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An aging world population exposed to a sedentary life style is currently plagued by

chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at

an unprecedented rate. One of the most promising pharmacological approaches for the

management of type 2 diabetes takes advantage of the peptide hormone glucagon-like

peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors.

Despite the improved quality of life, long-term treatments with these new classes of

drugs are riddled with serious and life-threatening side-effects, with no overall cure of

the disease. New evidence is shedding more light over the complex physiology of GLP-1

in health and metabolic diseases. Herein, we discuss the most recent advancements

in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the

multiple gaps into our understanding of its physiology and pathology.

Keywords: glucagon-like peptide-1, metabolic disease, type 2 diabetes, enteroendocrine cell system, GPCR,
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INTRODUCTION

The gastrointestinal (GI) tract is a complex organ that monitors the body’s energetical state and
provides it with water and macro and micronutrients extracted from the ingested food. Along its
length, the enteroendocrine cells (EECs) constitute a complex endocrine organ that communicates
with the central nervous system (CNS) and the enteric nervous system (ENS) to orchestrate the
homeostatic balance of the body in response to the GI luminal content.

This enteroendocrine system has traditionally been divided into 12 different cell types, based
entirely on their hormonal content and cellular morphology. This endocrine organ is not organized
in a glandular structure; on the contrary, it is dispersed heterogeneously, mainly as single cells,
along the epithelium of the GI tract, from the stomach to the rectum with a defined cephalocaudal,
crypt-to-villus in the small intestine and crypt-to-surface distribution in the colon (1, 2).

Despite representing just 1% of the adult gut epithelium, in the last decade it has become
clear that the EECs constitute the largest endocrine organ in mammalia (3). Recent analysis of
the expression of specific hormones at the cellular level, demonstrated that the EECs subdivision
introduced above is outdated. Each enteroendocrine cell co-secretes multiple hormones with
spatio-temporal, crypt-to-villus, and rostro-caudal variability, leading to the formation of
overlapped gradients of individual hormones along the GI tract; the concept of well-defined
subclasses of cells committed to express a specific subset of hormones independent of their location
is currently untenable, thus detailed description of the topographical location of the cells needs to
be implemented for future clarity (4).
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Collectively, the EECs are responsible for the production of
more than 30 different hormones that help to orchestrate the
fate of the intermediary metabolism; acting upon different organs
such as the pancreatic islets, the hypothalamus or the stomach,
for the release of insulin, to regulate food intake or gastric
emptying respectively (5–8).

Surprisingly, this heterogeneous and highly plastic population
of cells is known to differentiate from a single staminal progenitor
that gives also rise to enterocytes, goblet and paneth cells (1, 9).

It has been known for more than a century that the gut is
capable to stimulate the endocrine portion of the pancreas and
even improve the hyperglycaemic state of diabetic patients (10,
11). In 1932, the Belgian investigator LaBarre referred to these
“factors” extracted from the intestinal mucosa as “incrétine,”
deriving it from: INtestinal seCRETion of insulin (12). In the
60s, different authors demonstrated that oral glucose was capable
to induce a 2-fold increase in insulin compared to an in-vein
isoglycaemic administration (13).

In the last three decades, the incretin-effect has been attributed
primarily to two peptide hormones, the gastric-insulinotropic
peptide (GIP) and glucagon-like peptide-1 (GLP-1), excreted
primarily by duodenal (K) and ileo-colonic (L) enteroendocrine
cells respectively (14). Indeed, type 2 diabetes (T2D) is a
metabolic disease reported to involve an impaired intestinal
release of GLP-1 and its co-secreted peptides oxyntomodulin
and glicentin (15–17), together with an insulinotropic resistance
to GIP in the pancreas (18) which lead to a deficient incretin
system, purportedly causing the disease (19, 20). Despite being
still largely unknown how hyper caloric diets are disrupting
the incretin signaling, some authors have shown that even
circadian rhythms disruption, and the saturated fat palmitate, are
significant stressors capable to hamper GLP-1 secretion (21, 22).

Obesity and Type 2 diabetes are chronic diseases for which
the most effective treatment is bariatric surgery. These invasive
gut surgical procedures, aimed to reduce absorptive surface area
of the proximal GI tract, such as Roux-en-Y gastric by-pass
(RYGB) or Sleeve Gastrectomy (SLG), are associated with an
improved glycaemic control, weight loss, and often with complete
remission from T2DM (23).

Despite this, the complete remittance of a great fraction
of RYGB patients represents a fascinating new case-series that
points at the importance of the EECs and its modulation of the
whole-body metabolism (24). As such, the study of this complex
endocrine organ, might help us to create new pharmacological
tools to amend the specific molecular axis that drive T2DM and
the associated co-morbidities known to affect the cardiovascular
(25, 26) and renal system (27, 28).

A panoply of contradictory studies have attempted to establish
what is the possible role of GLP-1 or other gut peptides in
the rapid, and long-lasting remittance from T2D after bariatric
surgery, but no consensus about the identity of the molecular
players has yet been reached (29–39).

Since 2005, there are on the market only two classes of
drugs that attempt to bolster glucagon-like peptide-1 signaling,
GLP-1 receptor agonists and DPP-IV inhibitors, for a supra-
physiological GLP-1 activity. Unexpected safety-issues and
important side-effects (40) prove that the peripheral hijack of this

peptide is not sufficient, and does not replicate the remittance
seen in bariatric surgery.

This review summarizes the most recent studies that reframe
our understanding of the physiology of GLP-1 in health and
disease.

CHEMOSENSATION IN
GLP-1-PRODUCING CELLS

Intestinal proglucagon expressing cells were historically named
L-cells more than 4 decades ago because of their large 500 nm
secretory granules seen under electron microscopy (41). Today,
we know that these are nutrient-responsive enteroendocrine cells
that secrete a variety of peptide hormones, primarily derived
from the proglucagon gene (GCG) (42). Once translated, the 180
amino acid long GCG protein is processed by two proteases,
Psck1 and Psck3, to give GLP-1, GLP-2 but also the less studied
and understood glicentin and oxyntomodulin (43). Other peptide
hormones, such as insulin-like peptide 5 (INSL5) (44, 45), PYY
(46), GIP and neurotensin (17, 47) can be co-expressed with
the GCG products depending on the topographical localization
of the cell; surprisingly, it appears that GLP-1 and PYY can
be excreted independently possibly due to the existence of
compartmentalized secretory vesicles (48).

There appear to be considerable species-specificity in terms of
anatomical localization of GLP-1 production as summarized in
Figure 1. Independently of other hormones, in mice the distal
colon and rectum show the higher levels of GLP-1 per gram
of tissue. Conversely, in rats the distal ileum and in pigs the
caecum are the anatomical regions with the highest amounts of
GLP-1 (49). In humans, the density of GLP-1 and PYY positive
cells increase steadily along the small intestine, decreasing in the
colon, and then raising again reaching a maximum density in the
rectum with the highest values of around 150 GLP-1-expressing
cells per square millimeter. Curiously in type 2 diabetes, an
equally distributed gradient of GCG and PC1/3 mRNA appears
upregulated, but with normal GLP-1+ cell densities, indicating a
possible translational resistance (51).

The L-cells derived cocktail of hormones is believed to play
pivotal roles in digestion, for example slowing down the GI
motility (PYY) and suppressing the appetite in vivo (GLP-1,
oxyntomodulin, PYY), apparently in response to direct sensing
of the gut luminal content via G-protein coupled receptors or
through neuronal circuits (43, 52).

Current in vitro technologies are not capable to support for
long-term ex vivo the growth of isolated GLP-1 producing-
cells. The available knowledge about the biology of GLP-1
is primarily drawn upon studies operated with the murine-
derived GLUTag or STC-1, and the human-derived NCI-H716
cell lines. It is important to understand that these in vitromodels
express a different hormonal cocktail and respond to different
chemical stimuli than intestinal L-cells in vivo (53, 54). Primary
cultures are another useful short-term system; nonetheless GLP-
1-producing cells amount to only 1–2% of the whole cultured
mucosal population, with considerable intra and inter-assay
variability (53).

Frontiers in Endocrinology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 584

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paternoster and Falasca Regulation of GLP-1 Secretion

FIGURE 1 | Intestinal glucagon-like peptide-1 expression across species. Total GLP-1 expression along the rat, mouse, pig and human intestinal tracts (relative

lengths not to scale) is displayed with gradients as individually indicated in figure. The rat GI tract shows the highest levels of GLP-1 in the ileum and proximal colon.

On the other hand the murine gut, displays the highest GLP-1 levels in the distal colon. The porcine intestine shows highest levels in the caecum and distal colon, and

virtually none in the proximal small intestine. In humans, a steady increasing gradient along the small intestine is followed by a decrease in expression in the colon, and

a second steeper gradient culminating in the rectum with the highest GLP-1 expression (49–51).

The more physiologically relevant studies make use of in vivo
transgenic mice, ex vivo perfused intestines or, more recently,
crypt organoids derived from human,mouse or porcine guts (55).

In situ immunostaining and FACS studies have demonstrated
that the hormonal secretome of GLP-1-secreting-cells is
anatomically dependent. In the upper gut where these cells are
more sparse and rare, GLP-1 is co-expressed with GIP, a K-cell
feature, but also with cholecystokinin (CCK) and Neurotensin
(NT). Conversely in the colonic mucosa, GLP-1 co-localizes with
PYY, CCK and the orexigenic Insulin-Like peptide 5 (INSL5)
(4, 43, 45, 53, 56, 57). Interestingly, colonic L-cells possess twice
as much total GLP-1 compared to L-cells from the upper GI
tract (53). Furthermore, considering the differential response to
glucose, it is clear that the physiology of this population of EECs
is distinct, and evolved under a different evolutionary pressure
dictated by the exposure to a different luminal content (53, 58).

