CVD. The introduction and evolution of antiretroviral drugs over the past 25

years has completely changed the clinical prognosis of HIV-infected patients. The deaths

of these individuals are now related to atherosclerotic CVDs, rather than from the viral

infection itself. However, HIV infection, cART, and intestinal microbiota are associated

with immune activation and insulin resistance, which can lead to the development of a

variety of diseases and disorders, especially with regards to CVDs. The increase in LPS

and proinflammatory cytokines circulating levels and intracellular mechanisms activate

serine kinases, resulting in insulin receptor substrate-1 (IRS-1) serine phosphorylation

and consequently a down regulation in insulin signaling. While lifestyle modifications and

pharmaceutical interventions can be employed to treat these altered metabolic functions,

the mechanisms involved in the development of these chronic complications remain

largely unresolved. The elucidation and understanding of these mechanisms will give

rise to new classes of drugs that will further improve the quality of life of HIV-infected

patients, over the age of 50.
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INTRODUCTION

The introduction and evolution of antiretroviral drugs over the past 25 years has completely
changed the clinical prognosis of HIV-infected patients (1). These drugs have transformed the
disease into a chronic condition, and increased life expectancy, which is similar to the general
uninfected population (2). Nowadays, the deaths of HIV-infected individuals, who appropriately
follow their therapy regimen, are related to non-communicable and HIV-related chronic diseases,
mainly atherosclerotic cardiovascular disease (CVD) (3–6). Some of the mechanisms responsible
for this increased cardiovascular risk, in HIV-infected patients, involve HIV infection and
inflammation, dyslipidemia, insulin resistance, as well as metabolic, and body composition changes
induced by antiretroviral therapy (7–11).Moreover, non-HIV related risk factors, such as aging, can
also contribute to the development of these metabolic alterations and risk factors (12–15).

Here we review how immune activation and insulin resistance contribute to the metabolic
alterations observed in HIV-infected patients, and how these alterations increase the risk of
developing CVD. In section Sources of Immune Activation and Insulin Resistance in HIV Patients,
we discuss how HIV infection and inflammation, combination antiretroviral therapy (cART), and
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gut microbiota contribute to immune activation and insulin
resistance. In section Consequences of Immune Activation
and Insulin Resistance in HIV-Infected Patients, we review
the clinical consequences of immune activation and insulin
resistance, as well as how these processes are involved in the
development of age-related metabolic diseases in HIV patients.

SOURCES OF IMMUNE ACTIVATION AND
INSULIN RESISTANCE IN HIV PATIENTS

The immune activation of HIV-infected patients, whether on
cART or not, is usually accompanied by insulin resistance (16).
In this section, the role of HIV infection and inflammation,
cART, and gut microbiota in immune activation and molecular
mechanism of insulin resistance are discussed.

Effect of HIV Infection and Inflammation on
Insulin Resistance
It is generally accepted that there is a correlation between
innate immune system activation and insulin resistance,
which contributes to glucose metabolism dysregulation
and dyslipidemia (8). Immune activation results in chronic
inflammation, that varies in severity, and has been observed
in untreated HIV patients and patients undergoing cART
(17). However, untreated HIV-patients display an enhanced
inflammatory state, which is characterized by high levels of
proinflammatory cytokines, like tumor necrosis factor alpha
(TNF-α), and interleukins (IL-6 and IL-1β), and is associated
with a procoagulant state (12). Under these conditions, the
insulin resistance is probably severe and could occur in the liver,
muscle, and adipose tissue. In fact, severe insulin resistance
in the adipose tissue (as observed in HIV untreated patients),
may prevents adipose mass gain as described in mice (18–20)
(Figure 1A).

