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Anaplastic thyroid carcinoma (ATC) is a malignant tumor of the thyroid gland, infrequent

but with a very poor prognosis, as it rapidly causes death (mean survival of about

6 months). ATC treatment includes a multimodal protocol consisting of surgery,

chemotherapy (doxorubicin and cisplatin), and hyperfractionated accelerated external

beam radiotherapy (median patient survival of 10 months). For this reason, the

identification of an effective systemic treatment for ATC would be a major advance in

the management of this deadly thyroid cancer. The opportunity to test the sensitivity to

different drugs of primary cells from ATC (pATC) cultures, obtained from each patients,

could improve the effectiveness of the treatment. Then, the administration of inactive

therapeutics could be avoided. Our aim is to investigate the antineoplastic effect of two

tyrosine kinase inhibitors (TKIs; lenvatinib, vandetanib) in pATC obtained both from biopsy

(biop-pATC), and from fine needle aspiration (FNA-pATC). The antiproliferative activity of

lenvatinib and vandetanib was evaluated in 6 ATC patients, on biop-pATC, such as on

FNA-pATC. A significant reduction of proliferation (obtained by WST-1 assay) vs. control

was shown with lenvatinib and vandetanib in FNA-pATC, as well as in biop-pATC. The

percentage of apoptosis in FNA-pATC, or biop-pATC, increased with both compounds

dose-dependently. pATC cells from FNA, or biopsy, had a similar sensitivity to lenvatinib

and vandetanib. In conclusion, primary cells (biop-pATC or FNA-pATC) have a similar

sensitivity to TKIs, and lenvatinib and vandetanib are effective in reducing cell growth,

increasing apoptosis in ATC. The possibility to test the sensitivity to different TKIs in each

patient could open the way to personalized treatments, avoiding the administration of

ineffective, and potentially dangerous, drugs.
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INTRODUCTION

Anaplastic thyroid carcinoma (ATC) is a malignant tumor of the
thyroid gland, infrequent but with a very poor prognosis, as it
rapidly causes death (mean survival of about 6 months) (1–4).

Anaplastic thyroid carcinoma treatment includes a
multimodal protocol consisting of surgery (5), chemotherapy
(doxorubicin and cisplatin), and hyperfractionated accelerated
external beam radiotherapy (6) (median patient survival of 10
months) (6).

For these reasons, it could be useful to identificate an effective
systemic treatment for ATC, to ameliorate the management of
this deadly thyroid cancer (TC) (7).

Aurora kinase inhibitors and tyrosine kinase inhibitors
(TKIs) (8), as imatinib (9) or sorafenib (10), are promising
future treatments, while other studies (11–15) have evaluated
antiangiogenic agents, like PTK787/ZK222584, aplidin,
combretastatin A4 phosphate, and human vascular endothelial
growth factor (VEGF) monoclonal antibodies (bevacizumab,
cetuximab).

Moreover, small-molecule adenosine triphosphate (ATP)
competitive inhibitors directed intracellularly at epidermal
growth factor receptor (EGFR)’s tyrosine kinase (such as
erlotinib, or gefitinib) (16, 17) are under evaluation.

The antitumor activity of CLM94 [a new cyclic amide, with
antiangiogenic effect and anti-VEGF receptor (R)-2], has been
shown in vitro and in vivo in primary (p)ATC cells (18), such as a
potent antitumor activity of the new “pyrazolo[3,4-d]pyrimidine”
compounds (CLM29 and CLM24), with an antiangiogenic action
and able to inhibit EGFR, the RET tyrosine kinase, VEGFR, in
8305C and pATC cells (19).

Moreover, CLM3 (with antiangiogenic activity and suggested
for a multiple signal transduction inhibition, on EGFR, the
RET tyrosine kinase, and VEGFR), has shown antitumor and
antiangiogenic activity in pATC cells (20).

Recently, the combination of dabrafenib plus trametinib has
been recently approved for the treatment of ATCwith V600EBRAF
mutation (21, 22).

Moreover, we have recently shown, that lenvatinib, and
vandetanib, have a significant antineoplastic effect, in vitro in
ATC cells, and in xenotrasplants of ATC in vivo in nude mice
(23, 24).

