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The gastrointestinal tract stores ingested nutrients in the stomach which are then

delivered to the small intestine at a controlled rate to optimize their digestion and

absorption. The interaction of nutrients with the small and large intestine generates

feedback that slows gastric emptying, induces satiation, and reduces postprandial

glycemic excursions. The mechanisms underlying these nutrient-gut interactions are

complex; it has only recently been appreciated that the gut has the capacity to detect

intraluminal contents in much the same way as the tongue, via activation of specific

G-protein-coupled receptors, and that ensuing signaling mechanisms modulate the

release of an array of gut hormones that influence gastrointestinal motility, appetite

and glycemia. Interestingly, evidence from preclinical models supports a functional

link between intestinal bitter taste receptor (BTRs) and gastrointestinal hormone

secretion, and the outcomes of recent studies indicate that stimulation of intestinal

BTRs may be used to modulate gastrointestinal function, to diminish energy intake

and limit postprandial blood glucose excursions in humans. This review summarizes

current evidence about the expression and function of intestinal BTRs in relation to

enteroendocrine hormone release and discusses the clinical implications of this pathway

for the management of obesity and type 2 diabetes.

Keywords: bitter taste receptors, gut hormones, enteroendocrine cells, energy intake, blood glucose, obesity,

type 2 diabetes

INTRODUCTION

Recent decades have witnessed the conceptual evolution of the gastrointestinal tract from being
solely a site of nutrient digestion and absorption to its recognition as the largest endocrine system
in the body - more than 30 peptides are now known to be released from enteroendocrine cells
within the gastrointestinal mucosa. These gut-derived hormones communicate with tissues both
within and outside the gut, and play a pivotal role in the regulation of metabolic homeostasis. Of
particular importance are ghrelin, released from the enteroendocrine Gr-cells (within the stomach);
cholecystokinin (CCK), from I-cells (mainly in the upper small intestine); glucose-dependent
insulinotropic polypeptide (GIP), from K-cells (largely in the upper small intestine); and glucagon-
like pepetide-1 (GLP-1) and peptide YY (PYY), from L-cells (predominantly in the distal small and
large intestine) (Figure 1). Ghrelin is secreted predominantly during fasting and is suppressed after
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FIGURE 1 | Role of gastrointestinal hormones in the regulation of gastric emptying, postprandial glycemia and energy intake. Ghrelin is secreted during fasting and

acts to accelerate gastric emptying, promote appetite and drive energy intake. GLP-1, GIP, CCK, and PYY are released in the postprandial phase. GLP-1 and GIP are

the ‘incretin’ hormones, stimulating insulin secretion in a glucose-dependent manner. GLP-1, CCK, and PYY also form intestinal feedback to slow gastric emptying

and suppress energy intake.

meals. It is regarded as a “hunger” hormone that drives food
intake and accelerates gastric emptying (1, 2). In contrast, CCK,
GIP, GLP-1, and PYY are predominately released postprandially
and, in concert, mediate intestinal feedback to limit postprandial
glycemic excursions and suppress energy intake (2, 3). In health,
GIP and GLP-1 are responsible for the substantially greater
insulin response to oral, or enteral, glucose administration when
compared with “isoglycaemic” intravenous glucose infusion–
the so-called “incretin” effect (4). In type 2 diabetes, the
insulinotropic effect of GLP-1 remains relatively intact, although
that of GIP is markedly diminished, which may account for the
diminished incretin effect in this group (5). GLP-1 also exerts a
glucose-dependent glucagonostatic effect (5) and, together with
CCK and PYY, acts to slow gastric emptying and suppress
energy intake (2). Accordingly, modulation of gut hormone
secretion has been actively pursued as a therapeutic option in
the management of obesity and type 2 diabetes (5–12). To this
end, it has been suggested that a wide array of chemo-sensors
expressed on different enteroendocrine cells is responsible for
the detection of carbohydrate [e.g., ATP-sensitive K+ channel
and sodium glucose co-transporter-1 (13, 14)], fat [e.g., G-
protein-coupled receptors 119 and 120 (15, 16)] and protein
[e.g., oligopeptide transporter 1 and calcium sensing receptor
(17, 18)] and associated stimulation of gut hormone secretion.
Emerging evidence also attests to the functional importance of
“taste” signals arising from intraluminal contents in modulating
gut hormone release. For example, blockade of intestinal sweet
taste receptors (STRs) by lactisole attenuates glucose-induced
incretin hormone secretion substantially in healthy humans (19),
although stimulation of STRs (by low-calorie sweeteners) alone
appears insufficient to stimulate GIP or GLP-1 secretion in

