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The endocrine system plays an essential role in the physiological adaptation to

malnutrition. The adaptive response of various hormones directs the energy utilization

toward the survival functions and away from growth and reproduction. Particularly,

the hypothalamic pituitary axis plays an integral and a central role in the regulation

of endocrine organs. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide

(NAD)-dependent histone deacetylase that is activated in response to calorie restriction

(CR). SIRT1 is involved in cellular processes via the deacetylation of histone as well as

various transcription factors and signal transduction molecules and thereby modulates

the endocrine/metabolic functions. There is much evidence to demonstrate clearly

that SIRT1 in the hypothalamus, pituitary gland, and other target organs modifies

the synthesis, secretion, and activities of hormones and in turn induces the adaptive

responses. In this review, we discussed the role of SIRT1 in the hypothalamic pituitary

axis and its pathophysiological significance.
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INTRODUCTION

The Physiological Role of Sirtuin 1 (SIRT1)
SIR2 is the first sirtuin protein to be discovered in Saccharomyces cerevisae (yeast) (1). SIR2
orthologs are highly conserved throughout various species including mammals, plants, bacteria,
worms, flies, and fishes. In mammals, the seven SIR2 orthologs are termed SIRT1-7 and are
presumed to be ubiquitously expressed in all the tissues (2). Sirtuins were initially reported as
protein deacetylases and ADP ribosyltransferases (3, 4). However, subsequent analyses revealed
that sirtuins exhibit various enzymatic activities. For instance, SIRT5 exhibits lysine-desuccinylase
and -demalonylase activities (5, 6). These enzymatic activities of sirtuins are generally activated in
response to CR by the utilization of nicotine adenine dinucleotide (NAD+) as the co-substrate.

Regarding the intracellular localization of sirtuins, SIRT1, SIRT6, and SIRT7 are localized
in the nucleus and mostly regulates protein function by the post-translational modification via
histone deacetylation (7). Moreover, SIRT1 localizes in the cytosol and directly deacetylates various
transcription factors and cofactors. SIRT2 is localized in the cytosol and nucleus and is involved in
the metabolic process and cell cycle regulation (8–11). SIRT3, SIRT4, and SIRT5 are localized in the
mitochondria and regulate various metabolic enzyme activities and mitochondrial oxidative stress
(9). Therefore, in the organisms, sirtuins coordinate the cellular responses to adapt to CR in their
corresponding cellular compartments in which they occur.
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Among the seven sirtuins, SIRT1 is the most studied and well-
characterized sirtuin with respect to its physiological functions.
SIRT1 is involved in the production of various hormones
and maintenance of homeostasis by regulating the function
of histones and transcription factors, to adapt to malnutrition
in the endocrine and metabolic systems. For instance, SIRT1
modulates forkhead box protein O1 (FOXO1), peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α), signal transducer and activator of transcription (STAT3)
(12–14). SIRT1 interacts with peroxisome proliferator-activated
receptor (PPARγ) and represses its transcriptional activity to
reduce adipogenesis in differentiated fat cells and mobilize free
fatty acid from the white adipose tissues (15). Additionally,
SIRT1 negatively regulates the mitochondrial uncoupling protein
2 (UCP2) expression and enhances the insulin secretion in
response to glucose level elevation in the pancreas (16).

Recently, accumulating evidence suggests that SIRT1
plays important role in the homeostasis maintenance in the
neuroendocrine system. Particularly, the hypothalamic pituitary
axes play a central and an integral role in the neuroendocrine
system.

PHYSIOLOGY OF THE HYPOTHALAMUS
AND PITUITARY GLAND

The neuroendocrine system, especially the hypothalamus and
pituitary gland play an essential role in the homeostasis
maintenance via orchestrating the endocrine system as a
regulatory machinery. The hypothalamus–pituitary complex
connects the nervous system with the endocrine system that
regulates the systemic hormone secretion in a direct or indirect
manner. The neural signaling of central nervous system modifies
the hypothalamus–pituitary axis and results in the regulation of
corresponding target hormonal secretion (17).