L-cells are known to modulate the release of their hormonal
cargo in response to the activation of a plethora of receptors
capable to sense fats, carbohydrates, proteins and many
other compounds. Enteroendocrine cells, like other endocrine,
muscle and neuronal cells, are electrically excitable. Membrane
depolarization, triggered by a ligand-bound receptor, results in a
spike of intracellular calcium (Ca2+) which leads to the fusion of
the endocrine granules with the lateral and the broader basal side,
resulting in the discharge of a hormonal cargo in the capillaries
of the mucosa.

Surprisingly, the EECs in the colon have been demonstrated
to physically connect through a basal process named Neuropod,
with afferent nerve cells residing in the lamina propria, defining a
neuroepithelial circuit that expands the physiology of these cells
(59). In fact, the idea of a direct neuronal regulation has been
demonstrated decades ago in rats, where a bilateral vagotomy
massively downregulates circulating PYY and GLP-1 levels after
a glucose load (60). Furthermore, intracerebral acute, but not
chronic administration of GLP-1 in mice, improves pancreatic
glucose stimulated insulin secretion (61).

GPCRs AS MOLECULAR TASTANTS

G-protein coupled receptors (GPCRs) are evolutionary ancient
proteins spanning seven times across the plasma membrane
of virtually any known cell type. In metazoans, these proteins
evolved into thousands different molecular transducers capable
to translate the presence of extracellular molecules into
intracellular cascades of messages amplified by different G-
proteins, which in turn enforce a myriad of different cellular
processes via secondary messengers (62). The transmembrane
domain of these chemosensors being exposed to a tighter
evolutionary pressure lead to a relative evolutionary stability
of the same 3-dimensional structure. On the contrary, the
extracellular facing portion is what primarily defines the identity
of a myriad of different receptors, capable to sense a panoply
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of molecular entities ranging in size from a single atom to
hundreds aminoacids long proteins. The intracellular portion of
these nano-sensors, has evolved in humans in a complex hub
that triggers multiple molecular cascades that results in short-
term and long-term modifications of the target cell and even the
whole-body metabolism.

Different receptors, expressed by the same cell type or tissue,
can trigger the same molecular cascade. With this notion,
the study of these molecular transducers has been approached
by some authors in recent years from a top-down point of
view, whereby sub-type specific, allosteric positive or negative
modulators (PAM, NAMs), as well as direct agonists, are utilized
as tools for pathway dissection and analysis (63, 64). In the
last decade, technological advancements in techniques such as
circular dichroism (65), Cryo-electron microscopy (Cryo-EM)
(66) and crystallography (67) have expanded our understanding
of the physiology of multiple chemosensors expressed by L-cells,
which led to the discovery of new molecular tools with possible
future clinical applications in diseases such as type 2 diabetes
(64, 68–70).

The expression of different GPCRs to restricted anatomical
regions, such as the enteroendocrine cell system, is a finely
tuned system that evolved in metazoan. Macronutrients, bile
acids (BAs), and microbiota-derived compounds activate many
of these GPCRs expressed by GLP-1 expressing cells (71).
Nonetheless, not all intestinal stimuli signals through these
chemosensors; for example glucose induces the release of GLP-1
from human duodenum and ileum via electrogenic transporters
(SGLT1) and voltage-gated Calcium and Sodium channels
responsible for the membrane depolarization and hormonal
release (53, 72).

The main G protein-coupled receptors which activation
appears to cause the release of GLP-1 are: GPRC6A (73), GPR40-
41-42-43-93-119-120 (43), GPR142, GHS-R1A (74), Tas1R2-
Tas2R3(T1R2-T1R3) (75), GPBAR1 (TGR5), and CasR (6, 76, 77)
(Table 1). The functional differences seen between Jejunum-
Ileal and colonic GLP-1 producing cells, could be explained
by a different pool of GPCRs, or possibly by the presence of
heteromers displaying a more complex pharmacology than with
each individual receptor.

A summary of the recognized main activities of all the major
GLP-1-secreting receptors, including the GIPR (93, 94), is shown
in Table 1.

Many of these chemosensors are also expressed by other
enteroendocrine cells, so that the same dietary ligand traveling
along the GI tract, leads to the release of multiple hormones.

There are some receptors, such as GPRC6A, with a pleiotropic
distribution and still a limited understanding of its physiology.
GPRC6A is highly expressed in GLUTag cells, and its activation
by L-ornithine has shown to induce GLP-1 secretion (102).
Nonetheless, mice deficient for the receptor, show no difference
in responsiveness to both L-ornithine and L-arginine (103).

THE PHYSIOLOGY OF GLP-1

In the last three decades a major tenet seeing GLP1 (7-36)NH2,
GLP1 (7-37) and the Gastric Insulinotropic Peptide (GIP)
as the major contributors of the physiological incretin effect

has reached widespread consensus (104). The remaining
Glucose-stimulated insulin secretion (GSIS) appears to be
enhanced by nutrients, hormones such as CCK, bile acids and
endogenous ethanolamides. Animal models show compensatory
mechanisms by which, in absence of a major incretin axis, other
minor pathways are promoted in the β-cells to maintain their
metabolic activity; namely proteins such as GPR119, or the
CCK A receptor itself are upregulated, implying a highly plastic
metabolic adaptation (105).

Multiple cell types found in the enteroendocrine cell system,
the pancreatic islets or the brain have been shown to express
the GCG product, a 180 aminoacids long peptide known
as proglucagon (PG) (106, 107), which gets trimmed tissue-
dependently into at least 6 different bio-active peptides, namely
glicentin, oxyntomodulin, glucagon, miniglucagon, GLP-1 and
GLP-2 (108, 109). The post-translational processing of the
preproglucagon gene into the individual peptides is controlled
by two distinct serine proteases, specifically prohormone
convertases named Psck1/3 and Psck2, also known as PC1/3,
or just PC1, and PC2 respectively (107, 108, 110). PC1/3 and
PC2 are responsible for the metabolism of a plethora of peptide
pro-hormones, including insulin and GCG among others (111).
In particular PC1/3 expressing cells, such as intestinal L-cells
and pancreatic β-cells, produce GLP-1, GLP-2 oxyntomodulin
and glicentin (110, 112), while PC2 action on PG results in the
production of glucagon and its active metabolite mini-glucagon
(113, 114). Differential expression of PC genes regulates the
hormonal output, and indeed it has been proven that both are
expressed along the intestine, with PC1/3 positive cells found
more distally than PC2 expressing cells (51), likely secreting
glucagon (115). Indeed, the RYGB surgery removes the biggest
pool of PC2/glucagon expressing cells from the exposure to
nutrients, possibly contributing to the surgical success.

Active GLP-1(7-37), in human andmice is largely metabolized
by the enzyme peptidyl-glycine α-amidating monooxygenase
(PAM) into the equally active GLP-1(7-36)NH2 (49, 116).
Both these peptide species are trimmed at their N-term, and
inactivated by the ubiquitous protease dipeptidyl-peptidase-IV
(DPP-IV), found in the intestinal capillaries, vena porta and liver.
Indeed, it has been estimated that just 10-15% of the secreted
GLP-1(7-36)NH2 reaches the systemic circulation (117), with
some authors reportingmeager peripheral meal-induced changes
in both healthy and diabetic people (118). Furthermore, the
DPP-IV product, GLP-1(9-36)NH2, is trimmed into GLP-1(28-
36)NH2 and GLP-1(32-36)NH2 by another ubiquitous protease,
known as NEP24.11, CD10 or also Neprilysin among other
names (119, 120).

Indeed, these once thought inactive metabolites of the
recognized GLP-1 receptor agonist GLP-1(7-36) NH2 have
recently shown to possess multiple beneficial properties.
The 9 aminoacids long GLP-1(28-36) protects β-cells from
glucolipotoxicity (121), diet-induced steatosis of the liver (122),
improves hepatic glucose tolerance in diabetic mice (122–124).
Similarly, the 5 aminoacids long GLP-1(32-36)NH2 improves
glucose disposal, increases energy expenditure and protects
β-cells in a diabetic environment in vivo (125–127). Indeed
GLP-1(9-36) pharmacodynamics studies in human might be
partially explained by the activity of its metabolites (128).
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TABLE 1 | Demonstrated primary effects of the major GLP-1-stimulating receptors.

Receptor Ligand Effect Experimental condition References

FFAR1/GPR40 Palmitate Insulin ↑, glucagon ↑, somatostatin↑ Ex-vivo human islets (78)

Free fatty acids GLP-1 ↑, GIP ↑ In-vivo mouse (79)

Long chain fatty acids CCK ↑ Ex-vivo murine duodenal I cells (80)

FFAR2/GPR43 Inulin PYY ↑ In-vivo diabetic mouse (81)

Propionate PYY ↑, GLP-1 ↑ Ex-vivo murine colonic Primary

cultures, & in-vivo murine and rat

(82)

FFAR3/GPR41 Propionate PYY ↑, GLP-1 ↑ Ex-vivo murine colonic primary

cultures

(83)

FFAR4/GPR120 α-Linolenic acid GLP-1 ↑ In-vivo mouse (84)

Lard oil, corn oil GIP ↑, CCK ↑ In-vivo mouse (85, 86)

GPR119 Oleoyl-LPI, OEA GLP-1 ↑ In-vitro murine GLUTag, ex-vivo

human colon

(87, 88)

AR231453, AR435707,

AR440006, OEA, 2-0G

PYY ↑, GLP-1 ↑, GI motility ↓ Ex-vivo murine gut, in-vivo

healthy and diabetic mouse,

ex-vivo human colon

(89, 90)

Hypergl* + AR231453 Insulin ↑ In-vitro murine MlN6 (88)

Hypergl. * Compounds A/B1 Insulin ↑ Ex-vivo rat pancreas (91)

Hypogl.** Compounds A/B1 Glucagon ↑ Ex-vivo rat pancreas (91)