humans (20). Unlike STRs, activation of intestinal bitter taste
receptors (BTRs), either by pharmacological BTR agonists or
physiological bitter compounds, has been shown to modulate
gut hormone secretion in various preclinical and clinical
experimental settings, leading to reductions in blood glucose and
energy intake (21, 22). In this review, we summarize current
evidence relating to the expression and function of intestinal
BTRs in relation to enteroendocrine hormone release, as well as
the clinical implications of this pathway for the management of
obesity and type 2 diabetes.

INTESTINAL BITTER TASTE RECEPTORS

Taste stimuli are detected by a group of specialized G protein-
coupled receptors, initially identified in the taste buds of the
oral cavity (23). Subtypes of taste 1 receptors heterodimerize
to detect sweet (T1R2/T1R3) and umami (T1R1/T1R3) stimuli,
while multiple type 2 receptors (T2Rs) are characterized as BTRs
and detect bitter stimuli, and may trigger mechanisms which
prevent the ingestion and absorption of potentially noxious bitter
compounds. Binding of ligands to these taste receptors initiates
a signaling cascade involving the dissociation of the G-protein
gustducin into Gα and Gβγ subunits, activation of phospholipase
C β2, production of diacylglycerol and inositol 1,4,5-trisphophate
(21, 24, 25), and opening of the transient receptor potential ion
channel M5, leading to the release of intracellular Ca2+ (21,
24, 26–28), Na+ influx (26, 29), cellular depolarization and the
secretion of neurotransmitters (28). The increases in intracellular
Gα subunit also activate phosphodiesterase to degrade cyclic
adenosine monophosphate (cAMP), whereas diacylglycerol and
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intracellular Ca2+ activate the protein kinase C pathway (21,
26) (Figure 2). It has only recently been appreciated that taste
receptors and their downstream signaling molecules are also
found in extra-oral locations, including the airway, kidney,
brain, immune system and the gastrointestinal tract (30, 31).
For example, in rodents, inhalation of BTR agonists decreases
airway resistance (32), while intravenous administration of the
BTR agonist, denatonium benzoate (DB), causes a transient fall
in blood pressure (33). The focus of this review, however, is the
biology of intestinal BTRs, and in particular their relevance to
the secretion of gastrointestinal hormones from enteroendocrine
cells.