Despite these new therapeutic strategies against ATC, more
researches are required to identify therapies able to control and
to cure this disease.

Testing the sensitivity of pATC cells from each subject
to different drugs could give the possibility to increase the

Abbreviations: ATC, anaplastic thyroid carcinoma; ATP, adenosine triphosphate;

biop-pATC, primary cells from anaplastic thyroid cancer obtained from biopsy;

EGFR, epidermal growth factor receptor; FCS, Fetal Calf Seurum; FNA-pATC,

primary cells from anaplastic thyroid cancer obtained from fine needle aspiration;

NIS, Sodium/Iodide Symporter; pATC, primary cells from anaplastic thyroid cancer;

PCR-SSCP, PCR Single Strand Conformation Polymorphism; PFS, progression

free survival; TKIs, tyrosine kinase inhibitors; TSH, thyroid-stimulating hormone;

TPO, thyroperoxidase; Tg, thyroglobulin; VEGF, vascular endothelial growth

factor; VEGFR, vascular endothelial growth factor receptor.

effectiveness of the treatment in the next future, for the
personalization of the therapy.

By disease-orientated in vitro drug testing conducted in
human neoplastic cell lines, predictive values for the activity
of clinical responses can be obtained (25, 26). A 60% positive
predictive value and a 90% negative predictive value have been
reported (27). Therefore, in vitro drug testing could avoid to
administer patients with inactive chemotherapeutics.

Until now, pATC have been obtained after surgery (biop-
pATC) for therapeutic or diagnostic techniques. However, it
has been shown the possibility to obtain pATC from fine-
needle aspiration (FNA), avoiding worthless surgical procedures
and allowing the evaluation of the sensitivity to different
chemotherapeutic agents in each patient (28–30).

In this study, we evaluate the antineoplastic effect of
lenvatinib, and vandetanib, in pATC obtained from biop-pATC,
or from FNA-pATC.

METHODS

Drugs and Supplements
Lenvatinib (E7080, Lenvima; 1 nM, 100 nM, 1, 10, 25, and
50µM), and vandetanib (ZD6474, Caprelsa; 1 nM, 100 nM, 1, 10,
25, and 50µM), were evaluated in pATC cell cultures.

Most of chemicals and supplements were obtained from
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).

Patients Source for Thyroid Tissue
Thyroidal tissues were obtained from 6 patients with ATC at
the time of surgery. The diagnosis was done following generally
recognized clinical, laboratory, and histological criteria (28–30).

Absence of thyroid-stimulating hormone (TSH)
receptor, thyroperoxidase (TPO), thyroglobulin (Tg), and
Sodium/Iodide Symporter (NIS) expression has been shown by
immunohistochemistry.

Microdissection and DNA extraction, detection of BRAF
mutation by PCR Single Strand Conformation Polymorphism
(PCR-SSCP) and direct DNA sequencing were performed using
conventional methods previously described (28–30).

Informed consent to the study was obtained from all the
subjects, and the approval was received from the local ethical
committee of the University of Pisa.

Primary ATC Cells
FNA-pATC
Fine-needle aspiration was conducted in 6 ATC patients by
FNA cytology (23 gauge needle). About 10,000 cells were seeded
in RPMI 1640 containing 20µg/ml gentamicin, 100 IU/ml
penicillin G, 1% w/v glutamine, 20% v/v Fetal Calf Serum
(FCS) (Seromed, Biochrom, Berlin, Germany). After 2 weeks,
cells were propagated in DMEM medium containing 50µg/ml
penicillin/streptomycin, 1% w/v glutamine and 20% v/v FCS,
then incubated at 37◦C in 5% CO2.

