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Metabolic Rate?
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In some organisms and cells, oxygen availability influences oxygen consumption. In this

review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its

features, mechanisms, and implications. Small mammals and other vertebrate species

exhibit “oxyconformism,” a downregulation of metabolic rate and body temperature

during hypoxia which is sensed by the central nervous system. Smaller body mass

and cooler ambient temperature contribute to a high metabolic rate in mammals.

It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger

mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions

in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial

oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen

sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK),

and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial

activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory,

and metabolic physiology in rodents. Therefore, caution should be exercised when

extrapolating the results of rodent hypoxia studies to human physiology.
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BACKGROUND

Hypoxia is defined as reduced oxygen (O2) in the environment or in an organism (1).
Arterial hypoxia is detected by O2 sensitive cells primarily located in the carotid body. Activation
of the carotid bodies stimulates hyperventilation and activates the sympathetic nervous system.
Peripheral tissues also mount local responses to hypoxia. For example, skeletal muscle vasculature
dilates to permit greater blood flow (2). Reduced oxygen in the kidney and liver tissues upregulates
the expression of erythropoietin, leading to increased hemoglobin. Angiogenesis is stimulated by
growth factors such as vascular endothelial growth factor 1. Thus, hypoxia activates several systems
that increase O2 delivery.

Another defense against hypoxia is a downregulation of metabolic rate/O2 demand. Throughout
the animal kingdom, both vertebrates and invertebrates can dramatically reduce metabolic rate
and body temperature (Tb) in response to cold or reduced O2 levels. Hypoxia reduces Tb in
both endothermic (e.g., mammals) and ectothermic (e.g., reptiles) vertebrates (3). In hibernating
mammals, metabolism can reversibly fall to 2% of basal metabolic rate (BMR) (4, 5). The drop in
metabolic rate during hypoxia was defined as “Hypoxic hypometabolism” by Mortola et al. in the
early 1990s (6). This hypometabolic state conserves oxygen stores (7) and protects against ischemic
injury after cardiac arrest (8). Freshwater turtles can survive for months with minimal O2 during
winter hibernation (9). In this review, we will examine features, mechanisms, and implications of
hypoxic hypometabolism (HH) and hypoxia-induced hypothermia.
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HYPOXIC HYPOMETABOLISM

“Oxyregulators” are organisms that maintain metabolic rate
regardless of O2 availability, while “oxyconformers” decrease
energy expenditure in the face of lower O2 availability (6).
Most mammals including humans are oxyregulators: as O2

supply decreases (e.g., ischemia, exercise) anaerobic pathways
supply ATP to compensate for the O2 debt. Other vertebrates,
exemplified by the crucian carp, and common frog primarily
use HH to reduce ATP demand (10). Small mammals (newborn
humans, kittens, rats, adult guinea pigs) are oxyconformers,
lowering their oxygen consumption (V̇O2), and Tb, even in
relatively mild hypoxia (11). Studies in the 1950’s identified
two factors that influenced the magnitude of HH in mammals:
ambient temperature and body mass (12). Hypoxia inhibits
shivering and non-shivering thermogenesis, which are costly
energetic processes. The thermoneutral zone (TNZ) is the
range of ambient temperatures where BMR is determined, since
thermogenic energy expenditure is at a minimum (13). Seminal
studies by Hill (14) elegantly showed that V̇O2 and Tb decreased
in newborn kittens exposed to hypoxia (10% O2) at an ambient
temperature of 28◦C (below TNZ), but not in the TNZ (34◦C).
The effect has now been termed regulated hypothermia, or
hypoxia-induced anapyrexia (15), and involves selection of a
cooler environment (16), increased dissipation of heat (17),
suppression of shivering (18, 19), and inactivation of brown fat
thermogenesis (20).