DS-8500a Insulin ↑, glucagon ↑, GLP-1 ↑,

GIP↑, PYY ↓

Type 2 diabetic humans (92)

GIPR Hypogl.** + GIP Glucagon ↑ Type 1 diabetic humans (93)

Hypergl.* + GIP Insulin ↑, somatostatin↑ Healthy humans (94)

GIP IL-6 ↑ Ex-vivo human, and murine

α-cells

(95)

GLP-IR GLP-1 Insulin ↑, somatostatin↑, glucagon ↓ Ex-vivo healthy murine pancreas (96)

GLP-1 Appetite ↓ In-vivo intracerebral rat (97)

GLP-1 GLP-1 ↑ In-vitro murine α-TC 1-6 (98)

Exendin-4 Glucagon ↓ Ex-vivo healthy rat pancreas (99)

Exendin-4 Glucagon ↑ Ex-vivo diabetic rat pancreas (99)

TGR5 Hypergl.* + INT-777
†
, or LCA§ GLP-1 ↑, insulin ↑ Ex-vivo healthy human, and

murine diabetic islets

(100)

Taurodeoxycholate GLP-1 ↑ Ex-vivo murine primary ileal

cultures

(101)

Analytes are indicated as up (↑) or down (↓) regulated. All in-vivo, or in-human studies, indicate peripheral plasmatic levels. *(Hypergl.) and **(Hypogl.) indicate conditional

presence/hyperglycaemia, or absence of glucose/hypoglycaemia. §(LCA) lithocolic acid,
†
(INT-777) semisynthetic bile acid, (GSIS) Glucose-stimulated insulin secretion. 1(Compounds

A and B) are experimental GPR119 agonists described by Li et al. (91).

These metabolites have possibly important implications for
any future treatment of metabolic pathologies such as type 2
diabetes, where our understanding of the pharmacokinetic and
pharmacodynamics in humans is virtually absent (128).

In healthy humans, intact GLP-1(7-36) NH2 is mainly released
by intestinal EECs after the ingestion of food, especially meals
rich in fat and proteins (14, 129). Other stimuli, such as physical
activity, are also capable to raise its plasmatic levels for up to
90min after exercise (130).

This hormone generates both short-term and long-
term pleiotropic effects. GLP-1 stimulates the β-cells to
produce Insulin, blocks pancreatic α-cells’ glucagon release
via somatostatin (96), slows down gastric emptying (131),
improves peripheral glucose tolerance (132), suppresses appetite
in the hypothalamus and amygdala (97), increases β-cell
mass, GSIS, and elicits protection from glucolipotoxicity
(133) and apoptosis (134). Curiously, it also regulates

bone physiology (135), and shows anti-inflammatory
properties (136).

On the other hand, the most abundant DPP-IV-processed
metabolite GLP-1 (9-36)NH2, has also been reported to have
biological activities, protecting human aortic endothelial cells
and cardiomyocytes in vivo in dogs (137) and ex vivo in
mice (138) and rats (139), even in the absence of a GLP-1
Receptor (139, 140). Some authors postulate the existance of an
unknown GLP-1(9-36)NH2 receptor (141, 142), because indeed
this cleaved peptide is found in peripheral blood at one order of
magnitude higher concentrations than “active” GLP-1 (7-36)NH2

and shows cardioprotection, antioxidant properties (138) and
appears capable to also inhibit hepatic neoglucogenesis (141).

GLP-1 (7-36)NH2 itself is known to have general protective and
modulating cardiovascular effects (143), as shown by different
commercial GLP-1 mimics with proven cardioprotection type 2
diabetes (144).
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In healthy fasted individuals, it is recognized that peripheral
plasmatic active GLP-1 (7-36)NH2 plasmatic levels hover around
5 pM, but within 5–10min after an oral glucose load, they start
to rise, up to a maximum of less than 10 pM after 40–90min, and
slowly descend back to baseline values in 150min. On the other
hand, the cleaved GLP-1 (9-36)NH2 summed to the GLP-1 (7-
36)NH2 to give what is normally referred to as total GLP-1 levels,
raise up to more than 40–60 pM (108). In perspective, GIP and
Insulin showmuch broader dynamic ranges, with postmeal levels
reaching 300 and 400 pM respectively, from their baselines <20
pM within 30min post glucose ingestion (108, 145). Curiously,
some bariatric RYGB patients experience up to a 10-fold increase
in post-meal active GLP-1 plasmatic levels (from fasting 5 pM
to post-prandial 30–65 pM) (146), and have a 2- to 3-fold
higher glucose-stimulated Insulin secretion (147), which in some
diabetic patients results in GLP-1-mediated hyperinsulinemic
hypoglycaemia that requires GLP-1 antagonism or surgical
reversal of the intestinal anatomy (148).

Different authors consider the success of surgical intervention
a consequence of a major change in gut hormonal profile,
primarily a supra physiological post-prandial GLP-1 secretion
(29, 30). This reasoning fits with the observation that type 2
diabetic patients display a shorter post-prandial peak of GLP-1,
hence they are deficient for the longer response seen in healthy
individuals. Multiple groups describe diabetic patients with lower
plasmatic GLP-1 but heightened GIP levels and β-cell resistance
to the stimulatory effect of both GLP-1 and GIP (18, 149–153).

Nonetheless, different animal models deficient for GLP-1
signaling, in addition to human studies, prove the dispensability
of GLP-1 for surgical success (31–34), questioning the causative
nature of GLP-1 for the reported metabolic benefits.

On the other hand, PYY has been proven to be upregulated,
and necessary, for RYGB mediated restoration of the diabetic
islets, and overall cure of diabetes in rats (35) and humans (154).

Another important source of endogenous GLP-1 is the brain,
a tissue where it acts as a neurotransmitter. Indeed central
GLP-1 production appears essential, since peripheral GLP-1 is
assumed to not be able to cross the blood-brain barrier (BBB).
In particular, neurons of the hindbrain found in the nucleus-
tractus solitarius (NTS) secrete GLP-1 and activate hypothalamic
neurons of the paraventricular nucleus (PVN), resulting in satiety
(155, 156). Indeed it is clear that PC1/3 dominant neurons of
the NTS express also other the PG peptides oxyntomodulin,
glicentin, and GLP-2 together with GLP-1 (157). Although
expressed at much lower levels, PC2 activity has also been
recognized in these neurons, and traces amounts of glucagon
might have important implications.

NTS neurons-derived GLP-1 appears to reach out to multiple
locations within the central nervous system (CNS), which
have been proven to express the receptor, and be activated
after a central administration of GLP-1 receptor agonists.
These areas include the NTS itself, the supraoptic nuclei, the
arcuate nucleus (ARC) and the area postrema (AP) other than
corticotropin-releasing hormone (CRH) PVN neurons (158,
159). Beyond satiety, this signaling appears to be a key factor for
neuroprotection (160) insulin sensitivity and glucose metabolism
(158).

Curiously, the feeling of satiety, is also achieved by another
neurotransmitter, the Cocaine- and amphetamine-regulated
transcript (CART) (161). This peptide, acts also as a hormone,
and is expressed by both β-cells and intestinal GLP-1 and
GIP producing cells causing GLP-1 secretion in vivo via a yet
unknown GPCR (162).

It is not entirely clear to what extent endogenous GLP-1
activates all the reported GLP-1 receptor expressing neurons and
to what extent it depends on the CART peptide especially in type
2 diabetes or obesity. Nonetheless, some commercial mimics of
GLP-1, such as Liraglutide, even when administered peripherally,
appear to cross the BBB and activate neurons within the
ARC resulting in GABA dependent inhibition of neuropeptide
Y (NPY) and agouti-related peptide (AgRP) secretion. This
signaling has proven to be essential for the Liraglutide mediated
weight loss in rats (163). GLP-1R expressing hypothalamic
neurons have proven dispensable for the beneficial metabolic
activity of both BBB permeable Liraglutide and Exending-4 (164).

Singularly, BBB impermeable mimics of GLP-1 have still
shown to activate GLP-1 Receptor expressing neurons (165), but
they require a functional gut-brain axis through the vagus nerve
(166). In particular, vagal afferent neurons expressing the GLP-1R
are necessary for GLP-1 mediated induction of satiety (167) but
not glucose lowering effects (168).

The complex inter-organ pharmacokinetic of GLP-1,
compounds into a convoluted pharmacodynamics encompassing
multiple metabolic systems.

Indeed the GLP-1(7-36) NH2 receptor, a GPCR, is found to
be expressed by a wide range of tissues and cells such as: α,
β, and δ-cells (169), sinoatrial node myocytes, arterial smooth
muscle cells of lungs and kidneys, megakaryocytes, macrophages,
monocytes, lymphocytes, gastrointestinal tract mucosa [mainly
Brunner’s gland in the duodenum, but also in the parietal cells
of the stomach, jejunum ileum and the nerve plexus around
the small and large intestine (170, 171)], central nervous system
[neocortex, cerebellum, thalamus, amygdala, area postrema,
hypothalamus, hippocampus, nucleus tractus solitarius (158)],
peripheral nervous system (myenteric plexus) and in the skin
(14, 172–176).

Counterintuitively, mice completely defective for the GLP-
1 receptor were reported to be protected from high-fat diet-
induced peripheral Insulin resistance (177) and, consistently with
this, central inhibition of GLP-1R signaling with the antagonist
exendin 9-39 improves glucose tolerance and glycaemia (178).
Conversely, mice defective for both the receptors for glucagon
and GLP-1, or GLP-1 and GIP, show a highly plastic entero-
pancreatic system that adapts and gives these animals no overt
phenotype in terms of glucose homeostasis (105).

