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Estrogen receptors are important regulators of the growth of breast tumors. Three

different receptors for estrogens have been identified in breast tumors, two nuclear

receptors, ERα and ERβ, and a G-protein coupled estrogen receptor 1 (GPER) that

initiates non-genomic effects of estrogens in the cytosol. Recent findings show that

the stimulation of cytoplasmic ERα and ERβ also triggers non-genomic signaling

pathways. The treatment of breast cancer with anti-estrogens depends on the presence

of ERα. About 40% of all breast cancers, however, do not express ERα. One

subgroup of these tumors overexpress Her-2, another important group is designated as

triple-negative breast cancer, as they neither express ERα, nor progesterone receptors,

nor do they overexpress Her-2. This review addresses the signaling of ERβ and

GPER in ERα-negative breast tumors. In addition to the well-established EGF-receptor

transactivation pathways of GPER, more recent findings of GPER-dependent activation

of FOXO3a, the Hippo-pathway, and HOTAIR-activation are summarized.
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NUCLEAR ESTROGEN RECEPTORS

Estrogens, in particular 17β-estradiol, exert biological effects in a wide variety of tissues. These
effects are dependent on the presence of an appropriate receptor for estrogens. The first estrogen
receptor was cloned and characterized in the eighties of the last century from cDNA of the human
breast cancer cell line MCF-7 (1). This receptor is a designated estrogen receptor α (ERα) in
order to distinguish it from ERβ, which was discovered later. Both receptors are ligand-activated
transcription factors that act by binding to DNA in the nucleus. The chromosomal location of the
human ERα gene was detected on chromosome 6q25, whereas the gene for human ERβ is located
at 14q22-24 (2).

Both estrogen receptors, ERα and ERβ, share common structural features. Five different
domains, named A/B, C, D, E, and F, are distinguished in both receptors with varying sequence
homology. The N-terminal A/B domain is the most variable and these regions of the human
ERα and ERβ share only a <20% identity of the amino acid sequence. The A/B-domain contains
the activation function (AF-1) that has been found to be ligand-independent and to possess
promoter- and cell-specific activity (3). The C-domain that shares a 95% identity in amino acid
sequence in both receptors is responsible for specific DNA-binding to promoters of the target
genes. The next domain (D-domain) shares only 30% of homology between the two receptors.
It forms a flexible hinge between the DNA-binding C-domain and the E-domain that binds the
ligand (17β-estradiol).The D-domain is therefore a designated ligand-binding domain (LBD). This
domain harbors the hormone-dependent activation function AF-2 (3).
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The mechanism of action of ERα and ERβ is quite similar.
Before ligand-binding, both receptors are localized in the cytosol
of the cells complexed with the chaperon HSP90. The lipophilic
ligands, like 17β-estradiol, enter the cells passively by diffusion
through the cell membrane. The binding of the ligand leads to
a conformational change of the receptors that releases HSP90
from both estrogen receptors into the cytosol. Upon the binding
of estrogens, the ERs form dimers and undergo conformational
changes that enable them to initiate gene transcription. The
estrogen-bound receptors enter the nucleus and bind with their
C-domain to the estrogen-responsive elements (ERE), specific
DNA-sequences of the promoters of target genes (Figure 1A).
The sequence of estrogen-response elements may vary slightly
between different target genes, but all have in common a
palindromic repeat of nucleotides. For example, the symmetric
sequence of the ERE of the vitellogenin gene of Xenopus laevis
was determined with the sequence: CAGGTCAnnnTGACCTG
(4). Estrogen receptors bound to the promoters initiate the
transcription of the respective estrogen receptor target gene into
mRNA. To start transcription, a number of cofactors/coactivators
and a RNA-polymerase have to bind to the ligand-activated
ERs at the promoter. The activated RNA-polymerase synthesizes
the m-RNA of the estrogen-dependent target genes and these
mRNAs are exported from the nucleus to the ribosomes where
they are translated to proteins. These processes are called
genomic effects of estrogen and require minutes to hours until
they are completed (5). But in addition a number of rapid
cytosolic effects of many steroid hormones, like estrogens,
androgens and corticosteroids were described in the literature
as designated non-genomic effects (Figures 1B,C). These effects
are already detectable within seconds or a few minutes. The
most important characteristics that distinguish genomic estrogen
effects from the fast non-genomic effects is the fact that the
genomic effects are inhibitable by inhibitors of RNA-polymerases
like cycloheximide and actinomycin D.