The hypothalamus is responsible for the homeostasis
maintenance by regulating the body temperature, appetite, thirst,
energy expenditure, behavior, and circadian rhythm of the
organisms (18). Moreover, the hypothalamus synthesizes and
secretes various hypothalamic hormones that in turn stimulate
or inhibit the secretion of pituitary hormones (19). The medial
preoptic nucleus regulates the release of gonadotropic hormones
and thermogenesis (20). The putative anterior paraventricular
(aPV), the paraventricular nucleus (PVN), and the supraoptic
nucleus (SON) consist of parvicellular neurons that release
corticotropin-releasing hormone (CRH), thyrotropin-releasing
hormone (TRH), growth hormone releasing hormone (GHRH),
and somatostatin (SST), andmagnocellular neurons that produce
vasopressin (AVP) and oxytocin (OXT) (21–24).

The pituitary gland consists of anterior posterior lobes and
the anterior lobe is functionally subdivided into six cell types
based on the production of a specific hormone by each cell type
(25). The growth hormone (GH), prolactin, adrenocorticotropic
hormone (ACTH), thyroid stimulating hormone (TSH), and
luteinizing hormone (LH) or follicular stimulating hormone
(FSH) are secreted by the somatotroph, lactotroph, corticotroph,
thyrotroph, and gonadotroph, respectively (26). The anterior

pituitary hormones are mainly regulated by the release
hormones or inhibitory hormones from the hypothalamus
via the portal hypophyseal circulation into the anterior lobe
and neural connection to the posterior lobe through the
pituitary stalk (a physical and functional connection between
the hypothalamus and pituitary gland) (27, 28). The hormones
secreted by the pituitary gland circulate in the systemic blood
flow and thereby stimulate the hormone secretion by each
of their respective target organ. Generally, these pathways
initiating from the hypothalamus to target organ via the
pituitary gland are mainly classified into four axes depending
on the target organ, namely, hypothalamus-pituitary-adrenal
(HPA), hypothalamus-pituitary-thyroid (HPT), hypothalamus-
pituitary-gonadal (HPG), and somatotropic axes. In this
review, we described the SIRT1 involvement in each of the
aforementioned axes in the subsequent subsections.

SIRT1 in Hypothalamus
In the hypothalamus, SIRT1 is expressed in the SF1 neuron
in the ventromedial hypothalamic nucleus (VMH) and in
the POMC and AgRP neuron in the arcuate nucleus (ARH),
respectively (29–31). POMC neuron specific SIRT1 knockout
mice exhibited energy imbalance due to the altered sympathetic
activity (30). Also, deletion of SIRT1 in SF1 neurons caused
insulin resistance in skeletal muscle. On the contrary, SIRT1
overexpression in SF1 neurons prevented from diet-induced
obesity and insulin resistance (29). Both targeted overexpression
of SIRT1 in POMC or AgRP neurons prevented age-associated
weight gain. However, SIRT1 overexpression in POMC neurons
enhanced the energy expenditure mediated by increment of
sympathetic activity in adipose tissue while SIRT1 overexpression
in AgRP neurons suppressed food intake, indicating a presence
of nuclear specific mechanisms (31). Also, food restriction
increases SIRT1 protein levels in the dorsomedial (DMH) and
lateral hypothalamic nuclei (LH) (32). Brain specific SIRT1
overexpressing mice exhibited extended life span mediated by
enhanced neural activity in DMH and LH, through increased
orexin type 2 receptor (Ox2r) expression (32). These data indicate
that region specific expression of SIRT1 plays an important
role in the regulation of appetite, energy expenditure, general
metabolism, and life span.

The HPA Axis
The HPA axis is an important neuroendocrine system that plays
an essential role in the survival, stress response, metabolism,
appetite, immunoreaction, mood, and behavior of the organisms.
Corticotrophin releasing hormone (CRH) secreted by the PVN
in the hypothalamus initiates stress response in the HPA axis via
the production of proopiomelanocortin (POMC) by the pituitary
corticotroph. POMC is a precursor polypeptide of ACTH and
alpha-melanocyte stimulating hormone (αMSH) that are cleaved
by prohormone convertases 1 and 2 (PC1 and PC2), respectively.
ACTH induced by corticotroph stimulates the glucocorticoid
production by the adrenal cortex.