In patients undergoing antiretroviral drug therapy, there
is a decrease in proinflammatory cytokines, which do not
completely return to normal, thus indicating that some level
of inflammation persists (21). A variety of factors, such as:
virus production, cytomegalovirus infection, regulatory T-cell
loss, and/or lymphoid structure damage could contribute to this
persistent inflammation (22, 23). There is still insulin resistance,
but it is mild or moderate. As previously demonstrated in animal
models of obesity (24, 25), less severe insulin resistance in adipose
tissue allows normal or increased glucose uptake and lipid
conversion in this tissue, favoring weight gain and contributing
to explain the increase in visceral adipose tissue (VAT) in these
patients (26, 27) (Figure 1A).

In HIV-treated patients, the activation of the innate immune
system and insulin resistance is similar to what has been
described in obesity and type 2 diabetes mellitus (DM2) (28, 29).
The innate immune system and insulin signaling are integrated
and toll-like receptors (TLRs), inducible nitric oxide synthase
(iNOS), protein kinase R (PKR), c-Jun N-terminal kinases
(JNK), and NF-κB are connected to the insulin receptor (IR)
and its downstream signaling pathway IRS/PI3K/Akt. Upon
activation of the innate immune system, proteins involved

FIGURE 1 | (A) Tissue specific insulin resistance. In HIV untreated patients

there is severe insulin resistance with increased LPS and cytokines that

involves liver, hypothalamus, muscle, vessels and adipose tissue. After cART

treatment the insulin resistance is mild/moderate, with reduced LPS and

cytokines that probably spares adipose tissue. (B) Molecular mechanism of

LPS-induced insulin resistance. The increase in LPS circulating levels in HIV

patients will induce an increase in circulating inflammatory cytokines, and

these increases will activate TLR4, IL-6, and TNFalpha receptors, which will

induce ER stress, mitochondrial dysfunction, activation of inflammasome and

an increase in intracellular lipid accumulation. Then, there will be activation of

PKR, JNK, and IKKβ/NF-κB pathways in liver, muscle, adipose tissue,

macrophages and also in other tissues. The activation of these serine kinases

(PKR, JNK, and IKKβ) will induce serine phosphorylation of the IRS1/2 and

consequently a down regulation in insulin signaling.

in insulin signaling pathways become posttranscriptionally
modified, resulting in reduced insulin action (Figure 1B)
(30, 31).

It is important to mention that bacterial lipopolysaccharide
(LPS) from the Gram negative intestinal bacteria is continuously
produced in the gut (secondary to death of Gram negative
bacteria) and translocated to the circulation (32). This
translocation depends on many factors including immune
system, integrity of epithelia barrier, diet, and many other
environmental factors. The increase in circulating LPS, through
its own receptor -TLR4- induce the release of inflammatory
cytokines that can contribute to insulin resistance (33, 34).
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Previous data showed that there is an increase in LPS
circulating levels in HIV patients, whether on treatment or not
(35), which can induce at the same time TLR4 activation and
endoplasmic reticulum (ER) stress (19, 36, 37). Then, there will
be activation of PKR, JNK, and IKKβ/NF-κB pathways in liver,
muscle, adipose tissue, macrophages, and also in other tissues.
The activation of these serine kinases (PKR, JNK, and IKKβ) will
induce serine phosphorylation of the insulin receptor substrate
1 and 2, and consequently a down regulation in insulin signaling
(38, 39). The activation of NF-κB pathways in liver, adipose tissue,
and macrophages will induce the production of proinflammatory
cytokines (i.e., TNF-α, IL-1β, and IL-6), creating an inflammatory
vicious cycle, which is even worst with the increased adiposity
(40–43). Certainly, this aggravates inflammation and insulin
resistance.

In addition to increase in circulating LPS and in
proinflammatory cytokine TNF-α, IL-1β, and IL-6, the JNK
and NF-κB pathways can also be activated by intracellular
mechanisms that involve oxidative and endoplasmic reticulum
(ER) stresses, activation of inflammasome and an increase
in intracellular lipid accumulation (39, 44, 45) (Figure 1B).
Additionally, augmented iNOS activity and the nitrosylation
of insulin pathway proteins have been shown to promote
insulin resistance (46, 47). In summary, an increase in LPS and
proinflammatory cytokines and in intracellular mechanisms will
activate serine kinases, resulting in insulin receptor substrate-1
(IRS-1) serine phosphorylation and insulin signal transduction
inhibition (30, 31, 48).