ROLE OF ERα IN BREAST CANCER

It is well established that the expression of ERα is associated
with a clinical response of breast tumors to endocrine therapy,
and therefore, it is also associated with a good prognosis of
the treated breast cancer patients (6). Three ERα isoforms are
mainly distinguished in mammals: full length ERα having a
molecular weight of 66 kD and two truncated isoforms, ERα36
and ERα46 with molecular weights of 36 and 46 kD, respectively.
These truncated isoforms of ERα lack the first exon of the ERα

gene that encodes the activation function (AF-1) (7). Before
the discovery of the G-protein coupled estrogen receptor 1
(GPER), ERα36 had been suspected to preferentially mediate
most of extra nuclear effects of estrogens. ERα36 is primarily
located in the plasma membrane and shows the activation of
MAP-Kinases and PI3K. It has been discussed to contribute
to endocrine resistance (8). The expression of ERα36 has been
detected in breast, endometrial, colorectal, gastric, and hepatic
cancer (9). Little is known about the distribution of ERα46, with
studies focusing mostly on the vascular effects of ERα46 (10).

FIGURE 1 | Estrogen receptors (A) ER’s (either ERα or ERβ-homodimers, or

α/β-heterodimers) bind to the ERE (estrogen responsive elements) in the

nucleus and activate gene transcription. (B) At the cell membrane ER’s bound

to caveolin and activate cytosolic signaling like PI3-kinase/Akt and

MAP-kinases. (C) GPER is a membrane-integrated 7-transmembrane receptor

activating heterotrimeric G-proteins after estrogen binding and eliciting various

signaling pathways as described in the main text. ER, estrogen receptor; ERE,

estrogen responsive elements; CoA, co-activator; CoR, co-repressor; PI3K,

phosphoinositol-3-kinase; GPER, G-protein coupled estrogen receptor 1;

GDP, guanosindiphosphat.

Observations in MCF-7 breast cancer cells showed that activated
ERα also directly interacts with several signaling molecules (11).
For example, estradiol induces ERα nuclear export through a
mechanism dependent on exportin-1 (XPO1), also known as
chromosomal maintenance 1 (CRM1) (11). Several additional
findings show that the stimulation of nuclear estrogen receptors
located signaling pathways (12).

ERα-negative breast tumors represent 44% of all breast
cancer cases. Seventeen percent of these ERα-negative breast
tumors additionally overexpress Her-2, the target of trastuzumab
and other anti Her-2 directed therapies. The majority of the
remaining 81% of ERα-negative breast tumors that do not
overexpress Her-2 nor express progesterone receptors is referred
to as triple-negative breast cancers. Only two percent of the
ERα(-) breast tumors not overexpressing Her-2 are positive for
the progesterone-receptor (13). The second nuclear estrogen
receptor ERβ is expressed in 44.4% of these triple-negative breast
tumors (14).

THE ROLE OF ERβ IN BREAST CANCER

ERα and ERβ are differently distributed in human breast tissues.
The expression of ERα is mainly restricted to nuclei of epithelial
cells in lobules and ducts of the healthy breast. ERβ is also
expressed in normal breast tissue (15). In addition, ERβ is
detectable in myoepithelial cells as well as in surrounding
stromal and endothelial cells (16). Increased levels of ERβ in the
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normal mammary gland were associated with a decreased risk of
developing breast cancer (17).