In a seminal study reported in 2002, Wu et al. demonstrated
gene expression of several T2Rs in both the stomach and
duodenum of mice and rats using reverse transcriptase-PCR
(34). In addition, T2Rs were also found to be expressed
on the secretin tumor cell line (STC-1), an enteroendocrine
cell model derived from murine enteroendocrine tumors (34).
That the exposure of STC-1 to different bitter compounds
resulted in a rapid increase in intracellular Ca2+ indicated
that a functional BTR-sensing system may be present on the
enteroendocrine cells (34). These observations were further
validated in subsequent studies employing reverse transcriptase-
and quantitative-PCR assays on small and large intestinal
tissues and enteroendocrine cells of both rodents and humans
(Table 1) (25, 42, 43). Consistent with PCR observation,
studies using double-labeling immunofluorescence have also
shown co-localization of chromogranin A (a cellular marker of
enteroendocrine cells) with T2Rs in the mouse small and large
intestine (42, 44). More specifically, co-expression of GLP-1 with
various T2Rs in human enteroendocrine L cell lines (i.e., HuTu-
80 and NCI-h716) and in small and large intestinal tissues has
been observed (21, 35, 36, 39). However, the co-expression of
T2Rs with enteroendocrine cells containing other hormones is
not well characterized in rodents or humans. Moreover, the
expression of intestinal BTRs in metabolic disorders has not
been consistently reported. In the study reported by Chao
et al. (49), the expression of both STR and BTR subtypes
were shown to be less in the hypothalamus, brainstem and
duodenum in ob/ob mice than C57Bl/6 controls. By contrast,
the expression of the BTR, T2R38, in the colonic mucosa was
shown to be related directly to BMI in humans, such that
the abundance of T2R38 tended to be higher in those who
were overweight/obese, when compared to lean subjects (40).
In both healthy individuals and patients with type 2 diabetes,
the expression of STRs in duodenal biopsy samples did not
correlate with BMI or HbA1c, although the dynamic response
of STR expression to intraduodenal glucose infusion was found
to be impaired in type 2 diabetes (50). Of note, the downstream
signaling molecules of taste receptors have also been identified
in non-endocrine cells of the gut. For example, α-gustducin
and transient receptor potential ion channel M5 are expressed
abundantly in subsets of brush cells in mouse and rat gut (51–53).
In murine gastric tissue, α-gustducin-expressing brush cells have
been found adjacent to ghrelin-releasing Gr-cells (54, 55). Given
that the latter are not in direct contact with the intraluminal
contents, i.e., “closed-type,” it is possible that brush cells may

act as a sensor for intraluminal contents to regulate ghrelin
secretion (56).

EFFECTS OF BTR SIGNALING ON GUT
HORMONE SECRETION

An increasing number of studies in both preclinical and clinical
models have evaluated the effects of BTR agonists on ghrelin,
CCK, GLP-1, and PYY secretion, although the specificity of bitter
compounds for different T2Rs is poorly defined and the function
of intestinal BTR sensing in either obesity or type 2 diabetes
has not been thoroughly investigated. In contrast, information
regarding GIP secretion in response to BTR stimulation is limited
(Table 2).

Ghrelin
The potential role of BTR signaling in the regulation of ghrelin
secretion has evaluated inmice and humans, albeit with strikingly
different outcomes. In mice, intragastric administration of a
mixture of BTR agonists (including DB, phenylthiocarbamide
(PTC), quinine and D-[-]salicin) was shown to increase plasma
total ghrelin and octanoyl ghrelin levels without affecting ghrelin
mRNA expression (55). BTR agonist-induced ghrelin secretion
was markedly attenuated in α-gustducin-/- mice. This was
consistent with a functional involvement of taste signaling in
ghrelin release (55), although α-gustducin is a non-specific
downstream signaling molecule and, as discussed, an indirect
interaction between brush cells and Gr cells is an alternative
possibility. Paradoxically, intragastric gavage of BTR agonists in
mice was associated with only a transient increase in food intake
during the first 30min, followed by a sustained suppression of
intake over the subsequent 4 h (55). In contrast to the stimulation
of ghrelin observed in mice, intragastric administration of
another bitter tastant, quinine-hydrochloride (HCl quinine, 10
umol/kg), reduced fasting plasma ghrelin and motilin levels in
healthy women (22, 63), associated with increased activity in
hedonic and homeostatic brain regions on functional magnetic
resonance imaging, and suppressed antral motility and energy
intake (22). These observations suggest a role of BTR signaling
in communications between the gut and brain in the control of
energy intake. However, in another study, intragastric DB at a
dose of 1 umol/kg, which suppressed motilin secretion, appetite
scores and energy intake, failed to affect either plasma ghrelin or
the rate of gastric emptying in healthy women (57). Accordingly,
further studies are required to determine the secretory pattern of
ghrelin in response to different types and doses of BTR agonists
and the associated metabolic effects in humans, including those
with obesity and type 2 diabetes.