The SIRT1 expression in the hypothalamic POMC neuron
is enhanced by fasting and is associated with the reduced
αMSH levels, although the significance to the HPA axis is
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unknown (33). On the other hand, another group reported that
POMC neuron specific ablation of SIRT1 did not alter POMC,
ACTH, and αMSH levels (30). The precursor pro-CRH is post-
translationally processed by the PC1 and PC2. SIRT1 increases
the PC2 levels in the PVN that in turn increases the active-
CRH production and results in the HPA axis activation (34).
In mouse corticotroph cell line (AtT20 cells), treatment with
resveratrol (a SIRT1 activating compound) increased the PC1
and PC2 levels. In accordance with this, Ex-527 (a SIRT1 specific
inhibitor) treatment decreased the PC1 and PC2 levels in AtT20
cells (33). Although there have been no reports demonstrating
the expression of SIRT1 in the corticotrophs, these data suggest
that SIRT1 may indirectly modulates the HPA axis by regulating
the PC1 and PC2 levels. Additionally, resveratrol increased the
expression and prolonged the half-life of P450 side chain cleavage
enzyme (P450scc) in the adrenal gland that results in an increase
in glucocorticoid secretion by the adrenal cortex (35). Moreover,
the hypothalamic SIRT1 plays an important role in the energy
homeostasis maintenance associated with the HPA axis. These
data clearly indicate that SIRT1 in the hypothalamus, pituitary,
and adrenal gland regulates the HPA axis activation that acts as
an adaptive response to starvation (Table 1A).

The HPT Axis
The HPT axis is activated by the thyrotropin-releasing hormone
(TRH) secretion by the hypothalamus when the hypothalamus
senses low levels of circulating thyroid hormone. The TRH
induces thyroid-stimulating hormone (TSH) secretion by
thyrotroph cells in the pituitary that in turn stimulates the
thyroid hormone (TH) secretion by the thyroid to maintain
normal TH levels (36). SIRT1 is expressed in thyrotroph
cells and enhances TSH endocytosis via the deacetylation of
phosphatidylinositol-4-phosphate 5-kinase type 1γ (PIP5K1γ),
which is a main enzyme that synthesizes phosphatidylinositol
4,5-bisphosphate in thyrotroph cells (37). Tyrotroph-specific
SIRT1 knockout mice showed decreased TSH secretion resulting
in decreasedmetabolic rate (37). Additionally, SIRT1 knockout in
whole body exhibited hypermetabolism caused by an increased
oxygen consumption in the hepatic mitochondria leading

to the decreased body weight while the mice manifested
hyperphagia, reduced serum thyroxin level, and decreased
nocturnal physical activity (38). Interestingly, thyroxin treatment
suppressed the fasting-induced SIRT1 expression as thyroxin
negatively regulates the SIRT1 level and activity in the liver
via TH receptor-β (39). These data indicate that the HPT axis
and SIRT1 interact with each other and adaptively regulate
metabolism (Table 1B).

The HPG Axis
The HPG axis is responsible for the reproduction, life cycle, and
sexual dimorphism in the organisms. Gonadotropin-releasing
hormone (GnRH) is secreted by GnRH neurons that diffusely
localize and form a network named pulse-generator in the
hypothalamus. The pulsatile secretion of GnRH stimulates the
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH) secretion by pituitary gonadotroph cells and subsequently
the gonads produce estrogen or testosterone (36, 40).

Although secondary effect of the general condition including
body weight loss cannot be ruled out, SIRT1 knockout mice
exhibited a diminished hypothalamic GnRH expression and in
turn reduced serum LH and FSH levels and spermatogenesis
arrest, suggesting an important role of SIRT1 in the HPG axis
(41). Additionally, GnRH treatment decreases SIRT1 level via
the miR-132/212 induction in the pituitary. This results in
the downregulation of SIRT1-dependent FOXO1 deacetylation
and a decrease in the FOXO1-mediated inhibition of Fshβ
transcription that ultimately increases the Fshβ expression in rat
primary pituitary cells and LβT2 cell line (42) (Table 1C).

The Somatotropic Axis
In the somatotropic axis, GH releasing hormone (GHRH) that
is secreted by the hypothalamus induces the GH secretion by
pituitary somatotroph cells. Circulating GH binds to GH receptor
on hepatocytes and results in the increased serum insulin like
growth factor-I (IGF-I) level (36). Moreover, GH induces local
IGF-I production in various tissues including bone, muscle, and
fat tissue. In various species, numerous evidences demonstrated
that the reduced function of somatotropic axis extends lifespan in

TABLE 1 | The role of SIRT1 in hypothalamic-pituitary axis.

A B C D

HPA axis HPT axis HPG axis Somatotrophic axis

SIRT1

Hypothalamus PC2

CRH
POMC GnRH

Pituitary a-MSH

PC1/

PC2

PC1/

PC2
TSH LH

FSH

GH GH

Periphery Adrenal

GC

Thyroid

T4

Testis

Testosterone IGF-I IGF-I

(A) HPA axis, (B) HPT axis, (C) HPG axis, (D) somatotrophic axis.