About 60% of all breast cancers that do not express ERα were
tested positively for ERβ expression (18). ERβ has been shown
to possess a weaker activation function (AF1) than ERα and
therefore ERβ is able to repress the transcriptional activity of
ERα (19). The importance of ERβ expression on the prognosis
of breast cancer is still not clear as ERβ displays different roles
depending on the presence or absence of ERα. (20). Early studies
supposed that ERβ is a carcinogenic factor in breast tissues (21).
However, in more recent studies ERβ is described as a dominant
negative regulator of estrogen signaling, since ERβ repressed ERα

mediated transcription by forming heterodimers with ERα (22).
A number of isoforms of ERβ were identified as the

resultant of alternative splicing of either exon 8 or exon 9
of the ERβ gene (23). The existence of these five different
ERβ isoforms complicates the elucidation of the physiological
role of ERβ and its involvement in the carcinogenesis of
breast cancer (24). Honma et al. (25) analyzed 442 breast
cancer patients treated with adjuvant tamoxifen for the impact
of ERβ1 expression on overall survival rates. Patients with
ERβ1 negative tumors showed a significantly worse overall
survival rate than patients with tumors expressing ERβ1.
Patients with ERα- and progesterone-receptor negative breast
tumors expressing ERβ1 presented with a better prognosis
irrespective of whether the tumors expressed Her-2 or not (25,
26).

The other four isoforms of ERβ (β2, β3, β4, and β5) turned
out to be unable to bind estrogens (27). ERβ2 is the best studied
isoform of all known splice variants of ERβ. It is described as
a dominant-negative inhibitor of ERα, as it forms ERβ2/ERα

heterodimers that cause a proteasome-dependent degradation of
ERα, leading to a suppression of ERα-regulated genes (28). ERβ3
expression was found to be restricted only to the testis. ERβ4
and ERβ5 are truncated transcripts of the ERβ gene that lack
ligand binding but these isoforms of ERβ dimerize with ERβ1
and enhance its transcriptional activity in a ligand-dependent
manner (29). The best studied isoforms of ERβ are ERβ1 and
ERβ2, and their characteristics are summarized in Table 1. The
expression of ERβ1 in breast cancer is lower than the expression
of ERβ2 and ERβ5 and was detected in 80% of epithelial cells
(17). ERβ1 was primarily localized in the nucleus and ERβ2 was
detected in the cytoplasm of the tumor cells (30). ERβ1 is able to
bind estrogens eliciting transcriptional activity but ERβ2 did not.
ERβ1 preferentially forms dimers with ERβ4 and ERβ5 whereas
ERβ2 mainly dimerises with ERβ1 (29). ERβ1 binds stronger
to the ERE of DNA than ERβ2 and ERβ2 has a higher affinity
to the ERE than ERβ5 (23, 31). Several studies investigated the
impact of the various ERβ-isoforms on the prognosis of breast
cancer. Sugiura et al. observed a better overall survival rate of
breast cancer patients that expressed high amounts of either ERβ1
and ERβ2 (32). Similar observations for ERβ1 and ERβ2 were
reported from other clinical studies (33, 34). Disease-free survival
rates of ERα-negative patients was also improved when tumors
expressed both ERβ-isoforms (35). In contrast, Shaaban et al. (36)
and Leung et al. (27) reported a longer disease-free survival when
ERβ2 was highly expressed in the nucleus of breast cancer cells,

TABLE 1 | Characteristics of ERβ isoforms ERβ1 and ERβ2.