Effect of Viral Suppression on Insulin
Resistance
Protease inhibitors (PI) or nucleoside analog reverse
transcriptase inhibitors (NRTI) have been shown to induce
insulin resistance, dyslipidemia, and lipodystrophy, and
consequently increase cardiovascular risk (17, 49–51). These
drugs increase the nuclear localization of SREBP-1 (sterol
regulatory element-binding protein 1), which is a transcription
factor that regulates the expression of genes associated with lipid
synthesis (52). In the liver, these antiviral drugs can increase the
levels of free intracellular cholesterol and lipids (53), which can
affect aging and the immune system response. In the muscle
and adipose tissue, these drugs can induce ER stress and reduce
glucose transporter 4 (GLUT4) translocation to the plasma
membrane (54, 55). The NRTIs also inhibit mitochondrial DNA-
polymerase, respiratory chain function, and ATP production,
ultimately leading to adipocyte death (56–60).

HIV patients undergoing cART exhibit a partial reversal
of immune activation and inflammation. Additionally, cART
reduces opportunistic infections and cardiovascular risk factors,
which is likely a result of some reduction in inflammation
(61), although residual markers of inflammation and coagulation
remains elevated in ART-treated HIV-infected patients (62).
In treated patients the dyslipidemia correlates better with C-
reactive protein and IL-6 levels, rather than with CD4 count
or HIV viral load, suggesting that immune activation has a
central role in the development of dyslipidemia (63).While cART

improves some of the observed alterations, it does not reverse
the immune activation or chronic inflammation completely. In
fact, patients undergoing cART still present a proinflammatory
and prothrombotic state, accompanied by changes in the number
and size of low-density lipoprotein (LDL) and high-density
lipoprotein (HDL) particles, which increases the risk of these
patients developing cardiovascular complications (62, 64–67).

Effect of Microbiota Modulation on Insulin
Resistance
While the progression from HIV infection to AIDS is primarily
modulated by T cell activation and systemic inflammation, there
is evidence that the gastrointestinal mucosa immune system also
participates in this process (68). The human gut microbiota
is mainly composed of four phyla: Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria. The general population
predominantly harbors Bacteroidetes, followed by Firmicutes;
however, the composition of the gut microbiota is influenced by
diet, age, geography, drugs, and cultural behaviors (69–72). Over
the past 10 years, it is becoming clear that microbiota populations
are modulated and may have a causal effect in more prevalent
chronic conditions such as: obesity, diabetes, hypertension, and
CVD (73).

Interestingly, HIV infection can also modulate the levels of
bacteria of the gut microbiota. In fact, there is a decrease in
the levels of the phylum Bacteroidetes, but some genders of
this phylum, as Prevotella, increases when analyzed in treated
and untreated patients (74–76). Such a change in the gut
microbiota could result in increased tryptophan catabolism,
chronic inflammation, and increased cardiovascular risk (77,
78). Additionally, an increase in Prevotella could augment
circulating trimethylamine (TMA) levels, which is transformed
into trimethylamine oxide (TMAO), and can have a role in the
development of atherosclerosis (79).

Previous data showed that increased levels of choline and
TMAO are associated with cardiovascular diseases (80). It
is well known that ingested choline is transformed by gut
microbiota in TMA, which enters portal circulation and in liver
is converted in TMAO (80). It is interesting that fasting TMAO
levels are independent predictor of atherosclerotic disease and
high-risk mortality in coronary artery disease patients (81,
82). The mechanisms by which TMAO induces or accelerates
atherosclerosis is not completely understood, it may involve
macrophage activation and increase in foam cells and also
modulation of platelet aggregation and adhesion (83). Moreover,
besides promoting atherosclerosis lesion development, TMAO
also aggravate pressure-overload heart failure in mice (84).