Nonetheless, the pharmacological activation of the GLP-1R
is clinically beneficial (179), offering an improved glycaemic
control with lower cardiovascular morbidity and without the
risk of hypoglycaemia associated with some current anti diabetic
drugs (173). Furthermore, being an appetite suppressant, GLP-
1 signaling also helps to lose body weight, especially if in
combination with metformin. Conversely, anti-diabetic drugs
such as sulfonylureas, or Insulin, are known to induce not
only weight gain (180, 181), but also an increased risk of
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hypoglycaemic events (182). Pharmacological activation of the
GLP-1 Receptor has also shown to help exogenous insulin in
the control of glycaemia in patients with type 1 diabetes, by
slowing the gastric emptying and blocking glucagon secretion
(183, 184).

Currently, six different peptide GLP1-Receptor agonists are
on the market, with more in clinical trials. In particular, two
short-acting formulations of Lixisenatide and Exenatide and four
long acting preparations of Exenatide, Liraglutide, Dulaglutide
and the most recent and successful Semaglutide, were approved
in October, 2017 for the North American markets by FDA1

(25, 185). The first GLP-1 analog to be approved by FDA
in 2005 for the management of Type 2 diabetes was the
chemically synthesized Exenatide under the name of Byetta (186),
a formulation of the DPP-IV resistant peptide discovered in the
gila monster Heloderma suspectum saliva in 1992 (187). Despite
the longer half-life in serum, Byetta needs to be injected twice
a day. In the last decade, formulations with extended release
entered the market with once-weekly self-administrations pens.

Pleiotropic beneficial effects have been reported for this class
of drugs. Beyond the improved glycaemia control, essential for
the short term treatment of diabetes (188), different GLP-1RAs
are powerful clinical tools for the management of diabetic kidney
disease (DKD) (28, 189) non-alcoholic steatohepatitis (NASH)
(190), neuroinflammation (191), obesity and cardiovascular
disease (192–195).

Although GLP-1RA are improving the lives of patients
affected by type 2 diabetes or the metabolic syndrome (196), the
physiology of GLP-1 is far from being clear.

More recent data suggest how the unimolecular co-activation
of GLP-1 and GIP receptors, has powerful anti-diabetic effects
superior to either agonism (197). Furthermore, oxyntomodulin
is a natural dual-agonist of GLP-1 and glucagon receptors and
displays anti-diabetic properties in humans (198, 199). Upon this
finding, a tri-agonist peptide, targeting the receptors of GLP-1,
GIP, and glucagon was created (200). The in vivo effects of this
drug are unparalleled, even superior to what can be achieved
with the dual agonists for either combination. The synergistic
activation of these three important receptors is capable to revert
diet-induced obesity, cognitive impairment and T2D in mice
models, warranting future human studies (201, 202).

EXPANDING THE PHYSIOLOGY OF GLP-1

When examining the physiology of glucagon-like peptide-1, it is
important to consider that there is an expanding body of evidence
that questions its systemic endocrine physiology (203, 204).
Pancreatic α-cells have been demonstrated to express and secrete
not only GLP-1 (205, 206), but also PYY (35) GIP (207, 208)
mini-glucagon (209) or even Xenin (210) together with glucagon
(Figure 2). The key protease responsible for the processing
of the proglucagon peptide into GLP-1 is Psck1/3, which has
shown to be upregulated in α-cells during hyperglycaemic,

1http://press.novonordisk-us.com/2017-12-5-Novo-Nordisk-Receives-FDA-

Approval-of-OZEMPIC-R-semaglutide-Injection-For-the-Treatment-of-

Adults-with-Type-2-Diabetes

hyperlipidemic, or inflammatory conditions to promote glucose-
induced glucagon suppression, a compensatory response to a
metabolic insult as in type 2 diabetes (205). Insulin itself has
shown to modulate PC1/3 expression to possibly aid its own
metabolic activity (211).

Recently, the whole dogma of the role of intestinal GLP-1,
envisioning the traveling from the gut to the liver and ultimately
reaching the pancreatic β-cells to bind its GLP-1R has been
questioned in transgenic mice (204). Indeed, since both DPP-
IV degrades and NEP24.11 degrade GLP-1 within seconds,
the possibilities of any intestinal GLP-1 to reach the system
circulation and then the islet microcirculation are doubted.
Besides, it is important to consider that intestinal GLP-1 has a
local concentration in the nM range (10–100 picomoles per gram
of tissue, see Figure 1), further advocating that the main action of
this protein have evolved to be locally restricted.

Animals deficient for the GCG gene in the intestine, still
experience a normal incretin effect disrupted with the GLP-1R
antagonist Exendin (9-39) (204). This indicates that it is the
intra islet, α-cell derived GLP-1 that shows the meal-induced
insulinotropic properties. A critic to the use of a murine model
deficient for intestinal GCG products, would be that other
gut hormones might compensate for the lack of a functional
GCG gene in that tissue, hence explaining the normalized
incretin effect. Indeed other gut hormones such as GIP must
be responsible for the incretin effect to a higher degree than
once thought. Nonetheless, it is also clear that intra-islet GLP-
1R signaling is essential for GSIS, with more evidence that an
intra-islet paracrine GLP-1 signaling is physiologically present
(212, 213) and necessary for β-cell health under metabolic (214).

In contrast, mice deficient for GLP-1R only in β-cells have a
normal incretin response and oral glucose tolerance, indicating
the dispensability of intra-islet signaling of GLP-1 for the incretin
effect. Interestingly, these same animals have an improvement of
their glucose tolerance in response to oral DPP-IV treatment, but
not to subcutaneous GLP-1 mimics, indicating how the former
relies completely on localized, non β-cell GLP-1R (215).

There are still multiple gaps into our understanding of how
different GLP-1 producing tissues communicate, especially in the
brain to islet axis. It is known that acute, but not chronic, central
GLP-1 receptor activation directly modulates glucose-induced
Insulin secretion implicating a direct brain to islet neuronal
communication (61).

On the other hand, chronic GLP-1 activity in α-cells
increases its own secretion, feeding an autocrine loop that gets
overstimulated with the use of exogenous synthetic GLP-1R
agonists [(98); Figure 2]. Curiously in diabetic rats, it has recently
been shown that this loop might indeed induce the production of
more glucagon than in healthy animals (99).

It has been known for more than two decades and has
been confirmed more recently, that an infusion of GLP-1(7-
36)NH2 has insulinotropic and glucagonostatic effects. This is
seen when the plasmatic levels are above 50–60 pM, equivalent
to more than five times the levels seen post-prandial in healthy
individuals challenged with a bolus of glucose, or 10-fold their
basal levels (153, 216), adding further doubt to the physiological
hormonal dogma of intestinal GLP-1. Considering the mounting
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FIGURE 2 | The gut-brain-islet axes of GLP-1. The intestinal EECs secretome is subject to first pass metabolism, while intraislet signaling relies on paracrine signaling.

Intestinal cells are known to communicate with the Enteric Nervous System, and the Central Nervous System through the Vagus Nerve. Neuronal engagement

between the gut lumen and the islets of Langerhans is a possible compounding explanation to the incretin effect, whereby the mechanistic of the single molecular

players are still largely unknown. See text for further details.

evidence, it is clear that we need to understand what hormonal
and/or neuronal signals are bridging the gut luminal content
to the insulin secretion explaining the incretin effect. Given
that Intestinal oxyntomodulin, glicentin, glucagon and GLP-1
expression have proven to be dispensable in mice (204); other
intestinal hormones such as GIP, PYY, Neurotensin, INSL-5 or
the GIP co-secreted Xenin (217) might play an important role
(Figure 2). Currently, notmuch is known about the physiology of
Neurotensin, INSL-5 and Xenin. The first two have been reported
to be co-expressed with GLP-1 in the small and large intestine
respectively, with Neurotensin being reported also in pancreatic
β-cells (210), while Xenin in a sub population of duodenal GIP
positive cells and α-cells. Neurotensin levels are correlated with
leptin (218), rise in response to fatty meals, signals through two
different G-protein coupled receptors known as NTSR1 and 2,
and a third single transmembrane receptor, NTSR3, also known
as sortilin (219). All of these receptors are expressed by pancreatic
β cells, where their activation appears to mediate insulin release
at low glucose levels and blockage at high levels (219, 220), (see
right side of Figure 2). On the other hand, INSL-5 targets a GPCR

known as GPR142, also known as RXFP4, a receptor found to
be expressed by the NCI-H716 cell line (54), and both α and
β-cells in the pancreas, and its activation directly stimulates the
expression of GLP-1 and insulin, representing a possible new
pharmacological tool for the treatment of type 2 diabetes (77,
221), and supporting a possible role for INSL-5 in the incretin
effect. Xenin is another gut-derived food-induced peptide known
to potentiate GIP activity (222, 223). Considering that α and β-
cells express GIPR (224) and that the GIP-potentiating activity of
Xenin has been reported to be lost in human diabetics (223), it
appears to be a critical player in this disease, likely involving the
activity of GLP-1.

In addition, both in vitro and in vivo Interleukin-6 (IL-6) has
shown to be a powerful GLP-1 secretagogue, capable to positively
modulate both the proglucagon gene, and the expression of
PC1/3 in α-cells and intestinal L-cells (225, 226). Indeed, GIP has
shown to not only be co-expressed with GLP-1 and glucagon in
α-cells (207); it also stimulates in an autocrine/paracrine fashion
the expression of IL-6 in the same α-cells, thus indirectly acting
as a GLP-1 secretagogue (95).
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IL-6 has shown also to induce the secretion of intestinal
GLP-1, indirectly via the release of adipocytes derived Leptin
(227).

Curiously, it was recently reported that this pro-inflammatory
cytokine, IL-6, similarly, but independently from GLP-1, slows
gastric emptying (228). Furthermore an inflammatory status, as
seen in pathologies such as type 2 diabetes, might compromise
the gut mucosal permeability, leading to the exposure of
intestinal EECs to luminal LPS, and a TLR4-mediated release of
GLP-1 (229). This is consistent with the knowledge that GLP-
1, as well as glucagon, has shown to possess powerful anti-
inflammatory properties in vivo, an area that hold with vast
therapeutical potential (136, 230).