To have a sufficient number of cells, chemosensitivity tests
were performed at the 4th passage, after 4–5 weeks of controlled
in vitro growth.
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Biop-pATC
Neoplastic tissues (1–3mm in size) were obtained, and washed
in M-199 media containing 500 IU/ml penicillin, 500 IU/ml
streptomycin, and 1,000 IU/ml nystatin, then suspended
in DMEM with 50µg/ml penicillin/streptomycin, 1% w/v
glutamine and 20% v/v FCS and maintained in 5% CO2 at 37

◦C.
At the third cell passage reached in primary tissue-culture

flasks, cells were coated in methocel (31) to evaluate the colony-
forming efficiencies. The biggest colonies were expanded and
chemosensitivity tests were carried out when cells reached the 4th
passage.

The absence of TSH receptor, TPO, Tg, and NIS expression
was confirmed by immunohistochemistry.

A partial and focal positivity for cytokeratin was obtained by
immunocytochemistry on de-stained smears in FNA-pATC.

DNA fingerprinting showed a pattern identical to that of the
original neoplastic tissue (28–30).

WST-1 Assay
Cell viability and proliferation were assessed by the WST-1 assay
[3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide,
used in the MTT assay, by Roche Diagnostics, Almere, The
Netherlands] (28, 29, 32).

Different concentrations of lenvatinib or vandetanib (1 nM,
100 nM, 1, 10, 25, and 50µM), or their vehicle alone, were added
in quadruplicates to cells, that were treated for 24 h. Then IC50

values were determined by linear interpolation. The experiments
were performed in triplicate for each cell preparation.

For comparison, proliferation was evaluated also by the cell
number counting (28, 29, 32).

Apoptosis Evaluation
ATC cells (35,000 cells/mL) were plated and treated with
lenvatinib, or vandetanib, for 48 h in a humidified atmosphere
(37◦C, 5% CO2). Then, pATC were stained with Hoechst 33342,
as earlier described (32).

The apoptosis index (ratio between apoptotic and total cells)
x100 was calculated.

Moreover, the cells were seeded in Lab-tekII Chamber Slide
System (Nalge Nunc International), treated with lenvatinib, or
vandetanib, for 48 h, and then treated with Annexin V binding
assay (32).

Data Analysis
Values are given as mean± SD for normally distributed variables,
otherwise as median and [interquartile range]. The experiments
were repeated 3 times with the cells from each donor. The mean
of the experiments in the 6 specimens from different donors
is reported. The mean group values were compared by one-
way ANOVA for normally distributed variables, otherwise by
the Mann-Whitney U or Kruskal-Wallis test. Proportions were
compared by the χ

2 test. Post-hoc comparisons on normally
distributed variables were carried out using the Bonferroni-Dunn
test. Data about apoptosis were analyzed by one-way ANOVA
with Newman–Keuls multiple comparisons test.

RESULTS

FNA-pATC Cells
Viability and Proliferation Assay
In FNA-pATC cells, a significant reduction of proliferation (vs.
control) was observed with lenvatinib at 1 h (data not shown) and
at 2 h (from the beginning of tetrazolium reaction; P < 0.01, for
both, ANOVA; Figure 1A), as confirmed by cell counting, too.

In ATC the cell number was 19,405 ± 985/100 µL, per well;
19,589± 990 (101%) with lenvatinib 1 nM; 17,850± 1,010 (92%)
with lenvatinib 100 nM; 18,251 ± 998 (94%) with lenvatinib
1µM; 10,090 ± 1,115 (52%) with lenvatinib 10µM; 7,568 ±

1,120 (39%) with lenvatinib 25µM; 3,687 ± 915 (19%) with
lenvatinib 50µM; (P < 0.01, ANOVA). For lenvatinib, IC50 was
12µM (by linear interpolation).

Moreover, also a significant reduction of proliferation (vs.
control) was reported with vandetanib at 1 h (data not shown)

FIGURE 1 | WST-1 test (at 2 h from the beginning of tetrazolium reaction) in

FNA-pATC cells treated with lenvatinib (A) or vandetanib (B) for 24 h.

Lenvatinib or vandetanib had a concentration-dependent antiproliferative effect

on the FNA-pATC cells with an IC50 of 12 or 16µM, respectively. Bars are

mean ± SD. *P < 0.05 or less (by Bonferroni–Dunn test, vs. Control).
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and at 2 h (from the beginning of tetrazolium reaction; P < 0.01,
for both, ANOVA; Figure 1B), and confirmed by cell counting.