Recently, our group demonstrated that, in HIV patients, a
close correlation exists between increased circulating LPS levels,
a marker for intestinal permeability, and insulin resistance (35).
The increased translocation of LPS and elevated serum levels
induce the activation of the innate and adaptive immune systems
(35, 85, 86). As discussed previously, in macrophages and most
tissues, LPS binds to and activates TLR4, which initiates a
complex cascade of signaling events, resulting in the downstream
activation of the JNK and NF-kB pathways, and consequently
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insulin resistance and systemic inflammation. Additionally, LPS
has also been shown to increase adipose tissue, which augments
body weight gain (35, 87, 88).Moreover, inHIV-infected patients,
elevated levels of LPS have been linked to endothelial dysfunction
and adverse metabolic outcomes (35, 88–91).

It is important tomention that the effect of cART introduction
in the modulation of gut microbiota is not completely
understood. However, very recently Ji et al. showed that this
modulation after cART was differentially correlated with the
immune status, especially in patients with CD4 + T cell
counts>300/mm3 (92). In these patients it was shown that the
alpha diversity was correlated with CD4 + T cell counts, but
the specific role of cART in increasing microbial diversity is
still controversial (78, 92, 93). This correlation may explain
the conflicting results in previous studies investigating alpha
diversity in intestinal microbiota in HIV patients (93–96),
indicating that this diversity is consequence of the immune status
of the subjects. The immunological profile and cART seem to
contribute together to alter the gut microbiota.

CONSEQUENCES OF IMMUNE
ACTIVATION AND INSULIN RESISTANCE
IN HIV-INFECTED PATIENTS

Chronic immune activation and insulin resistance can contribute
to obesity, dyslipidemia, CVDs, and non-alcoholic fat liver
disease (NAFLD) as well as neurocognitive disorders, metabolic
disorders, bone abnormalities, and non-HIV associated cancers
(12, 97–99). While the evolution of these complications depends
on genetic and environmental factors, each condition has the
potential of aggravating another (Figure 2).

Obesity and Lipodystrophy
Before the new generation of antiretroviral therapies, HIV
was often associated with lipodystrophy, which is a marker
for metabolic alterations and includes a broad spectrum of
clinical alterations (100, 101). Previous studies showed that
HIV infection severity was associated with an increased
prevalence of lipodystrophy, which is secondary to HIV-infected
macrophages infiltration and enhanced local inflammation in
the adipose tissue (102, 103). In the past, the development
of lipodystrophy was partially related to drugs (i.e., stavudine
and zidovudine) included in the treatment regimen, but it
is also influenced by age, CD4 levels, viral load, therapy
duration, and race (especially caucasians). Remarkably, the new
classes of cART and inhibitors (fusion, integrase, and entry)
do not alter the metabolic parameters of fat distribution (1,
50).

Obesity and visceral adiposity are commonly observed in
HIV-treated patients and are the result of factors associated
with both traditional treatments and cART. As with most
obese people, the increase in adipose tissue is associated with
inflammatory and metabolic responses. Since many HIV patients
have low muscle mass, excess adipose tissue may be present, even
when the BMI is within the normal range. In fact, a recent study
showed that when considering BMI, 60–70% of HIV-infected

FIGURE 2 | The triad HIV infection/inflammation, antiretroviral therapy (cART),

and gut microbiota contribute to induce immune activation and insulin

resistance. The clinical consequences of chronic immune activation and insulin

resistance can contribute to increase Visceral Adipose Tissue (VAT),

dyslipidemia, CVDs and non-alcoholic fat liver disease (NAFLD) as well as

neurocognitive disorders, metabolic disorders, bone abnormalities and

non-HIV associated cancers While the evolution of these complications

depends on genetic and environmental factors, each condition has the

potential of aggravating another, increasing the risk of CVD in HIV patients.

patients are considered overweight or obese (104–108). In most
patients, there is an increase in visceral adipose tissue (VAT),
which is usually indicative of a more deleterious metabolic profile
(109–111).