SIRT1 , Overexpression/activation of SIRT1. SIRT1 , Knockout/inhibition of SIRT1. GC, Glucocorticoid, T4, Thyroxine.

Frontiers in Endocrinology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 605

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Yamamoto and Takahashi The Role of SIRT1 in Hypothalamic Pituitary Axis

FIGURE 1 | The mechanisms through which SIRT1 regulates STAT5 activation

by GH. (A) In the fed condition, the SH2 domain of STAT5 recognizes and

binds to Tyr-phosphorylated GHR, causing JAK2 to phosphorylate and

activate STAT5. (B) In the fasting condition, SIRT1 is activated and interacts

with STAT5, thereby deacetylating Lys residues adjacent to the SH2 domain of

STAT5. This results in an impaired ability to bind Tyr-phosphorylated GHR,

which inhibits activation of STAT5. Excerpt from, Yamamoto et al. (60).

animal models (43–48). Regarding the underlying mechanisms,
among the species which evolved from C. elegans to mouse, an
evolutionarily conserved interplay between SIR2/SIRT1 and the
somatotropic axis was reported in which SIR2/SIRT1 modulates
the signaling molecules of somatotropic pathway (49–54).

SIRT1 brain-specific knockout (BSKO) mice exhibited
dwarfism with small pituitary and reduced GH-IGF-I levels
while the other pituitary hormonal levels were unaltered (55).
Interestingly, SIRT6 BSKO manifested similar phenotype
as that of SIRT1 BSKO. Despite the significant reduction
in the number of somatotroph cells and GH content in the
pituitary gland of SIRT6 BSKO, the hypothalamic GHRH and
somatotropin release–inhibiting factor (SRIF) levels remained
unaltered (56). Although the precise mechanism remains
unclear in these models, it is speculated that aberrations during
the pituitary somatotroph development and GH synthesis
were presumably caused by the hypothalamic dysfunction or
feedback dysregulation between the hypothalamus and pituitary
gland.

Moreover, the direct role of SIRT1 in pituitary somatotroph
cells was reported (57). The SIRT1 activation in somatotroph cells
suppressed the GHRH-induced GH secretion in in vivo and in
vitro studies. SIRT1 deacetylates glycogen synthase kinase 3 beta
(GSK3β) and cAMP response element-binding protein (CREB).
Deacetylated-GSK3β gets activated and inactivates CREB via
protein phosphatase-1. Deacetylated-CREB exhibits a decrease
in its activity and is unable to activate the transcription of POU
domain, class 1, transcription factor 1 that results in the GH

synthesis impairment (57). These data demonstrate that SIRT1

regulates the somatotropic axis in the hypothalamus and pituitary
gland.

During starvation condition, it is well-known that the reduced
serum IGF-I level is observed despite the elevated GH level.
Moreover, it is reported that exogenous GH treatment did not
increase the serum IGF-I level in starving individuals (58).
This is considered as GH resistance status in the liver (59).
In the organisms, it is considered that GH resistance is an
adaptive response to survive during starvation and malnutrition
conditions. These responses include the decreased IGF-I level
inhibits growth and the elevated GH level causes insulin
resistance and free fatty acid mobilization to avoid hypoglycemia.
Therefore, we hypothesized that SIRT1 might negatively regulate
the GH-dependent IGF-I production during starved condition
in the liver. We demonstrated that hepatic SIRT1 directly
deacetylates STAT5 and suppresses the tyrosine phosphorylation
of STAT5 via GH that results in the impairment of GH signaling
during fasting condition (60) (Figure 1).

Considering that the somatotropic axis utilizes energy to
promote body growth, SIRT1 signaling basically utilizes energy
to improve the survival of organisms during CR. Conclusively,
SIRT1 plays an important role in switching from growth to
survival mode in order to adapt to malnutrition by modulating
the somatotropic axis at various steps (Table 1D).

CONCLUSION

These studies clearly demonstrated that SIRT1 is involved in
the regulatory mechanism of hypothalamus-pituitary axis with
respect to the homeostasis maintenance. The determination
of a crosstalk between the neuroendocrine system and SIRT1
function is crucial as both of them play an important role in the
homeostasis maintenance as well as the regulation of lifespan.
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