In ATC the cell number was 19,680 ± 925/100 µL, per well;
19,589 ± 990 (101%) with vandetanib 1 nM; 18,893± 995 (96%)
with vandetanib 100 nM; 15,744 ± 1,020 (80%) with vandetanib
1µM; 11,415 ± 1,118 (58%) with vandetanib 10µM; 5,510 ±

1,120 (28%) with vandetanib 25µM; 2,755 ± 1,010 (14%) with
vandetanib 50µM; (P < 0.01, ANOVA). For vandetanib, IC50

was 16µM (by linear interpolation).

BRAF and Proliferation
The V600EBRAF mutation was present in 2 FNA-pATCs;
RET/PTC1 and RET/PTC3 by real-time PCR were not revealed
in FNA-pATCs.

Regarding the inhibition of proliferation in FNA-pATCs,
lenvatinib, and vandetanib gave similar results, considering
tumors in presence or absence of the V600EBRAF mutation (data
not shown).

Apoptosis Determination
Apoptotic cells (expressed in %) in FNA-pATC rised in a dose-
dependent manner: 21% of the cells treated with lenvatinib 1µM
were apoptotic; with the higher lenvatinib concentrations of
10µM, 25µM or 50µM the apoptotic percentage increased up
to 42, 51, and 88%, respectively (P < 0.001, ANOVA; Figure 2A).

Also vandetanib increased apoptosis in FNA-pATC in a
dose-dependent manner: 22% of the cells were apoptotic after
treatment with vandetanib 1µM; with the higher vandetanib
concentrations of 10, 25, or 50µM the apoptotic percentage
increased up to 42, 72, and 91%, respectively (P < 0.001; by
ANOVA; Figure 2B). To confirm the induced cell apoptosis,
annexin V staining was used (data not shown).

Biop-ATC Cells
Similar results were obtained in biop-pATC and in FNA-pATC
cells, too.

Viability and Proliferation Assay
In biop-pATC cells, a significant reduction of proliferation (vs.
control) was observed with lenvatinib at 1 h (data not shown) and
at 2 h (from the beginning of tetrazolium reaction; P < 0.01, for
both, ANOVA; Figure 3A), as confirmed by the cell counting.

In ATC the cell number was 19,520 ± 980/100 µL, per well;
19,130 ± 985 (98%) with lenvatinib 1 nM; 17,570 ± 1,132 (90%)
with lenvatinib 100 nM; 18,544 ± 996 (95%) with lenvatinib
1µM; 11,712 ± 11,145 (60%) with lenvatinib 10µM; 8,589 ±

1,020 (44%) with lenvatinib 25µM; 4,100 ± 910 (21%) with
lenvatinib 50µM; (P < 0.01, ANOVA). For lenvatinib, IC50 was
17µM (by linear interpolation).

Moreover, also a significant reduction of proliferation (vs.
control) was reported with vandetanib at 1 h (data not shown)
and at 2 h (from the beginning of tetrazolium reaction; P < 0.01,
for both, ANOVA; Figure 3B), confirmed by cell counting.

In ATC the cell number was 19,270 ± 890/100 µL, per well;
19,070 ± 898 (99%) with vandetanib 1 nM; 18,499 ± 902 (96%)
with vandetanib 100 nM; 14,450 ± 998 (75%) with vandetanib
1µM; 10,984 ± 1,121 (57%) with vandetanib 10µM; 6,360 ±

FIGURE 2 | Apoptosis in FNA-pATC cells after the treatment with lenvatinib

(A) or vandetanib (B) for 48 h (mean ± SD of all samples). Apoptosis index

was obtained by Hoechst staining. The % of apoptotic cells increased strongly

and dose-dependently. Data were analyzed by one-way ANOVA with

Newman–Keuls multiple comparisons test and with a test for linear trend

(*P < 0.001 vs. Control).

1,120 (33%) with vandetanib 25µM; 2,120 ± 900 (11%) with
vandetanib 50µM; (P < 0.01, ANOVA). For vandetanib, IC50

was 18µM (by linear interpolation).