Ghrelin is another possible player, since it has been proven
to be expressed not only in the gut, but also in a distinct
subpopulation of islet cells named ε-cells (231) and, being known
to be a stress-induced (232) GLP-1 secretagogue (233, 234), it
might play an important role in the intra-islet signaling.

Recently, it has been demonstrated that mice with a deletion
of the GLP-1 receptor only in β-cells, are resistant to the
beneficial anti-diabetic effect of a vertical sleeve-gastrectomy
(36), suggesting how GLP-1 activity in β-cells is key to the
bariatric surgery success. It is not known if intra-islet α-cells
production of GLP-1 is affected by the surgical procedure or,
more importantly, how this axis is impaired in the metabolic
syndrome, type 2 diabetes and related pathologies.

It appears that only in RYGB and SG patients intestinal
derived GLP-1 has a true endocrine role, while in healthy
individuals, localized, paracrine and neuronal signals primarily
define the GLP-1 physiology.

It is therefore clear that currently available GLP-1RAs,
mimicking on the peripheral action of GLP-1 (7-36)NH2, not
only ignore the yet unknown physiology of GLP-1 (9-36)NH2

or its metabolites, but they also fail to address the tissue
specific physiology of GLP-1 (7-36)NH2, while pushing to supra-
physiological limits the endocrine GLP-1 receptor axis, likely
explaining the reported side-effects and only partial success in the
treatment of T2D.

In addition, it is important to notice that the ubiquitous DPP-
IV protease targets not only GLP-1 but also oxyntomodulin,
GIP and PYY among other proteins (235). Specifically, the GLP-
1 co-secreted cousin PYY(1-36), agonist of the vasoconstrictive
Y(1) receptor, is physiologically trimmed by DPP-IV to give
rise to the appetite-suppressant, anti-diabetic and blood-brain
barrier permeable PYY(3-36) agonist of Y(2) receptor (220). It
is therefore clear that pharmacological DPP-IV blockage disrupts
this axis and induces hypertension (236).

Recent studies provide new evidence supporting the paracrine
nature of intestinal GLP-1, whereby Serotonin-(5-HT)-secreting
enterochromaffin (EC) cells are directly stimulated by locally
produced GLP-1, which in turn stimulate afferent Vagal nerves
(Figure 2) bridging the gut to brain axis. Accumulating evidence
suggest that, especially in the colon, EC cells express multiple
receptors for the microbiome metabolites, representing a new
important link bridging the microbiome to the brain (237, 238).

A better way to amend the pathophysiology of GLP-1 reported
in diabetes or other diseases, would be to induce tissue specific

de novo GLP-1 production, leading to a more physiological and
likely safer, short and medium distance signaling. Numerous
attempts have been made with multiple GLP-1 secretagogues
such as GPR119 agonists (239) but so far no compound has
reached the market because of bioavailability issues and systemic
off-target toxicity. One possible way to minimize the side-effects
of the single drugs is to combine them to achieve synergistic
effects, as reported recently with a combination of a DPP-IV
inhibition, SSTR5 antagonism and GPR40 and TGR5 agonism,
capable to raise circulatory active GLP-1(7-36)NH2 levels to more
than 300-400 pM in mice (240).

SWEETNESS IN THE GUT

Studies in vitro and ex-vivo with isolated human primary cells
suggest that there are two temporally distinct pathways that lead
to the glucose-stimulated release of GLP-1, similarly to what
happens in β-cells with the 1st or 2nd phase insulin release. A
quick mechanism independent of the cell energetical state and
a slower one, metabolism dependent, mediate the release of this
incretin (53, 72).

The 1st phase in the pathway of glucose signaling, sees the
electrogenic sodium-coupled glucose transporters 1 (SGLT1)
mediated uptake of two Na+ ions for every internalized
glucose molecule (53). This depolarization is propagated
through voltage-dependent Calcium and Sodium channels,
which currents lead to the discharge of the hormones containing
vesicles (72).

The 2nd phase is exemplified by the absorption of simple
sugars, such as Glucose or Fructose, via the facilitative
transporters GLUT2 and GLUT5 respectively, which
leads to an increased internal metabolism mirrored by
intracellular ATP levels. This state leads to the blockage
of ATP dependent potassium channels and the subsequent
membrane depolarization, followed by the secretion of the
hormonal cargo.

Mace et al. (241) demonstrated how diazoxide, a K+ATP
channel opener, completely abolished the glucose-dependent
incretin release while a channel blocker, tolbutamide, exacerbates
it in terms of secreted GLP-1, GIP and PYY.

More recent data, question the first mechanism in
enteroendocrine cells. Glucose mediated GLP-1 release happens
in humans only in the proximal and distal small intestine and
independently of ATP mediated potassium channels closure.
Furthermore, concentrations of up to 300mM glucose do not
induce GLP-1 secretion from colonic human mucosa because
GLP-1 producing L-cells barely express SGLT1 (43, 53, 58, 72).

Consistently, the use of α-methyl-D-glucopyranoside (MDG),
an acaloric substrate of SGLT1, within 5min triggers the release
of GLP-1 as glucose does, demonstrating how it is the sodium
current that triggers the release of the incretin, and not the
metabolic ATP-driven arrest of potassium currents and following
calcium spike (58).

The pharmacological blockage of SGLT-1 with phloridzin, in
a rat small intestine perfused system, results in just a halved
secretion of GIP, GLP-1, or PYY, and the addition of phloretin,
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a GLUT2 inhibitor, brings these values down to basal levels.
In fact, this double blockage of SGLT1 and GLUT2, completely
inhibits the responsiveness to other stimulants as well, such as
sucralose, glycylsarcosine, OEA, propionate and taurocholate.
The activity of the calcium channel CasR is also essential for the
responsiveness to free aminoacids (241).

All these observations are challenged by longer term in vivo
studies. Blockage of SGLT-1 markedly improves glucose-
stimulated GLP-1 release if a 3-h long period is considered.

The rationale given by Oguma et al. (242) is that SGLT-1 is
expressed mainly in the small intestine, hence its inactivation
results in heightened luminal glucose that travels down to the
colon where it someway stimulates GLP-1 release. Given the fact
that SGLT-1 is barely detectable in colonic proglucagon positive
cells and that potassium channels in this tissue are unresponsive
to sulfonylureas, the molecular sensor(s) that causes the release
of GLP-1 in vivo, remains elusive.

Another enigmatic G protein is α-gustducin, a key element
in sweet-taste transduction pathways downstream of the
heterodimer formed between the GPCRs Tas1R2 (T1R2) and
Tas1R3 (T1R3).

Its expression has been reported in colonic L-cells and appears
to be responsible for the glucose-stimulated release of incretins
(243, 244). This is confirmed by the impaired glucose-stimulated
release of GLP-1 in mice lacking either T1R3 or α-gustducin
(244).

Interestingly, this axis is also activated by the disaccharide
sucrose and by the non-metabolizable and therefore anergic
sucralose (243). Of note also Aspartame, Acesulfame K,
Glycyrrhizin and Saccharin bind the sweet receptor heterodimer
Tas1R2/3 and they have shown to stimulate GLP-1 secretion
in the human duodenal adenocarcinoma-derived HuTu-80 cell
line (245, 246). Despite this report, other groups weren’t able
to replicate these results (53). Indeed, it was shown that
proglucagon expressing cells, derived from the colon of Venus
mice cultures, were not responding significantly to Sucralose
(1mM) in terms of both released GLP-1 and intracellular
Calcium. Conversely, proglucagon negative cells responded to
the sweetener. More doubts about the role of Tas1 receptors
were raised after the demonstration that oral gavage with
sucralose, saccharin, stevia, acesulfame potassium or tryptophan
do not cause a gut incretin release in Zucker diabetic fatty
rats (247).

LONG AND MIDDLE CHAIN FATTY ACID
RECEPTORS

The study of the receptome of enteroendocrine cells, has
provided invaluable pharmacological insight with the discovery
of proteins capable to sense multiple compounds once thought
to be only nutrients.

A prime example is given by two GPCRs, GPR40 and
GPR120, also known as Free Fatty Acid Receptor 1 (FFAR1)
and 4 (FFAR4) respectively. These chemosensors are two major
molecular players in the detection of dietary, medium (C8-12)
and long (C14-22) chain fatty acids (LCFA) (84, 248).

GPR40 is primarily expressed by the pancreatic β-cells, where
it plays a pivotal role in FFA-mediated insulin secretion (249)
but also in α-cells (78, 250), CCK (80), GIP (251), and GLP-1
(79) producing cells in the gut and in hypothalamic neurons
(248, 252, 253). Animals deficient for this receptor are protected
from obesity-induced hepatic steatosis, hyperinsulinemia,
hypertriglyceridemia and hyperglycaemia. More than a decade
ago a study showed that GPR40 mediates the long-term FFA-
induced lipotoxicity seen in the diabetic islets (254); nonetheless,
these findings are still under debate today. Recent data are still
highly polarized, with some authors supporting (255), and others
disproving this (256), or even indicating that GPR40 protects
β-cells from lipotoxicity (257) rendering difficult to draw any
conclusive mechanistic involvement in healthy and diabetic
individuals. Nonetheless, the activation of this receptor with
FFAs has demonstrated to induce the secretion of incretins
(79, 258) glucagon (78, 250) and partially glucose-stimulated
insulin (259, 260) reducing food intake, and lowering body
weight in animals models (261). Mice without a functional
GPR40 display an impaired CCK and GLP-1 secretion after
an oil gavage, while surprisingly animals deficient for GPR120
display a normal corn oil-induced GLP-1 secretion (80, 262).