In obese populations, metabolically healthy obesity is
characterized by less VAT and reduced inflammation (112–
115). These same more benign metabolic conditions have also
been documented in some HIV infected patients considered
overweight or obese. The reasons why some obese individuals,
with or without HIV, have a more aggressive metabolic profile
and associated risk factors are not completely understood,
but it might involve adipocyte size and/or number, recruited
inflammatory cells, hypoxia, and/or adiponectin levels (116–
118).

The extrapolation of data from the obese population without
HIV to those with HIV must be interpreted with care,
since a large portion of the data related to adipose tissue
dysfunction includes HIV patients with lipodystrophy. Although
this alteration in fat distribution still occurs in treated HIV-
infected patients, the prevalence of obesity is increasing, and in
some patients, an association between obesity and lipodystrophy
has been observed (119).

Dyslipidemia
During the 80’s and early 90’s, before the introduction of
antiretroviral therapy, dyslipidemia was evident in more severe
HIV cases, and was characterized by high triglyceride (TG)
levels and low levels of HDL-cholesterol (HDL-C) and LDL-
cholesterol (LDL-C). Although the exact mechanisms that
account for the development of this kind of dyslipidemia are
not fully understood, there is data suggesting that it may be
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induced by insulin resistance resulting from HIV infection and
inflammation (120–122). This observed pattern of dyslipidemia
is not only observed in HIV patients, but is also detected in other
infections and inflammations, and can become atherogenic if it
persists (123, 124). In this regard, an increase in TNF-α level
can impair the clearance of TGs and reduce the antilipolytic
effect of insulin, thus stimulating lipolysis in HIV-patients with
lipodystrophy.

Besides activation of the innate immune system and
insulin resistance, which contributes to glucose metabolism
dysregulation and dyslipidemia, other mechanisms may also
contribute to explain this pattern of dyslipidemia. One
such mechanism involves the adenosine-triphosphate binding
cassette transporter A1 (ABCA1), a transmembrane transporter
present in macrophages, which interacts with the HIV-
produced accessory protein Nef. Under physiological conditions,
ABCA1 shuttles cholesterol from macrophages (in peripheral
tissues) to HDL, which was previously shown to be to
reduce cardiovascular risk (87, 125). However, in HIV-
infected patients, Nef downregulates ABCA1 expression and
reduces the efflux of cholesterol to HDL. As a result,
lipid accumulates inside the macrophage, and is transformed
into foam cells, which is associated with atherosclerosis
(125).

Another mechanism, that can contribute to the
understanding of why this pattern of dyslipidemia is
commonly observed in HIV-patients, is through the
inhibition of an intracellular peroxisome protein, proliferator-
activated receptor gamma (PPAR-γ) (126). This protein
is critical for adipocyte differentiation, and is inhibited
by the HIV viral protein, vpr. The inhibition of PPAR-
γ blocks adipocyte differentiation, and leads to fatty acid
accumulation and lipotoxicity. Moreover, HIV replication
is also associated with an increase in fatty acid synthase
(FAS) activity, which impacts fatty acid synthesis (127). These
data suggest that in HIV-infected patients, not undergoing
cART, there is an increase in fatty acid production that can
contribute to the appearance of dyslipidemia and insulin
resistance.

On the other side, it has been shown that cART not only
suppresses HIV infection and reduces inflammation, but it also
changes the dyslipidemia pattern, which is characterized by
an increase in TGs and LDL-C, a reduction in HDL-C and
maintenance of insulin resistance (128, 129). In fact, a recent
meta-analysis study showed that cART patients have a higher risk
of developing hypercholesterolemia and display higher TG levels
than non-treated HIV patients (27). The previously described
modulation of ABCA1 by Nef, which reduces the efflux of HDL,
is also reversed by cART (130–132).