CCK
Initial evidence to support the potential for BTR-evoked CCK
secretion was reported in STC-1 cells, where both DB and
PTC increased intracellular Ca2+ and stimulated CCK secretion
in a dose-dependent manner (43, 61). Subsequently, steroid
glycoside H.g.-12, extracted from the plant Hoodia gordonii
[which tastes bitter, and has potent appetite-suppressant effects
in both animals and humans (64)] was found to induce CCK
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FIGURE 2 | Proposed mechanisms underlying enteroendocrine secretion in response to T2R agonists. Binding of ligands to bitter taste receptors (BTRs) triggers a

signaling cascade involving the dissociation of the G-protein gustducin into Gα and Gβγ subunits, activation of phospholipase C β2 (PLCβ2), production of

diacylglycerol (DAG) and inositol 1,4,5-trisphophate (IP3), and opening of the transient receptor potential ion channel M5 (TRPM5), thereby leading to the release of

intracellular Ca2+ ([Ca2+]i), Na
+ influx, cellular depolarization and the secretion of neurotransmitters. DAG and [Ca2+]i also activate the protein kinase C (PKC)

pathway. In addition, increases in intracellular Gα subunit activate phosphodiesterase.

TABLE 1 | Summary of published reports on the presence of different T2Rs in enteroendocrine cells and gastrointestinal tissues in rodents and humans.

Species Models T2Rs expressed References

Human HuTu-80 cell T2R4, T2R5, T2R13, T2R14, T2R16, T2R38, T2R39, T2R40, T2R44, T2R46, T2R47,

T2R49, T2R50, T2R60

(35–37)

NCI-H716 cell T2R1, T2R3, T2R4, T2R5, T2R7, T2R8, T2R9, T2R10, T2R13, T2R14, T2R19,

T2R20, T2R30, T2R38, T2R39, T2R40, T2R41, T2R45, T2R46, T2R50, T2R60

(21, 24, 38, 39)

Small intestine T2R5 T2R14 T2R38 (36, 37, 39)

Large intestine T2R1, T2R3, T2R4, T2R5, T2R10, T2R13, T2R38, T2R39, T2R40, T2R42, T2R43,

T2R44, T2R45, T2R46, T2R47, T2R49, T2R50, T2R60

(35, 36, 38, 40, 41)

Mouse STC-1 cells mT2R102, mT2R104, mT2R105, mT2R106, mT2R107, mT2R108, mT2R109,

mT2R110, mT2R113, mT2R114, mT2R116, mT2R117, mT2R118, mT2R119,

mT2R121, mT2R122, mT2R123, mT2R124, mT2R125, mT2R126, mT2R129,

mT2R130, mT2R131, mT2R134, mT2R135, mT2R136, mT2R137, mT2R138,

mT2R139, mT2R140, mT2R143, mT2R144

(25, 42, 43)

Small intestine mT2R102, mT2R104, mT2R105, mT2R106, mT2R107, mT2R108, mT2R110,

mT2R113, mT2R114, mT2R116, mT2R117, mT2R119, mT2R121, mT2R122,

mT2R123, mT2R124, mT2R126, mT2R129, mT2R130, mT2R134, mT2R135,

mT2R136, mT2R137, mT2R138, mT2R139, mT2R140, mT2R143, mT2R144

(26, 44–47)

Large intestine mT2R108, mT2R113, mT2R117, mT2R118, mT2R119, mT2R125, mT2R126,

mT2R131, mT2R135, mT2R136 mT2R137, mT2R138, mT2R140, mT2R143

(26, 46–48)

Rat Small intestine rT2R1, rT2R2, rT2R3, rT2R4, rT2R5, rT2R6, rT2R7, rT2R8, rT2R9, rT2R10, rT2R12,

rT2R16, rT2R34, rT2R38

(34, 48)

Large intestine rT2R, rT2R16, rT2R26 (41)

secretion both ex vivo from rat intestine, and from HuTu-
80 cells (37). That the effect of H.g.-12 on CCK secretion
was abolished by a BTR inhibitor, compound 03A3, supports
a functional role of BTR signaling in H.g.-12-induced CCK
release (37). While co-expression of BTRs with CCK-secreting
I-cells has not been assessed in humans, oral administration
of encapsulated HCl quinine (18mg) was recently reported

to increase plasma CCK concentrations and reduce energy
intake at an ad libitum meal in healthy young individuals
(62). Moreover, in this study the magnitude of suppression
of energy intake in response to HCl quinine was related
directly to the subjects’ sensitivity to the bitter taste of PTC
(62). These observations warrant further investigation on the
potential of targeting the intestinal BTR signaling pathway
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TABLE 2 | Effects of bitter tastants on gut hormone secretion in preclinical and clinical models.