The relatively large surface area to body mass of small
mammals causes substantial heat dissipation, requiring a high
BMR that rises rapidly for each degree below TNZ (21, 22).
Frappell et al. compared several newborn mammals and found
that mammals weighing>2 kg exhibited minimal HH or hypoxic
hypothermia (23). Larger mammals have a lower weight-adjusted
BMR, reduced thermosensitivity, a lower TNZ, and a blunted
rise of V̇O2 per degree below TNZ (24). The TNZ of a human
lies in 18–22◦C (clothed) or 25–30◦C (unclothed) range. The
TNZ of mice is ∼30–34◦C. Thus, “room temperature” (22◦C)
approximates the TNZ for clothed humans but is far below TNZ
for mice; the metabolic rate of a mice housed at 22◦C will be 50%
above its BMR (13).

MECHANISMS OF HYPOXIC

HYPOMETABOLISM

Features of HH and hypoxia-induced hypothermia have been
characterized in detail, but underlying mechanisms are not fully
understood. It is clear that HH is not caused by anaerobic
metabolism or “oxygen debt” (23), which suggests that HH is a
regulated process. Tamaki and Nakayama showed that preoptic
hypothalamic neurons became less temperature sensitive in
anesthetized rats when exposed to 10% O2 (25). Tattersall and
Milsom showed that the threshold for hypothalamic activation to
central cooling decreased from 38◦C in normoxia to 28∼31◦C
at 7% O2 by delivering a cold stimulus to the brains of
ground squirrels using implanted thermodes (12). Less certain
is how hypoxia is sensed by the hypothalamus leading to HH.

Matsuoka et al. (26) reported that anemic hypoxia (normal
PaO2) reduced V̇O2 in rats, indicating that HH does not require
activation of the carotid body. This provides circumstantial
evidence that O2-sensitive neural networks in the brainstem,
already known to regulate respiratory and sympathetic activity
(27) may relay information to the preoptic hypothalamus.
How O2 is sensed within cells involves several regulatory
proteins, ion channels, and mitochondrial reactive oxygen
species (ROS) (28). Adenosine may increase during hypoxia and
signal thermoregulatory changes at the preoptic hypothalamus.
Barros et al. found that an adenosine A1 receptor antagonist
attenuated HH in rats (29, 30). Hypoxia-induced anapyrexia
may also involve neurotransmitters such as hydrogen sulfide
(31), endogenous opioids (32), and nitric oxide (33). Effectors
of heat generation may also be affected by local O2 tension.
Hypoxia causes the stabilization of hypoxia-inducible factor-1
(HIF-1), which controls the transcription of many genes. HIF-1
may suppress O2 consumption and heat production from brown
adipose tissue (20). It is estimated that resting V̇O2 decreases
by 11% per degree fall in Tb due to slower enzymatic reaction
rates (the “Q10” effect) (3). However, the fact that V̇O2 decreases
before Tb, and falls to a greater extent than predicted by Q10

effects, argues against hypothermia per se causing HH. Regardless
of the pathways involved, HH and lower Tb act synergistically
to increase survival (11). In summary, animals that exhibit HH
conform their metabolic demands to reduced O2 availability
sensed in brain.

HYPOXIC HYPOMETABOLISM AT THE

CELL LEVEL

The above discussion focused on the decrease in whole body
V̇O2 and Tb in response to hypoxia. Oxygen conformism also
occurs at the cellular level (10). Below a critical anoxic threshold,
cell death occurs if O2 availability fails to meet ATP demands
of Na-K-ATPases and voltage-gated Ca2+ channels. Cells from
different species and organs exhibit varying levels of anoxia
tolerance. Organisms that exhibit significant hypoxia tolerance
are comprised of cells capable of suppressing activity of ion-
motive ATPases, a protein pump which allows ions to move
against the electrochemical potential gradient across biological
membranes at the expense of ATP hydrolysis. This phenomenon
is termed “channel arrest” (34). Turtle and frog tissues (liver,
heart, brain) can reversibly reduce respiratory rates by 75%
within 30min of exposure to anoxia (10). Similarly, hypoxia
can induce complete and reversible arrest of mitochondrial
respiration and ATP synthesis in liver cells of diving seals (35).
Mechanisms of channel arrest in anoxia tolerant cells is not
known, but may involve adenosine accumulation as a signaling
molecule. By contrast, cells from oxyregulators do not exhibit
decreases in ATP demand for maintaining ion gradients (10).