GPR40 is coupled to both Gq and Gs proteins and in vivo
studies suggest how signaling through both these cascades elicits
the most powerful GLP-1 secretion (258). Ligands that bind
GPR40 and activate predominantly only the Gq pathway are not
good GLP-1 secretagogues. Indeed recently it has been shown
that dietary triglycerides appear to induce the secretion of GLP-
1 via GPR40 in synergy with the Gs activating GPR119 (263).
Nonetheless, chylomicrons have been reported to be powerful
GPR40-Gq activators and GLP-1 secretagogues, acting from the
basolateral side of the intestinal mucosa (264).

The two synthetic GPR40-specific compounds AM-1638 and
AM-5262, have been found to act as double Gq and Gs agonists
but also as positive allosteric modulators, capable to enhance
the GLP-1-secreting capabilities of Gq-only agonists such as
dietary docosahexaenoic (DHA) and α-linolenic acid (ALA),
independently of the orthosteric site (265).

GPR120 shows very little sequence similarities to the other
free fatty acid receptors but, likewise, is found to be expressed
by the enteroendocrine cell system, especially in the colon (see
Figure 3), but also in the lungs (267), white and brown adipose
tissue (274, 275), hypothalamic microglia (253), macrophages
and, contrarily to GPR40, not in β-cells but in somatostatin
producing δ-cells (276). Both small intestinal GIP and colonic
GLP-1 secreting cells express GPR120, and the molecular cascade
triggered by this receptor has been shown to mediate dietary
incretin release directly or indirectly through CCK (84–86).
Interestingly, both of these two receptors are expressed only by
a fraction of hormone positive EECs; in particular, it has been
reported that only 3% of GLP-1 positive cells express GPR40, and
23% GPR120 (266).

GPR120 displays a ligand preference similar to GPR40; a
broad range of long chain fatty acids signal through it, with some
ligands eliciting more robust calcium responses than others (84).
Multiple dietary compounds have shown to be powerful agonists
of GPR120, such as pinolenic acid, a poly-unsaturated fatty acid
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FIGURE 3 | Gastrointestinal GLP-1-secreting receptome distribution. Summary of available expression studies of different GLP-1-secreting receptors along the

gastrointestinal tract. (A) GPR40/FFAR1 has been reported to be expressed in the small intestine in different EECs, with overall higher transcript levels than GPR120,

and superior co-localization with GIP In the distal small intestine (79, 80, 266). (B) GPR120/FFAR4 has shown co-expression with both proximal small intestinal GIP+

and large intestinal GLP-1+ cells (85, 266–268) (C) GPR43/FFAR2 and (D) GPR41/FFAR3 are co-expressed by all types of enteroendocrine cells, from the stomach

to the rectum, especially in the colon (83, 269, 270). (E) Reports of comparative GPR119 transcript are contradictory, while immunohistochemical data indicate

co-localization with a minor fraction of CCK and GLP-1 positive cells mainly in the stomach and small intestine (266, 271). (F) TGR5, has been reported equally

distributed along the whole gastrointestinal tract of dogs (101, 272, 273).

(C18:3 trans, cis, cis 1 5, 9, 12) found in pine nut oil (277), or the
yeast derived phytosphingosine (278).

In macrophages and adipose tissue, GPR120 mediates ω-3-
mediated anti-inflammatory and insulin sensitizing effects (279,
280). Contrarily to GPR40, the genetic deficiency of GPR120
is more dramatic. Knockout animals show hyperinsulinemia
and insulin resistance, hyperglycaemia and osteoarthritis (281),
hepatic steatosis and therefore obesity. Furthermore, an absence
of GPR120, results in an overactive glucagon signaling,
explaining the hyperglycaemia (282). Indeed, in humans, a single
aminoacid mutation of the receptor that hampers its signaling is
associated with obesity and insulin resistance (283). Expectedly,
GPR120 agonism shows powerful anti-diabetic, anorexic, and
hepatoprotective properties inmultiple animalmodels (275, 284–
287), at least partially mediated by GLP-1 (288).

Considering the overlap of natural ligands of GPR40 and
GPR120, it has been difficult to study them individually
and understand their individual physiology, while recent data
indicate that indeed these two receptors work synergistically, to
exert anti-diabetic activity in vivo from the gut (289), and the
brain (253).

Despite these advancements, in clinics there are currently no
available drugs targeting GPR40 and GPR120. TAK-875, the best

candidate for GPR40 which showed promising GSIS capabilities
up to Clinical Phase III for the treatment of T2D, had to be halted
because of hepatotoxicity and alteration of bile salts composition
(290).

Despite these setbacks, encouraging animal data warrant
future efforts for the development of new drugs capable to
activate synergistically both GPR40 and GPR120 and mediate,
through GLP-1 and other intestinal, pancreatic and cerebral
peptides, better treatments for multifactorial chronic metabolic
diseases.

SHORT CHAIN FATTY ACID RECEPTORS

In 1997, four 7 α-helixes transmembrane receptors, GPR 40, 41,
42, and 43 were mapped on the same locus found on the long arm
of chromosome 19 (291). Soon after, different groups identified
GPR 43 and 41 as the receptors for free fatty acids, which were
then chronologically renamed FFAR2 and FFAR3 respectively
(292–294).

Both these receptors are activated by similar types of short
chain fatty acids (292), and both these signal through an
inhibitory G type protein, but FFAR2 is also capable to signal
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through Gq/11 proteins (293) by which it has shown to mediate
GLP-1 and PYY secretion in vitro and in vivo (82, 295).

Along the gastrointestinal tract, both GPR 41 and 43 have
been reported to be co-expressed, with FFAR2/GPR43 at higher
levels and overall number of cells, especially intraepithelial
leukocytes, while FFAR3/GPR42 is found on submucosal neurons
[see Figure 3, (83, 295–297)]. Indeed FFAR2 holds promise for
the management of Inflammatory Bowel Disease (IBD) (298)
a possible side-effect of anti-diabetic treatment with DPP-IV
inhibitors (299).

Feeding rats with fructo-oligosaccharide as a source of
SCFAs has also shown to upregulate FFAR2 (270). Recently,
both the receptors have shown to heteromerize in vitro,
eliciting synergistic signaling and β-arrestin-2 recruitment (300).
Furthermore FFAR2 activation in vivo with an inulin-enriched
diet in mice results in PYY release and proliferation of L cells
in vitro (81). Nonetheless, there is still some controversy on the
in vivo involvement of FFAR2 and FFAR3 in GLP-1 modulation
(301, 302), with some reports indicating that blockade of GPR43
in vitro releases GLP-1 (303) and others indicating different
mechanisms of action, with FFAR2 releasing PYY from intestinal
L-cells (81), while FFAR3 restricted to submucosal neuronal
activity (295) despite its apparent expression by the majority of
enteroendocrine cells (83).

In pancreatic β-cells, both GPR43 and GPR41 are expressed,
and the latter antagonizes GSIS (304).

Adding complexity to the study of these receptors, there is
extensive species-specificity, so that animal findings result in
poorly translatable data, requiring the generation of complex
human-murine chimera currently under intense study (305, 306).

Nonetheless, considering that the half-maximal effective
concentration (EC50) for Acetate, Propionate, and Butyrate is
around 0.5 millimolar upon both GPR41 and GPR43 (292) and
that the SCFA concentration in the human ileum and colon
lumen is superior to 100 millimoles per kg (307–309), it is likely
that both receptors are constitutively active. Obese patients, have
been reported to produce more SCFAs in their intestines (310),
but indeed meaningful diet-induced shifts in SCFA production
fluxes have proven not sufficient to modulate peripheral levels of
GLP-1 and PYY (311).

GPR42 is another G-Protein-Coupled-Receptor that was
initially considered to be an inactive pseudogene derived from
GPR41. In 2009, 29% of 202 human alleles of GPR42 were shown
to have an inactivating single nucleotide polymorphism (SNP) at
W174, and 61% with an arginine in like GPR41, resulting in a
fully functional receptor, differing from it by only 5 aminoacids
(312). A more recent study highlights how GPR42 is not only
functional, but displays a pool of haplotypes in a great proportion
of humans, with a distinct pharmacology (313).

GPR119

GPR119, also known among other names as glucose-dependent
insulinotropic receptor (GDIR), was independently discovered
less than two decades ago by several groups around the
world and deorphanized soon after with the discovery of

Oleoylethanolamide (OEA) as its first endogenous ligand
(314–316).

Recently our group has demonstrated that indeed OEA
is just a partial agonist of GPR119, and the biological
ligand of this receptor is the lysophospholipid Oleoyl-
Lysophosphatidylinositol (Oleoyl-LPI) (87). This bioactive
lipid induces a powerful GPR119 mediated-GLP-1 secretion
in vitro and ex-vivo from intestines of wild type, but not GPR119
deficient mice. This peculiarity is not shared by LPI species
with different aliphatic chains, which have been described as the
ligands of GPR55 (317).

This GPCR is primarily expressed in the pancreas by α-
cells, β-cells and γ-cells (271, 318, 319), and is found at lower
concentrations along the GI tract, especially in the stomach
and duodenum, where counterintuitively only a minor fraction
of CCK, and GLP-1 expressing duodenal enteroendocrine cells
display GPR119 (266, 271). This receptor is also expressed, and
hence can be studied, in vitro, by the human enteroendocrine
cell model NCI-H716 or by the murine GLUTag cell line (320).
Heterologous expression in vitro unveiled its constitutive activity
capable to raise intracellular cAMP levels through Gαs (321)
and lead to the secretion of GLP-1 and PYY (89). Rodents,
contrarily to humans, express GPR119 also in some regions of the
brain (316). The activation of this receptor is known to mediate
glucose-stimulated insulin secretion and a glucose-independent
release of incretin hormones by intestinal enteroendocrine cells
(88).