Hormone Preclinical/Clinical Vitro/Vivo Model Bitter tastants References

Ghrelin Preclinical vivo Mice Mixture of DB, quinine, PTC, D-salicin (55)

Human HCl quinine 10 umol/kg (57)

Clinical HCl quinine 10 umol/kg (22)

GLP-1 Preclinical vitro HuTu-80 cells Phenylthiourea (36)

NCI-716 cells Berberine (24)

1,10-phenanthroline (39)

Gentiana scabra (58)

DB (21)

STC-1 cells extract from wild bitter gourd (59)

Berberine (25)

vivo Mice Extract from wild bitter gourd (59)

DB (21)

Qing-Hua Granule (29)

Gentiana scabra (58)

Clinical Healthy volunteer Gentiana lutea root (60)

CCK Preclinical vitro STC-1 cells DB and PTC (43)

HuTu-80 cells H.g.−12 (extract of the plant Hoodia gordonii) (37)

Caco-2 cells PTC (61)

vivo mice Mixture of DB, quinine, PTC, D-salicin (61)

Clinical healthy volunteer HCl quinine 10mg (62)

PYY Preclinical vitro NCI-716 cells DB (21)

to stimulate CCK secretion and reduce energy intake in
obesity.

GLP-1 and PYY
Underpinned by the successful clinical application of GLP-1
receptor agonists and dipeptidyl peptisase-4 inhibitors to the
management of type 2 diabetes (5, 11, 12), there has been great
interest in the potential for BTR agonists to augment L-cell
secretion, and thereby increase concentrations of endogenous
GLP-1.

At the cellular level, numerous bitter compounds have been
reported to induce GLP-1 secretion from enteroendocrine cells
via BTR pathways. For example, in both NCI-716 and STC-
1 cells, berberine, a natural bitter plant alkaloid commonly
used as an antibiotic, was shown to dose-dependently stimulate
GLP-1 secretion via T2R38 (24, 25). Similarly, a specific T2R38
agonist, phenylthiourea, induced GLP-1 secretion from HuTu-
80 cells, an effect markedly inhibited by silencing of T2R38 with
small interfering RNA (36), In contrast, 1,10-phenanthroline
stimulates GLP-1 via T2R5 (39), and DB appears to induce GLP-1
secretion via a broad range of BTRs (including T2R4, T2R43, and
T2R46 at least), in NCI-h716 cells (21). Furthermore, blockade
of BTRs (e.g., by probenecid), or the downstream pathways
relating to BTR signaling, including inositol 1,4,5-trisphophate,
phospholipase C β2, protein kinase C and/or phosphodiesterase,
attenuates GLP-1 secretion induced by bitter tastants (21, 58, 59).

In rodents, exposure of the gut to BTR agonists has also
been shown to augment plasma GLP-1 levels (21, 36, 58,
59). In acute settings, an intragastric preload of DB prior to
enteral glucose administration increased plasma GLP-1 and

insulin concentrations (21), slowed gastric emptying (26, 65)
and reduced blood glucose (21). Consistent with the role
of BTR signaling in GLP-1 secretion, the effect of DB to
slow gastric emptying was abolished by co-administration of
probenecid (26). Similarly, intragastric administration of PTC
has been reported to augment plasma GLP-1 concentrations
(36) and slow gastric emptying (26) in mice. The latter
effect was, however, not inhibited by probenecid (26). This
discrepancy necessitates further investigation to determine
whether probenecid sufficiently blocks the BTRs activated by
PTC, and whether mechanisms other than BTR-gut hormone
pathways account for the slowing of gastric emptying by PTC
in mice. In support of the latter, the slowing of gastric emptying
induced by a mixture of bitter substances (including PTC)
was not affected by concurrent administration of GLP-1 and
CCK antagonists in mice (55). In the longer-term (i.e., 4
weeks), intragastric administration of DB remained effective
at increasing meal-induced GLP-1 secretion, associated with a
reduction in body weight in obese mice, whereas another bitter
tastant, quinine, had minimal effect on GLP-1 or ghrelin, despite
reducing body weight (66).