Cellular respiration decreases even at moderately reduced O2

levels (1–3%), well above the threshold (<0.3% O2) for arresting
O2-dependent ATP generation at mitochondrial complex IV
(36). For example, isolated rat hepatocytes exhibited a reversible
fall in V̇O2 after several hours of exposure to∼10%O2 (37); chick
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cardiac myocytes also exhibited HH and decreased contractility
with evidence of reducedmitochondrial complex IV activity (38).
Under normoxic conditions, cellular V̇O2 in cells is determined
by factors including rates of ATP synthesis, transport and
utilization (50%), NADH supply generated from pyruvate flux
and the tricarboxylic acid (TCA) cycle (15–30%), proton leak
(0–15%), and the electron transport chain (ETC) (39). These
processes are not affected by brief hypoxia, but within a few
hours, carbon flux through the TCA, and electron flux through
the ETC both decrease (36). Cellular HH is mediated in part
through stabilization of HIF-1α. HIF-1 shifts metabolism toward
glycolysis via upregulating numerous glycolytic genes (40, 41),
a phenomenon called the Pasteur effect (42). HIF-1 actively
suppresses the TCA cycle by trans-activating the gene encoding
pyruvate dehydrogenase kinase 1 (PDK1), which inactivates
pyruvate dehydrogenase (PDH). PDH is responsible for the
conversion of pyruvate to acetyl-CoA. The net result is a shunting
of pyruvate away from the TCA cycle and toward glycolysis, as
well as a fall inmitochondrial V̇O2 and an increase in intracellular
O2 tension (43, 44).

Reduced electron flux through the ETC during sustained
hypoxia occurs via several mechanisms, some of which
are dependent upon HIF-1. First, HIF-1 targets inducible
nitric oxide synthase (iNOS), and nitric oxide in turn
suppresses mitochondrial complex IV activity. Second, HIF-1
stimulates micro-RNA 210, which inhibits the function of several
mitochondrial membrane complexes. Third, HIF-1 induces a
switch of subunits expressed in complex IV, which increases
its efficiency (45). Another major mechanism of HH involves
inhibition of ATP utilization. Hypoxia inhibits plasmamembrane
Na-K-ATPase activity, which may account for up to 70% of
mammalian cellular V̇O2 (46). Hypoxia (1.5% O2) was shown to
cause ubiquitin degradation of the Na-K-ATPase alpha subunit
(47). In addition, hypoxia inhibits cellular mRNA translation.
The reduction of Na-K-ATPase activity and protein translation
are both mediated by an O2 sensor, AMP-activated protein
kinase (AMPK) which is activated by mitochondrial ROS (36).
Mechanisms of HH at the cellular level are complex and remain
under active investigation.

DO HUMANS EXPERIENCE HYPOXIC

HYPOMETABOLISM?

Humans (other than newborns) would be classified as
oxyregulators, and do not exhibit HH. In fact, the cardiovascular
stress of hypoxia is often accompanied by changes such as
hyperventilation that increase O2 delivery and increase V̇O2.
Exposure to high altitude (hypobaric hypoxia) is accompanied
by weight loss, with increased energy expenditure being one
of the mechanisms (48). For example, the metabolic rate of
male sea level natives increased 27% on day 2 after ascent to
4,300m, and remained 17% higher than baseline on day 10 (49).
High altitude exposure also increases rates of glucose turnover
in the body, at rest and during exercise (50). BMR of workers
residing in the Andes (∼4,500m) for >4 months showed values
comparable to standard BMR measurements at sea level, and