ERβ1 ERβ2

Expression < β2, < β5 β2

epithelial 80% (17)

nuclear (30)

ductal 32% (17)

cytoplasmic (30)

Estrogen

binding

yes no

Transcriptional

activity

yes no

Dimers

with

ERβ4, ERβ5 (29) ERβ1 (29)

ERE-

binding

>ERβ2 (23) < ERβ1, > ERβ5 (31)

Impact

on

prognosis

high ERβ1 ≥ better OS (32)

improves DFS in ERα(–) (35)

positive ERβ1 better OS

(33, 34)

high nuc. expr. ≥ shorter

OS (30)

high ERβ1 ≥ better OS (32)

improves DFS in ERα(–) (35)

improved DFS (34)

high nuc. expr. ≥ longer

DFS (27, 36) but Chantzi

et al.: poor DFS (37) high

cyt. expr. ≥ shorter OS (30)

Nuclear ERβ5 correlated with better OS (36)

OS, overall survival; DFS, disease free survival.

and Chantzi et al. observed a poor DFS whenf nuclear ERβ2 was
high (37).

Very scarce information is available about the impact of ERβ5
on the outcome of patient. Nuclear ERβ5 correlated with better
overall survival rates in breast cancer patients (36).

In patients with stage II breast tumors, the expression of
ERβ correlated with longer disease-free survival rates, because
the formation of heterodimers of ERα and ERβ reduces the
transcriptional activity of ERα (38). In contrast, in node-positive,
breast cancer ERβ expression is a biomarker of more aggressive
growth as it conveys a higher risk of relapse (39).

ERβ knock-out mice present with quite a normal ductal
architecture of the mammary gland ruling out an important
role of ERβ in mammary gland development (40). On the
other hand, a simultaneous somatic loss of ERβ and the tumor
suppressor gene p53 was shown to induce breast tumors in
ERβ(−/−)/p53(−/−) transgenetic mice (41). The expression of
ERβ decreases during breast cancer progression and in higher
malignant tumors ERβ-expression is remarkably low (28, 42).

It has been reported that ERβ has opposing effects on the
cyclin D1 promoter compared to ERα. 17β-estradiol bound to
ERβ repressed cyclin D1 gene transcription and blocked ERα-
mediated induction of cyclin D1 when both receptors were
present in Hela cells. This is an indication that ERβ is able to
modulate the proliferative effects of 17β-estradiol bound to ERα

(43). As a further mechanism of the transcriptional activity of
estrogens-bound ERα, it was observed that ERα is tethered to the
AP-1 site and activates transcription from AP-1 sites of a number
of promoters (44). In contrast, 17β-estradiol bound to ERβ had
no effects on transcription from AP-1 sites (45).

Besides estrogen receptors, many breast cancer cells also
express androgen receptors and become obviously detectable in
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cells lacking ERα effects of androgens. A comprehensive review
on the role of androgen receptors was most recently published by
Giovannelli et al. (46).

One particular subtype of ERα-negative breast cancer is triple-
negative breast cancer (TNBC) characterized by the lack of ERα

and progesterone receptor expression and the absence of Her-2
overexpression. Sixty percent of TNBC tumors were positively
stained for ERβ (47). In TNBC, overexpression of the receptor
for the epidermal growth factor is one hallmark for increased
proliferation of these tumors (48). The expression of ERβ was
shown to repress transcription of EGFR (49). In ERα-negative
breast tumors, a high nuclear expression of ERβ1 was found
particularly in histologically low-grade tumors when ERβ2 was
also present in the nuclei. ERβ2 is a marker of early disease
recurrence (50). Nuclear ERβ2 is generally associated with poor
disease-free survival rates in breast cancer patients. But closer
inspections of the function of ERβ lead to the conclusion that
its expression seems more likely to have an activity preventing
carcinogenesis. In breast cancer tissue the expression of ERβ

is lower than in normal breast tissue or benign breast lesions
(51). Overexpression of ERβ was shown to downregulate ERα

expression by recruiting the corepressor NCoR to the promoter
of ERα. In this way, ERβ was able to downregulate the growth-
promoting effect of ERα (52). The adenoviral transfer of ERβ

induced an increased expression of p21 and p27, causing a cell
cycle arrest in G2-phase of cell division (51). In addition, the
expression of cyclin D1, a major regulator of the cell cycle entry,
has been shown to be inhibited in the presence of ERβ (43).