BRAF and Proliferation
The V600EBRAF mutation was observed in 2 biop-pATC cells;
RET/PTC1 and RET/PTC3 by real-time PCR were not revealed
in biop-pATCs.

Considering the inhibition of proliferation in biop-pATCs,
lenvatinib, and vandetanib, gave similar results in tumors
with/without V600EBRAF mutation (data not shown).
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FIGURE 3 | WST-1 test (at 2 h from the beginning of tetrazolium reaction) in

biop-pATC cells treated with lenvatinib (A) or vandetanib (B) for 24 h.

Lenvatinib or vandetanib had a concentration-dependent antiproliferative effect

on the biop-pATC cells with an IC50 of 17 or 18µM, respectively. Bars are

mean ± SD. *P < 0.05 or less (by Bonferroni–Dunn test, vs. Control).

Apoptosis Determination
Apoptotic cells (expressed in %) in biop-pATC cells rised in
a dose-dependent manner: 27% of the cells were apoptotic
after treatment with lenvatinib 1µM; with the higher lenvatinib
concentrations of 10, 25, or 50µM the apoptotic percentage
increased up to 44, 59, and 92%, respectively (P< 0.001, ANOVA;
Figure 4A).

Also vandetanib increased apoptosis in biop-pATC dose-
dependently: 28% of the cells treated with vandetanib 1µMwere
apoptotic; with the higher vandetanib concentrations of 10, 25, or
50µM the apoptotic percentage increased up to 33, 68, and 89%,
respectively (P < 0.001; by ANOVA; Figure 4B).

To confirm the induced cell apoptosis, annexin V staining was
used (data not shown).

FIGURE 4 | Apoptosis in biop-pATC cells after the treatment with lenvatinib

(A) or vandetanib (B) for 48 h (mean ± SD of all samples). Apoptosis index

was obtained by Hoechst staining. The % of apoptotic cells increased strongly

and dose-dependently. Data were analyzed by one-way ANOVA with

Newman–Keuls multiple comparisons test and with a test for linear trend

(*P < 0.001 vs. Control).

No significant differences in sensitivity to lenvatinib, and
vandetanib were observed between the tested cells obtained from
FNA or biopsy.

DISCUSSION

Lenvatinib, and vandetanib are able to exert an antineoplastic
action in TC, and ATC. With this study we contribute
to understand the lenvatinib, and vandetanib anticancer
activity, in ATC, in fact: (1) to the best of our knowledge,
this is the first study showing the possibility to screen the
antineoplastic activity of lenvatinib, and vandetanib in vitro
in primary neoplastic cells obtained from cytological samples
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of FNA; (2) moreover, primary cells from FNA showed
a chemosensitivity to TKIs (lenvatinib, and vandetanib)
considerably similar to the one in primary cells from
biopsy.

Lenvatinib is an oral, multitargeted TKI of VEGFR1-VEGFR3,
RET, fibroblast growth factor receptors 1–4 (FGFR1-FGFR4),
PDGFRα, and v-kit Hardy-Zuckerman 4 feline sarcoma viral
oncogene homolog (KIT) signaling networks involved in tumor
angiogenesis (33).

In vitro studies evaluated the action of lenvatinib in
preclinical models. Lenvatinib had an antineoplastic effect
in xenograft models of different cell lines [5 differentiated
thyroid cancer (DTC), 5 ATC, and 1 medullary thyroid cancer
(MTC)], and had an antiangiogenic effect in 5 DTC and
5 ATC xenografts, while the antiproliferative activity was
shown in vitro only in 2/11 thyroid cancer cell lines (i.e.,
RO82-W-1 and TT cells) (34). Moreover, it inhibited RET
phosphorylation in TT cells with the activating mutation C634W
(34).

In vivo phase II (35, 36), and phase III (37) studies in patients
with aggressive DTC not responsive to radioiodine showed that
lenvatinib administration ameliorated progression-free survival
(PFS; median PFS 18.2 vs. 3.6 months with placebo). Following
the results of this phase III study, lenvatinib has been approved
for the treatment of patients with locally recurrent or metastatic,
progressive, radioactive iodine refractory DTC (38).