While BTRs (e.g., T2R5 and T2R38) have been reported to
localize on L-cells in the small and/or large intestine, effects of
BTR agonists on GLP-1 secretion are not well characterized in
humans. Recently, Mennella et al. evaluated the effect of a single
low dose of Gentiana lutea root extract encapsulated for release
in the small intestine in healthy subjects (60), and observed a
tendency for a higher GLP-1 response to a standardized breakfast,
and a reduction in post-lunch energy intake compared to placebo
(60). Accordingly, additional human studies are needed to

Frontiers in Endocrinology | www.frontiersin.org 5 September 2018 | Volume 9 | Article 576

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Xie et al. Bitter Sensing and Gut Hormones

evaluate the potential for targeting intestinal BTRs to stimulate
GLP-1 secretion.

In contrast to GLP-1, information relating to the effect of BTR
agonists on PYY secretion (also released from L-cells) is limited.
Although DB stimulates PYY secretion from NCI-H716 cells in
a similar manner to GLP-1 (21), this effect has hitherto not been
assessed in vivo.

CLINICAL IMPLICATIONS OF TARGETING
INTESTINAL BTRS

That BTR signaling is functionally linked to the secretion
of hormones integral to the regulation of energy intake and
glycemia, as well as the control of gastric emptying, has
stimulated substantial interest in targeting this pathway for the
management of obesity and type 2 diabetes (publications from
clinical studies are summarized in Table 3). The relative absence
of calories in bitter compounds represents a substantial asset of
this approach.

Effects on Energy Intake
The impact of BTR sensing in the control of energy intake has
been evaluated in both preclinical and clinical studies. Despite
variable effects of different BTR agonists on each gastrointestinal
hormone, the majority of studies in rodents have reported energy
intake to be suppressed following exposure to acute doses of
BTR agonists (69–71), although one study reported a transient
increase, followed by a sustained suppression of food intake after
intragastric administration of a mixture of DB, PTC and salicin
(55). Arguably, of greater interest is evidence that intragastric
gavage of DB (60µmol/kg) or quinine (160µmol/kg) once daily
for 4 weeks in high fat-fed obese mice reduced weight gain
substantially, and in an α-gustducin-dependent manner (66).
In healthy women, a single dose of HCl quinine (10 umol/kg),
administrated intragastrically 60min before an ad libitum liquid
meal (chocolate milk shake), reduced food intake (346 ± 37 g
for HCl quinine vs. 414 ± 46 g for water control), in association
with reduced ghrelin levels and increased neural activity in
the hypothalamus, hedonic regions, and parts of the medulla
associated with appetite homeostasis (22). Consistent with these
observations, oral administration of encapsulated HCl quinine
(18mg) also modestly suppressed energy intake at a subsequent
ad libitum buffet meal (514± 248 kcal for HCl quinine vs. 596±
286 kcal for placebo) in healthy young subjects (12 females and 8
males) without inducing nausea (62). Likewise, administration of
encapsulated bitter compounds derived fromGentiana lutea root
with a standardized breakfast reduced total daily energy intake by
∼20% in healthy individuals (60), while oral insensitivity to the
bitter taste of 6-n-propylthrouracil was associated with increased
energy intake in female subjects (72). It remains to be determined
whether stimulation of intestinal BTRs has the capacity to reduce
energy intake and, hence, body weight in obese individuals.