Cardiovascular Diseases and NAFLD
As previously mentioned, there is still an increased risk of
CVD in the HIV-infected population, despite cART and the
control of risk factors (1, 51). Even with the development of
new antiretroviral drugs, the chronic immune activation and
insulin resistance remain and contribute to this greater risk
(12, 51). Also, recent data has shown that HIV-infected patients

can present left ventricular systolic and diastolic dysfunction and
myocardial fibrosis (133, 134).

Abnormal liver enzymes are also common in HIV-infected
patients, despite the absence of alcohol consumption or
viral hepatitis. These abnormalities have been associated
with an increased prevalence of NAFLD and non-alcoholic
steatohepatitis (NASH) (135). The actual prevalence of NAFLD
and NASH in HIV-infected patients is not known because the
methods used to define these alterations vary among studies
(136). Recent data has shown that in HIV-infected patients,
treated with cART, the prevalence of NAFLD is around 40%,
and that these patients have a higher risk of developing
NASH or cirrhosis than obese patients without HIV (137–
141). These hepatic alterations are secondary to multiple factors,
and immune activation, insulin resistance, cART, and aging
are certainly involved in the process. It is also important
to mention that NAFLD is a risk factor for diabetes and
CVDs (142).

Neurocognitive Disorders, Metabolic
Disorders, Bone Abnormalities, and
Non-HIV Associated Cancers
The HIV-infected population can develop behavioral
abnormalities, motor dysfunction, and dementia (12). The
clinical presentation can vary from mild neurocognitive
disorders to severe HIV-associated dementia (143, 144). The
prevalence of these abnormalities is ∼50% (145), however, since
the introduction of modern cART, the prevalence of severe forms
of neurocognitive disorders has been dramatically reduced (146).

With regards to glucose metabolism, it is clear that
current cART is much less metabolically toxic than previous
therapies. However, HIV and cART are independently associated
with glucose intolerance and diabetes (49). Again, while
these abnormalities are secondary to multiple factors, glucose
intolerance and diabetes are known to exacerbate the risk of these
patients developing CVD.

Recent data has shown that HIV-infected patients have
fracture rates three times higher than the control population
(147, 148). In fact, decreased bone mineral density, osteopenia,
and osteoporosis have been observed in these patients, and
are probably related to immune activation and systemic
inflammation, cART, low vitamin D, and/or aging.

The risk of some non HIV-associated cancers is 50% higher in
HIV-infected patients than in non-infected patients (149, 150).
For example, HIV infection is associated with a higher incidence
of virus-related cancers such as: Kaposi sarcoma, lymphomas,
and anal and liver cancer, which is most likely secondary to the
poor immunological control of oncogenic viruses (12).

Overall, recent data showed that the mortality of HIV-infected
people decreased in those below 65 years old, but increased after
this age (112, 115), which is likely due to the increased risk
of developing CVDs and dying from acute coronary syndrome.
Furthermore, there is also an increase in the occurrence of
coronary artery disease in young HIV-infected patients, when
compared with the uninfected control population (113, 114, 151).
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CONCLUSION

The introduction of antiretroviral drugs has changed the clinical
prognosis of HIV-infected patients and the deaths of these
individuals are now related to atherosclerotic CVDs, rather than
from the viral infection itself. However, HIV infection, cART,
and intestinal microbiota are associated with immune activation
and insulin resistance, which can lead to the development of a
variety of diseases and disorders, especially with regards to CVDs.
While lifestyle modifications and pharmaceutical interventions
can be employed to treat these altered metabolic functions,
the mechanisms involved in the development of these chronic
complications remain largely unresolved. The elucidation and
understanding of thesemechanismswill give rise to new classes of
drugs that will further improve the quality of life of HIV-infected
patients, over the age of 50.
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