higher than sea level values when normalized to lean body mass
(51). This finding is in line with older studies of acute high
altitude exposure showing a rise in V̇O2 (52). Interestingly, six
scientific expeditioners to the Himalayas (5,800m) showed a
10% increase, while their 3 Sherpa guides (chronic dwellers at
1,800m) exhibited a 21% increase in V̇O2 compared to sea level
standards (53). Normobaric hypoxia (breathing 10% O2 for
40min) resulted in a 15.5% increase in cerebral blood flow and
8.5% increase in cerebral metabolic rate in healthy subjects, as
measured by magnetic resonance imaging (54).

Hypoxia lowers peak V̇O2 and causes an earlier shift
to anaerobic metabolism during intensive exercise (55–57).
However, this lowering of V̇O2max should not be equated with
HH. V̇O2 continues to rise at work rates above anaerobic
threshold. Thus, humans and larger mammals cope with hypoxia
by “defending” ATP production rather than conforming to a
lower V̇O2. It is possible that long-term hypoxic adaptation can
induce changes in metabolism of certain tissues. For example,
Hochachka et al. (58) examined brain regional glucose metabolic
rates in Quechua natives indigenous to the Andes (3,700–
4,900m), with positron emission tomographic imaging. These
high-altitude dwellers demonstrated lower glucose metabolic
rates than that of lowlanders. However, there is no evidence that
acute or chronic hypoxia reduces overall V̇O2 in humans.

DO HUMANS EXPERIENCE

HYPOXIA-INDUCED ANAPYREXIA?

It is unclear whether hypoxia significantly alters
thermoregulation in humans. DiPasquale et al. studied subjects
breathing 21, 14, or 12% O2 for 30min at thermoneutrality. They
showed that hypoxia modestly decreased rectal temperature,
with each 1% decrease in SpO2 decreasing the temperature by
0.15◦C (59). However, Seo et al. questioned possible carryover
effects of the brief interventions of this study which were
performed in a single session per subject. Their group studied
thermal responses to similar degrees of normobaric hypoxia,
distributing exposures across days, and did not find a reduction
in rectal temperature, metabolic heart production, or heat loss
(60). Other studies used cold exposure to elicit changes in
thermoregulation with hypoxia. Eight subjects immersed in
28◦C water were exposed to eucapnic hypoxia (12% O2) which
lowered core temperature threshold for vasoconstriction and
shivering by 0.14 and 0.19◦C, respectively, while increasing core
cooling rate (61). Robinson and Haymes exposed subjects to
normoxia or hypoxia (12% O2), at an ambient temperature of
25 or 8◦C. Under cold conditions, hypoxia modestly lowered
V̇O2 and rectal temperature. During cold exercise, hypoxia
accelerated heat loss (62). Another study examined the acute
effects of normobaric hypoxia on hand temperature responses
during and after a 30-min local cold-water immersion test.
Although hypoxia did not aggravate the cold-induced drop in
hand temperature, hypoxia impaired rewarming (63).

Some studies examined thermoregulation at high altitude, an
environment that often combines hypobaric hypoxia with cold
temperature. Savourey et al. (64) studied 11 lowlander subjects
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after 2 weeks of high altitude residence in the Andes (4,150
∼ 6,885m). Metabolic heat production in response to a cold
air test (2 h of 1◦C exposure) was modestly diminished and
heat debt increased, whereas upper-extremity skin temperature
was reduced by ∼1.45◦C in a local coldwater test (5min of
5◦C exposure) after 2 weeks at high altitude. In study that
controlled for ambient temperature, five men were exposed to
acute intermittent hypoxia (AIH) in a chamber (8 h daily for
4 d, 6 h on the last day, 4,500–6,000m) at 24◦C. Under these
conditions, cold challenge testing demonstrated that AIH caused
lower skin temperature, without significant change in rectal
temperature. Interestingly, metabolic heat production increased
by 7% and heat debt and convective heat loss decreased. Time
to onset for continuous shivering also decreased (65). O’Brien et
al. (66) performed finger cold water immersion tests in healthy
males in a thermoneutral hypobaric chamber at simulated sea
level, 3,000 and 4,675m. No effect of hypobaric hypoxia on the
finger temperature response was observed. In summary, hypoxia
may impair thermoregulation in adult humans, but effects are
small and may require superimposed cold exposure to become
evident.