Effects on Blood Glucose
The rate of emptying of carbohydrates from the stomach for
absorption in the small intestine is a major determinant of the
glycemic response to meals (73). In the majority of type 2 diabetic

patients with modestly elevated glycated hemoglobin (HbA1c
< ∼8% or 64 mmol/mol), postprandial glycemia makes the
dominant contribution to overall glycemic control (74, 75). In
addition, postprandial glycemia is an independent cardiovascular
risk factor and predicts all-cause mortality (76), and accordingly,
represents a specific target for the treatment of type 2 diabetes.
Preclinical models indicate that stimulating intestinal BTRs has
the potential to improve blood glucose control. In wild type
mice, intragastric administration of DB, PTC or a mixture of
bitter compounds slowed gastric emptying substantially (26, 55),
while oral administration of DB (1 mg/kg) (21) or Gentia scabra
root extract (300 mg/kg; containing several bitter compounds
such as loganic acid, gentiopicrin and rindoside) (21, 58) in
db/db mice was associated with higher GLP-1 and lower blood
glucose responses following glucose gavage when compared
with saline. In mice fed a high fat diet, oral administration
of bitter gourd extract prior to an oral or intraperitoneal
glucose load also resulted in higher GLP-1 and insulin levels
and lower blood glucose responses (59). That the magnitude of
reduction in glycemia was attenuated substantially by concurrent
administration of the GLP-1 receptor antagonist, exendin(9–
34, 36, 39, 42–44), attests to the importance of GLP-1 to glucose-
lowering induced by bitter substances (59).

Hitherto, there is limited information about the effect of
BTR agonists on blood glucose in humans. Studies to date have
reported inconsistent effects on gastric emptying. In healthy
women, sham-feeding with quinine sulfate (10mg) was reported
to slow the emptying of subsequently ingested “electrolyte soup,”
when compared to sham-feeding with a “pleasant” strawberry
flavoring or control (no sham-feeding) (67). Little et al. compared
the rate of gastric emptying of three “test meals” in healthy
subjects, consisting of 500mL water (control) and two bitter-
tasting solutions containing either a small dose of quinine
(1mM) or naringin (0.198mM), delivered via intragastric
infusion. Although these doses of quinine and naringin yielded
a medium intensity of bitterness during an oral perception test,
gastric emptying did not differ between the bitter solutions
and water alone (68). More recently, intragastric administration
of DB at a dose of 1 umol/kg suppressed appetite sensations,
but failed to affect gastric emptying in healthy women (68).
However, it remains unclear whether the disparity in findings
between studies inmice and humans reflect species differences, or
whether the relatively low doses of BTR agonists employed in the
human studies were insufficient to interact with L-cells located
predominantly in the distal small and large intestine. In the case
of GLP-1, infusion of glucose into the duodenum at 2 kcal/min
(where glucose is absorbed in the upper gut) elicits minimal GLP-
1 secretion, while ileal infusion of glucose at the same rate induces
substantial GLP-1 release (77).

The genetic phenotype of GPCRs is now known to be an
important determinant of physiological function, may predispose
to human diseases (78). There is evidence that polymorphisms
of BTR genes that impair the sensitivity to bitterness may be
associated with changes in food intake and dysregulation of
blood glucose. For example, women with gestational diabetes
mellitus exhibited a lower T2R9 gene (rs3741845) frequency,
and consumed more meat, dairy and sweet beverages compared
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TABLE 3 | Effects of bitter tastants in clinical studies.

Authors Subjects Bitter tastants and doses Main method Key observation

(67) healthy women (n = 16) 10mg quinine sulfate Sham feeding Slowed gastric emptying substantially.

(68) healthy volunteers (n = 12) 0.198mM 500ml quinine (3.24mg) Intragastric administration Had no effect on gastric emptying.

(62) healthy volunteers (n = 20) 18mg HCl quinine encapsulated Suppressed energy intake; increased

CCK secretion; had no effect on

gastric emptying.

(60) healthy volunteers (n = 20) 100mg extracts (from Gentiana lutea root) encapsulated Increased GLP-1; suppressed energy

intake; had no effect on blood

glucose.

(57) healthy women (n = 39) 1µmol/kg DB Intragastric administration Had no effect on gastric emptying;

reduced hungry rating and increased

satiety ratings.

(63) healthy women (n = 10) 10µmol/kg HCl quinine Intragastric administration Reduced plasma motilin and ghrelin

levels; inhibited the antral motility.