Other anecdotal studies and a phase II clinical study have an
antitumor effect of lenvatinib in ATC (39–43). Furthermore, we
have recently reported a significant anticancer activity in vitro,
and in vivo, in experimental models (23, 24).

Vandetanib is an oral once-daily TKI, with a strong
antiangiogenic activity, and able to inhibit the activation of
RET, EGFR, VEGFR-2, VEGFR-3, and a little of VEGFR-1
(44). A potent antineoplastic action of vandetanib was shown
against transplantable MTC in nude mice (45). In patients with
aggressive MTC, a phase III clinical study showed vandetanib
improved PFS (30.5 vs. 19.3 months in the control group)
(46). Food and Drug Administration, and European Medicines
Agency approved it in 2011 in patients with locally advanced or
metastatic MTC (47) and encouraging data have been shown also
in aggressive DTC patients not responsive to the usual therapies
(48, 49).

The results of this study agree with the ones of another paper
reporting that vandetanib inhibits 8305C cells growth in vivo, and
stops angiogenesis, decreasing vascular permeability (50), and
also with our previous study (24).

Moreover, the results obtained in this study sustain the
concept that lenvatinib and vandetanib have antiangiogenesis
activity and are suggested for a multiple signal transduction
inhibition (on EGFR, the RET tyrosine kinase, VEGFR) (51).

Considering that TKIs inhibitory effects can be bypassed by
the activation of other kinases (52), multikinase inhibitors are
more useful as they can block more than one single kinase in this
way avoiding resistance (53–55).

It is interesting that the anti-proliferative action of lenvatinib
and vandetanib did not depend on the presence/absence of
V600EBRAF mutation in pATC.

To summarize we can hypothesize that, as shown in vivo (23,
24, 56), the antitumor effect of lenvatinib, and vandetanib in the
tumoral cells could be linked to the following combination: (1)
the antiproliferative action associated with the rise in apoptosis;
(2) the inhibition of ERK1/2 phosphorylation (20); (3) the
inhibition of tumor neovascularization (18, 56).

By disease-orientated in vitro drug testing conducted in
human neoplastic cell lines, predictive values for the activity of
clinical responses can be obtained (25, 26). A negative predictive
value of 90% can avoid to administer patients with inactive
chemotherapeutics and a positive preditive value of 60% can
predict effectiveness in 60% of cases in vivo (27).

The observed disparity between in vitro and in vivo data can be
caused by several factors: the metabolization and/or inactivation
of the drugs in the tumor or by different organs in the body
(as kidney and liver, etc.); the cellular resistance to drugs; the
response to chemotherapeutics that is determined also by the
growth curve of tumors (29).

Up to now primary ATC cells have been obtained from
surgical materials obtained for therapeutic or diagnostic
tecniques. In this study we obtain primary cells from FNA
cytology in ATC.

Primary cultures have been obtained by needle aspiration
biopsy in only 1 patient (57), and some papers reported of
cutaneous needle track seeding after needle aspiration biopsy in
TC patients (58, 59), but FNA cytology bypasses this problem and
no signs of needle track seeding after FNA has been shown in our
patients.

As FNA permits to collect material from a limited area of the
tumor, that is the expression of a restricted cell population, this
could select a cellular population not representative of the whole
tumor. To rule out this possibility, the experiments were repeated
with primary cell cultures obtained from bioptical samples in
the same conditions. The results were quite similar to those
observed in FNA-pATC, in this way excluding the hypothesis
that FNA sampling might have brought to a cell population
selection.

In conclusion: (1) primary cells obtained from FNA-
pATC or biop-pATC, have a similar sensitivity to TKIs;
(2) lenvatinib, and vandetanib are are able to decrease cell
growth, increasing apoptosis in ATC; (3) the opportunity to
test the sensitivity to different TKIs in each patient could
avoid to administer ineffective (or even dangerous) drugs to
patients, ameliorating also the effectiveness of the therapy;
(4) this preclinical evaluation could permit to increase the
effectiveness of lenvatinib and vandetanib in patients with ATC
in whom the sensitivity has been shown in primary cells in
vitro.
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