IMPLICATIONS OF HYPOXIC

HYPOMETABOLISM

Animal Physiology
HH influences cardiovascular and respiratory physiology of small
mammals. Mice housed at typical lab temperature (22◦C) exhibit
high sympathetic activity, low cardiac vagal tone, and a higher
resting heart rate compared to mice housed at TNZ (67). In a
rodent study using three different species (rats, ground squirrel,
and hamster), hypoxia resulted in cardiac acceleration in all
species in a warm environment (35◦C), while decreasing heart
rate at an ambient temperature of 10◦C (68). Similarly, the
magnitude of the hypoxic ventilatory response (HVR) ismodified
by HH (69). When rats of different sizes were exposed to 10%
O2 at an ambient temperature of ∼24◦C, 400 g rats had much
stronger HVR than 50 g rats associated with a minimal degree
of HH in the larger animals (70). More directly it was shown
that inhaled hydrogen sulfide induced HH in mice, and mediated
a reduction in HVR (71). Substrate metabolism under hypoxic
conditions is also highly influenced by ambient temperature.
To see if acute hypoxia increases plasma triglycerides (TG), we
exposed postprandial mice housed at 22◦C to 6 h of graded
hypoxia. Hypoxia dose-dependently increased TG [as seen in a
previous rat studies (72, 73)] contained within large, low-density
lipoproteins while decreasing TG clearance, and decreasing fatty
acid uptake in brown adipose tissue (74). When mice were
exposed to 10% O2 at thermoneutrality (30◦C) hypoxia had
no effect on TG levels, clearance rate, or brown adipose tissue

lipid uptake. Moreover, thermoneutral hypoxia increased cardiac
lipid uptake and plasma HDL cholesterol (75). Baum et al.
found that hypoxia inhibited lipolysis in puppies exposed to
cold (76). However, hypoxia stimulated lipolysis in mice under
thermoneutral conditions (75, 77) with more variable responses
below TNZ (74).

Translational Research
Small mammal studies performed below TNZ would indicate
that hypoxia lowers V̇O2 (14), reduces heart rate (68), minimally
increases ventilation (70), causes an atherogenic lipid profile (72,
73), and inhibits lipolysis (76). However, many of these changes
are manifestations of cold-elicited HH. Hypoxia in rodents at
TNZ better approximates the human response, characterized
by a preserved V̇O2, robust HVR and heart rate acceleration,
no change (78) or reduced TG (75), increased HDL cholesterol
(79), and a stimulation of adipose tissue lipolysis (78, 80,
81). Therefore, ambient temperature is a critical variable in
translational hypoxia studies. To “humanize” small mammal
hypoxia research, HH can be minimized by housing animals at
TNZ.

Clinical Research
Understanding HH may have clinical applications.
Downregulation of metabolism is evident in myocardium
during ischemia (82). Pre-conditioning tissues to hypoxia may
mitigate ischemia-reperfusion injury (83). Cancer cells invoke
HH to promote survival in hypoxic tumors (84, 85). HH may
be an adaptive strategy for neonatal humans at risk for sudden
infant death (86). Therefore, pathways of HH may be leveraged
for human disease.

CONCLUSIONS

In oxygen “conformers” hypoxia can reduce metabolic rate, at the
whole body and cellular level. Factors that determine the extent
of HH include the degree of hypoxia, ambient temperature, body
mass, and species or cell type. Knowledge of these factors is
critical for the design and interpretation of hypoxia studies. The
ability to manipulate HH may also have significant therapeutic
implications.
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