(22) healthy women (n = 16) 10µmol/kg HCl quinine Intragastric administration Suppressed energy intake; reduced

plasma motilin and ghrelin levels;

reduced hungry ratings and increased

satiety ratings.

to pregnant women without gestational diabetes mellitus (79).
Similarly, dysfunction of T2R9 due to a single nucleotide
polymorphism is associated with higher blood glucose and
insulin responses to an oral glucose tolerance test in Amish
individuals with and without type 2 diabetes (38). In German
individuals without type 2 diabetes, variations in the T2R38 gene
(rs713598, rs1726866 and rs10246939) are also reported to have
significant associations with body composition in women, and
the glycemic response to oral glucose in men (80).

CONCLUSIONS AND PROSPECTIVE
VIEWS

In recognition of the pleiotropic actions of gastrointestinal
hormones in the regulation of metabolic homeostasis, exogenous
peptides or mimetics (e.g., GLP-1 receptor agonists and GLP-
1/GIP dual receptor agonists) are under rapid development
within the pharmaceutical industry to better manage both type 2
diabetes and obesity. This approach, however, is often limited by
cost, side effects (predominantly gastrointestinal symptoms), and
suboptimal efficacy (particularly for obesity). Dietary strategies
to modulate endogenous gastrointestinal hormone secretion
represent an alternative that shows substantial promise. For
example, consuming a nutrient ‘preload’ prior to the main
meal has been shown to reduce postprandial blood glucose in
both health and type 2 diabetes by stimulating GLP-1 secretion
in advance of the meal, and by slowing gastric emptying
(10, 81, 82). However, this approach entails additional energy
intake associated with the preload.Modulation of gastrointestinal
hormone secretion by low- or non-caloric compounds, such as
bitter tastants, would therefore be advantageous compared with
nutrient preloads.

There is a large body of preclinical studies that provide
compelling evidence of a functional BTR signaling system in
enteroendocrine cells, the effects of non-nutritive BTR agonists

on enteroendocrine hormone secretion, and the potential for
stimulating intestinal BTRs to suppress energy intake and reduce
postprandial glycemic excursions (59, 66). However, there are
only a handful of clinical studies in healthy subjects (mostly
females) that have evaluated the effects of BTR signaling on
gut hormone secretion and associated metabolic effects, and no
studies in patients with obesity and/or type 2 diabetes. Moreover,
the doses of BTR agonists administered in human subjects have
been low, probably because bitter tastants are considered to be
potentially toxic and aversive (28). Bitter taste perception in
the mouth is unpleasant, and naturally serves as an aversive
signal for the termination of eating. However, stimulation of
intestinal BTRs by administration of different BTR agonists
directly into the stomach or duodenum, thereby bypassing oral
perception, has not been reported to cause any adverse effects
in preclinical models and healthy subjects. Nevertheless, the
tolerability of BTR agonists at higher doses remains to be
established.

Relative to STRs (T1R2/T1R3) and umami taste receptors
(T1R1/T1R3), the biology of BTRs (T2Rs) appears to be
more complex due to their diversity. Moreover, expression
of BTRs varies substantially along the gastrointestinal tract.
For example, T2R2 and T2R6 showed higher expression in
gastric than duodenal mucosa in rats (34), whereas in mice,
T2R118 and T2R131 are expressed abundantly in the colon, but
minimally in the duodenum and jejunum (46). As summarized
in Table 1, multiple T2Rs are often co-expressed on the
same enteroendocrine cell. However, the relative importance
of each has not been characterized. Accordingly, it remains to
be determined whether the expression of T2Rs also exhibits
regional specificity, in a similar pattern to enteroendocrine
cells and, therefore, whether more targeted delivery of BTR
agonists is needed for effective stimulation of enteroendocrine
hormone secretion. Notably, physiological bitter substances,
including bile acids and products of digestion (e.g., amino
acids), are abundantly present in the gut after a meal; it
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is also important, therefore, to understand the physiological
role of intestinal bitter taste sensing in the regulation of
gastrointestinal hormone secretion, appetite and postprandial
glycemia.
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