Long-chain fatty acids and phospholipids like
lysophosphatidylcholine (LPC), other compounds such as
retinoic acid (RA) and multiple N-acylethanolamines (NAE)
such as N-oleyldopamine (OLDA), palmitoylethanolamide
(PEA), or oleylethanolamide (OEA), all act as endogenous
ligands of GPR119. OEA is a more potent GPR119 agonist than
its glycerol ester 2-Oleoyl Glycerol (2-OG) found in olive oil
(322).

Indeed, oleic acid is internalized via CD36 and converted to
OEA in the duodeno-jejunal enterocytes, which in turn causes
satiety directly via PPAR-α (323) or indirectly through an incretin
secretion mediated via GPR119 in the gut (324). Curiously,
fat-induced OEA synthesis is a fairly conserved pathway in
metazoan, being present in fish and extremely slow-metabolism
reptiles such as pythons (325, 326).

Triglycerides, with medium length fatty acids such as 1,3
Dioctanoyl- 2 Oleoyl-glycerol, can also cause the release of GLP-
1 in humans. However, this happens via the metabolized 2-OG
component, since dietary medium chain fatty acid do not cause
any appreciable release of incretins (322).

Counterintuitively, long term olive oil feeding does not
improve glucose tolerance or insulin responses in diabetic rats
(5). Indeed, more recently it has been reported that a high-fat diet
enriched in oleic acid leads to an impaired endogenous OEA and
other N-acylethanolamides intestinal production in mice (327),
suggesting that a chronically resistance is taking place within the
OEA synthesis pathway.

Surprisingly, a daily activation of GPR119 with OEA or
other synthetic agonists, increases β-cell responsiveness in islets
transplanted into STZ-induced diabetic mice (328).
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The importance of GPR119 in the fat-induced incretin
secretion is demonstrated by the impaired incretin signaling
displayed by transgenic animals deficient for this protein only in
PG expressing intestinal cells. Male and female mice, completely
loose the GLP-1 response to an oral gavage of olive and corn
oil (329).

More recently, it was reported that whole-body
GPR119−knockout mice are protected from high-fat induced
glucose intolerance and insulin insensitivity. Interestingly, the
specific ablation of GPR119 only in β-cells does not affect
glucose tolerance nor insulin secretion. In fact AR231453,
a selective GPR119 agonist, improves glucose tolerance and
insulin sensitivity in both WT and Gpr119βcell−/−, suggesting
how insulin release is independent from pancreatic GPR119 but
depends on gut incretin release (330).

Curiously, GPR119 activity appears to be directly dependent
on the PYY receptor NPY1 (331). This phenomenon is
independent of DPP-IV, the GLP-1 receptor, or the PYY related
peptide NPY.

Furthermore, GPR40 also shows synergism with GPR119,
mediating a more than additive GLP-1 response to triglycerides
in the large intestine (263).

Agonism of GPR119 in both healthy or diabetic and obese
mice, is known to improve glucose tolerance (90), or even prevent
atherosclerosis in mice (332), while at the same time inducing
the secretion of glucagon under low glucose levels avoiding
hypoglycaemia (91); therefore since 2008, multiple agonists have
been synthesized (239, 254, 333), as well as unimolecular dual
DPP-4 inhibitors and GPR119 agonists (334). Despite the good
results seen in rodents, species-specific pharmacology might be
to blame (335).

Up to now all the prospective GPR119 agonists were plagued
by low bioavailability, lack of efficacy and more importantly,
cardiotoxicity which has stopped all human studies before any
large scale Phase III clinical trials (239).

Despite the multiple failures, the compound DS-8500a is
showing promising glucose lowering properties in Phase II
clinical trials without any apparent toxicological issues in clinical
trials (92).

TGR5

Bile acids (BAs) are cholesterol-derived molecules produced
in the liver and temporarily stored in the gallbladder. When
food is ingested, BAs are released into duodenum to solubilize
dietary lipids under the form of micelles, a necessary step for
the maximization of the surface-to-volume ratio of fat droplets,
aiding interface-acting lipases.

Indeed the release of lipids from micelles has directly proven
to release GLP-1 and GIP via the FFAR1 in the duodenum (264).

This release of bile acids, mainly cholic (CA) and
chenodeoxycholic (CDCA) acid derivatives, happens through
the relaxation of the smooth muscle sphincter upon CCK
signaling (336) or indirectly through a similar VIP action on the
sphincter of Oddi (337).

Historically described as mere fat-solubilizing agents, these
amphipathic compounds were recently recognized as key

signaling molecules capable to modulate the host metabolism
directly acting as ligands of intestinal GPCRs (101, 338, 339), or
after being metabolized by the colonic microbiota into secondary
bile acids, mostly deoxycholic and lithocholic acid(340).

The chemosensor believed to be themain receptor of bile acids
is TGR5, also known as GPR131 or GPBAR1 among other names.
This receptor has been reported to be expressed by colonic GLP-
1-secreting enteroendocrine cells and pancreatic α-and β-cells
(100, 101), with some controversy regarding the presence in
murine islets (339).

TGR5 activity appears to not have been lost in type 2 diabetic
humans whereby the infusion of CCK, or rectal taurocholate,
causes GLP-1 and insulin release via the TGR5 axis in colonic
L-cells and pancreatic β-cells respectively (341, 342).

This notion is in stark contrast to the well-known anti-diabetic
properties of BAs sequestrants, (343) and some, have proven to
elicit GLP-1 secretion via TGR5 mediated PC1/3 upregulation
(344). A likely explanation is that the BAs bound to a sequestrant
into the intestinal lumen can’t be absorbed and hence travel more
distally in the GI tract where the complexes are still capable to
activate the TGR5 expressing colonic L-cells. Furthermore, the
lower systemic levels of bile salts prompt the liver to produce
more bile, which in turn feeds more TGR5 agonism into the
colon (343).

This chemosensor is expressed by the pancreatic α-cells where
its signaling activates Gs proteins and induces the secretion of
GLP-1 directly through Epac proteins and indirectly via CREB
mediated expression of Psck1, while in β-cells mediates insulin
release [(100); Figure 3].

TGR5 is the target of different BAs, but the most potent
endogenous agonist has shown to be lithocholic acid (LCA) and
its taurine conjugates with activity at nanomolar concentrations
(273, 339). Secondary bile salts, metabolized by the microbiota,
exhibit less potency toward this receptor.

Despite this promising anti-diabetic activity of TGR5 mediate
by GLP-1 (345), its pharmacological activation in diabetic
patients has shown side effects at the level of gallbladder and
heart, hampering its clinical use (346).

Another bile salts chemosensor is the nuclear farnesoid X
receptor (FXR) (347) which activation, contrarily to TGR5,
blocks the release of GLP-1 in the colonic L-cells (348),
while in the liver induces glycogenesis helping to improve
glucose homeostasis. This counterintuitive pharmacology has
been confirmed in vivo whereby the administration of the FXR
agonist GW4064 by mouth drives hyperglycaemia and obesity
(349) while intraperitoneal injection exerts protection from it
(350). Consistently, an indirect inhibition of intestinal FXR
through microbiota modulation, or genetic deletion of intestinal
FXR, corroborate this phenome displaying protection from high-
fat diets induced obesity and fatty liver disease (351).

This could explain why bile acid sequestrants support
a positive glucometabolic homeostasis. Indeed, the insoluble
complexes of bile salts can activate lumen-facing TGR5 receptors,
while they cannot cross plasma membranes to activate intra-
cellular GLP-1-suppressant FXR receptors.

FXR is a very important receptor, part of a negative feedback
in the liver, whereby the binding of bile salts, especially
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chenodeoxycholic acid, represses the de-novo synthesis of bile
salts (352, 353). Indeed, there are multiple primary or secondary
bile acid chemosensors in the liver (348, 354) or scattered
along the gastrointestinal tract (355), where they ensure a direct
negative feedback aiding detoxification (356) and protecting
from hepatotoxicity and carcinogenicity displayed by some
secondary bile salt such as lithocholic acid.

Accumulated evidence, indicate how bile acids are important
modulators of the whole body metabolism, bridging the
microbiome to the brain, likely being key signaling molecules
in the pathogenesis of obesity and type 2 diabetes. Indeed
remittance from diabetes experienced by RYGB or SG patients,
has been attributed to the elevation of circulating bile acids
(37, 38, 357), warranting further investigation, especially the
development of gut-restricted TGR5 agonists (358).

TRPV1 AND THE TRP CHANNEL FAMILY

The transient receptor potential vanilloid 1 (TRPV1) is a
tetrameric non-specific cationic channel found in most of
mammalian sensory neurons (359). Each of its constituting
monomers crosses the plasma-membrane six times and both the
N and C-term face the cytoplasmic side, where they make up
70% of the receptors’ entire volume (360). This chemosensor,
together with other 27 non-selective cationic channels, is part of
a larger family named transient receptor potential (TRP) channel
superfamily and is known to play an important role in the
metabolic syndrome (361, 362).

TRPV1 is primarily activated by vanilloids and capsaicinoids
including Capsaicin (360), eliciting the sensation of spiciness;
multiple stress-related stimuli cause its activation and opening
with subsequent membrane depolarization. For example
cigarette smoke, excess of protons (pH< 5.9) (363), temperatures
above 43◦ (360), certain animal toxins (364, 365), ATP (366) or
even cannabinoids such as Anandamide (367) and cannabidiol
(359, 368), are all stimuli known to activate this sensor.
Indirect stimulation has also been demonstrated by bradykinin
(366), NGF (366), PGE2 (369), PGI2 (369) and agonists of
Protease-activated Receptors (PARs) (370).

TRPV1 has been shown to be expressed in the brain, β-cells
(371), nociceptor C fibers, dorsal root ganglia, hepatocytes,
spermatozoa (372), airway neurons (373), bladder and
urothelium (374), blood vessels, and the whole gastrointestinal
myenteric plexus (375), especially in colonic and rectal neurons
(376). Consistently, TRPV1 is also found to be expressed by the
murine enteroendocrine cell line model STC-1 and its agonism
induces the release of GLP-1 in vivo (377).

This receptor has recently seen an increasing interest since its
activation has been found to have pleiotropic beneficial metabolic
effects (378).

Indeed, it has been known for more than a decade that
capsaicin is capable to elicit a glucose-stimulated insulin release
in vivo (379). A crossover study operated on 30 human healthy
subjects (380), showed a slight increase in plasmatic GLP-1 and a
slight decrease in ghrelin levels 30min after a Capsaicin enriched
meal (containing 1,030mg of 80,000 Scoville heat units red

pepper); Peptide YY changes were not statistically significant.
Despite these promising results, TRPV1 knockout mice display
contrasting phenotypes with the report of opposite phenotypes.
One author describes an obese insulin and leptin resistant mouse
(381), while another group report animal protected from diet-
induced obesity (382).

Considering all the recent findings, drugs targeting
TRPV1 would be beneficial for the management of obesity
(383) metabolic syndrome (384) and type 2 diabetes (385).
Nonetheless, considering the EECs receptome responsible
for gut-peptide modulation, TRPV1 has received much less
attention, with a yet largely unexplored physiology.

THE MICROBIOTA

Animals’ GI tract is known to host a population of hundreds of
different species of bacteria (386), viruses and fungi, estimated to
equal in number the cells that constitute the human body (387).
These microorganisms thrive in the colon’s lumen, where they
secrete small molecules ultimately affecting the host immunity
(240) and metabolism (388).

The relative abundance of different microbial species is known
to depend on the presence of specific nutrients (389); hence,
considering that an imbalance in the microbiota correlates with
chronic inflammation pathologies of the bowel, or even Type 2
diabetes, it is likely that dietary components indirectly influence
the occurrence of these pathologies via the microbiota (390, 391).

The human colonic microflora is known to produce high
concentrations of Short-Chain-Fatty acids (SCFAs), among
other metabolites, from the anaerobic fermentation of dietary
indigestible carbohydrates, or even derivatives of bile salts (389).
In fact, the SCFAs Acetate, Propionate and Butyrate are the
principal luminal anions in humans and other mammalian’s
colon (309, 392), with some inter-species variability. Rats show
higher levels of fecal Acetate, 75mM vs. human’s 50mM,
Propionate, 27 vs. 11mM and Butyrate, 16 vs. 5mM respectively.
On the other hand, surprisingly similarly to humans’ colonic
and fecal values, rumens of herbivores, such as sheep or cows,
also contain high levels of acetate, propionate and butyrate,
with reported concentrations of 65, 21, and 18mM, respectively
(308). These levels appear to be independent of dietary proteins
or fibers; conversely, it is the caloric intake that affects the
relative composition and concentrations of SCFAs (308). These
metabolites have been found to target specific receptors among
the repertoire expressed by the EECs, triggering a hormonal
response. It is estimated that in humans almost all fermented
SCFA are absorbed by the colonocytes and only 5% are excreted
with stool, equivalent to 5–30 millimoles per day. Indeed, it is
not practically feasible to measure intraluminal production fluxes
of various metabolites in vivo in humans; therefore, most studies
focus on the easiest but less informative quantification of fecal
SCFA content (393).

Despite the most recent studies of transgenic and germ-free
animals, it is still largely unknown by what degree hormones such
as GLP-1, and all its related peptides, depend on the microflora,
especially in pathologies such as type 2 diabetes.
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Recent high-throughput pharmacogenomic studies have
deepened our understanding of the molecular players in this
human-microbiota relationship. Recently it was shown that a
new class of N-acyl amides is produced by the microbiota, and
target GPCRs expressed by the enteroendocrine cells, modulating
GLP-1 expression and overall glucose metabolism. In particular,
N-oleoyl serinol (N-OS) is described as a potent GPR119 agonist,
acting in the lower micromolar range with twice the efficacy of
the endogenous ligand OEA (394).

From the evolutionary perspective, dietary components,
together with the microbiota-fermented products, have activated
the enteroendocrine system for billions of years, since the dawn
of metazoan. Considering the vast and continuous pool of
metabolites produced and modulated by the microbiota, the
distinction between orthosteric and allosteric ligand becomes
blurred; different molecules are likely working in synergy to elicit
a specific hormonal response.

Modulation of the microbiome has shown promising results
in the treatment of type 2 diabetes. For example, recently it was
reported that a rhubarb extract, Rhein, increasing the intestinal
population of Bacteroidetes, mediates an increase in ileal GLP-1
producing cells, peripheral GLP-1(7-36)NH2 levels and improved
glucose tolerance in diabetic db/db mice (395). Consistently,
STZ-treated rats, are protected from oxidative and inflammatory
stress when treated with Liraglutide, and Bacteroides, as well as
Lactobacilli strain populations appear to be restored (396).

In the last decade, the scientific community has just started
to unveil the molecular pathways produced by this long-lasting
symbiosis. It appears that SCFAs not only induce the release
of GLP-1, they also represent a mitogenic signal. Rats fed
oligofructose, a substrate for the colonic microbiota which leads
to higher SCFAs levels, possess an increased number of colonic
L-cells (397). This has been confirmed ex-vivo in human and
mouse small intestinal crypts organoids (398).

Other compounds such as bile salts and xenobiotics (399),
are known to be metabolized and excreted by the microbiota,
affecting the host physiology. Indeed, the pharmacokinetic and
pharmacodynamics of any drug taken by mouth should be
appraised considering the role of the microbiota, as the varied
efficacy of some chemotherapeutics such as 5-FU has been proven
to directly depend on this host-microbiota metabolism (400).
Even though the anatomical intestinal rearrangement of RYGB
and SG patients is known to affect the microbiota, this doesn’t
appear to result in a different bile acid metabolism in a rat model
(401).

We are at the beginning of a new branch of medical practice,
tailored not only to the single person genome, but also to the
microbiome.

Future human studies will help us to better understand the
big picture of this relationship, to hopefully provide mechanistic
knowledge upon which new treatments could be created, such
as microbiome-directed gene-therapies for the management of
metabolic diseases.

CONCLUSION AND PERSPECTIVE

GLP-1R-independent signaling of GLP-1, its intra-islet axis,
and its once-thought inactive metabolites, all represent new

important additions to our understanding of this peptide in
health and disease.

Omnivores’ gastrointestinal tract has co-evolved in strict
relationship with a dynamic microbiota and a complex seasonal
and regional diet, resulting into a robust and flexible system
tightly interconnected via multiple neuroendocrine axes with
different organs.

In nature, dietary fats are scarce energy-dense nutrients
primarily found in fish andmeat. This evolutionary pressure over
millions of years has shaped a system for the attentive sensation,
assimilation and storage of precious bioactive molecules in all
superior animals.

Sensation happens at multiple levels with a plethora of
somewhat redundant intestinal receptors (402), specifically in
the enteroendocrine cell system. This redundancy can be seen
in transgenic animals, whereby the genetic absence of a single
chemosensor doesn’t always result in a phenotype, probably
due to metabolic compensation from similar and overlapping
pathways.

Virtually all macronutrients are absorbed in the small
intestine, where maximal activity of the EECs is ensured, while
the colonic and rectal GLP-1 secretion is enforced in response
to secondary metabolites even hours after the meal ingestion.
This pattern is disrupted in bariatric patients undergoing RYGB
surgery, where a remodeled GI tract delivers more nutrients
to the large intestine, and changes gut-secretome, including its
microflora.

Attempts to mimic this altered meal processing, such as
proximal blockage of nutrient absorption resulting in increased
delivery of nutrients in the distal intestine, have shown
some promising results in healthy and diabetic humans (403).
Although this is more challenging with fats because dietary
lipids require partial digestion by lipases to become efficient
secretagogues (404, 405). However, distant delivery of free
fatty acids, or even Oleoyl-Glycerol and sodium taurocholate
have shown negligible effects on peripheral levels of GLP-
1 or PYY, satiety and glucose tolerance (311, 406, 407).
Similarly, distal delivery of the best known aminoacidic GLP-1-
secretagogue, glutamine, has proven ineffective at ameliorating
glucose tolerance in both healthy and diabetic subjects (407–409).

Furthermore, a recent report (410) examined the effect of
RYGB on lean pigs, and indicates how it is the post-operative
GLP-1 (9-36)NH2 levels that raise, while surprisingly the “active”
(7-36)NH2 peripheral levels were reduced.

Indeed, most authors focus only on the peripheral levels of
only one of these two peptide species, vastly excluding GLP-
1(28-36) NH2 and (32-36)NH2 activity, rendering the overall
understanding of each individual GLP-1 species, in both health
and disease, difficult to discern.

Technical advances ELISA, capable to specifically dissect these
peptide species locally and peripherally, will help us to shed new
light into this complex physiology (411).

Conclusively, bearing in mind that insulinotropic or
incretinotropic effects are not secondary to any single receptor
modulation, whereby pools of different luminal stimuli act
synergistically on tens of different chemosensors during their
intestinal transit and absorption, while interacting with the
microflora metabolism, rendering the restoration of a healthy

Frontiers in Endocrinology | www.frontiersin.org 15 October 2018 | Volume 9 | Article 584

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Paternoster and Falasca Regulation of GLP-1 Secretion

physiology in diabetic patients with the pharmacological
correction of a single axis, highly improbable.

The final dissection of the molecular axis causative of
either metabolic syndrome will need more evidence regarding
the localized and inter-neuronal physiology of GLP-1 in
physiological and pathological statuses. To ultimately tease
apart any possible cause from secondary events, species-
specific biology will also need to be carefully dissected and
interpreted.
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