But ERβ does not only have anti-proliferative effects on breast
cancer cells, it also reduces the migration and invasion of these
cells, probably by means of repressing the expression of MMP9,
necessary for the invasion of the extracellular matrix (53). The
agonists of ERβ, liquiritigenin and ERB-041, reduced invasion
of TNBC cell lines HCC1806 and HCC1937 into a synthetic
extracellular matrix by up to 82%. This effect was accompanied
by a significant decrease of the chemokine receptor CXCR4 (54).

FUNCTIONS OF MEMBRANE-BOUND
ESTROGEN RECEPTOR GPER

In addition to the well-characterized genomic responses to
estrogen stimulation, some fast actions of estrogens that are
elicited at the plasma membrane were described in a great variety
of tissues. In 1986, Emons et al. provided data of rapid non-
genomic effects of estradiol in pituitary gonadotrophs (55). Using
a fluorescent estradiol macromolecular complex (E2-BSA-FITC)
the steroid binding to membranes was analyzed on living target
cells. Two types of 17β-estradiol-binding sites were detected on
hormone-sensitive MCF-7 cells. One was rapidly saturated at
low concentrations and a second one had a lower affinity to the
macromolecular estradiol complex (56).

For a long time, a membrane-bound ERα was supposed
to be responsible for extra-nuclear effects of estrogens (57).
The generation of cAMP by adenylyl cyclase is considered
to be a process that occurs at the plasma membrane of
cells. In MCF-7 breast cancer cells, a 10-fold increase of

intracellular cAMPwas observed after half an hour of stimulation
with 17β-estradiol (58). Estrogen is also able to increase
intracellular calcium concentration. In isolated rabbit uteri,
estrogen treatment doubled cellular calcium uptake (59). In
cultured pituitary cells from adult female rats, the acute
negative 17β-estradiol effect on GnRH-induced LH release
was found to be mediated via a non-genomic mechanism
(60). The authors speculated that the negative effect of 17β-
estradiol might be mediated via a modulation of PKC activation.
In female rat osteoblasts, 17β-estradiol increased intracellular
calcium within the first 2min of stimulation. This effect was
partially inhibited by the inhibitor verapamil giving evidences
for an influx of calcium from the extracellular milieu and by
thapsigargin, an inhibitor of calcium stores in the endoplasmic
reticulum. The initial event leading to increased cytosolic calcium
is the hydrolysis of phosphatidylinositol 4,5-biphosphate by
phospholipase C generating inositol 1,4,5 triphosphate (IP3)
that triggers release from calcium-stores and diacylglycerol.
Inhibitors of phospholipase C and pertussis toxin abolished
the increase of calcium in the cytosol by 17β-estradiol (61).
In addition, tamoxifen, an inhibitor of the genomic effects of
ERα was not able to block the rapid increase of Ca2+, IP3
and diacylglycerol. The increased calcium concentration in the
cytosol activated the mitogen-activated protein kinase (MAP-
Kinase) (62).

For many years, the real nature of the estrogen receptor
responsible for the rapid effects of 17β-estradiol remained
unknown. First experiments detecting estrogen-binding
capacities on endometrial cells were performed, using
membrane-impermeable 17β-estradiol coupled to bovine serum
albumin (57). On MCF-7, a breast cancer cell line expressing the
nuclear estrogen receptor ERα, 17β-estradiol covalently linked
to a fluorescein-labeled serum albumin bound saturably with
a high affinity to the cell membrane. On MDA-MB-231 cells
lacking ERα expression, no such binding sites for 17β-estradiol
were detectable. This observation was initially explained by the
presence of a membrane-resident ERα that might be responsible
for the observed rapid estrogen signaling in breast cancer cells
(56). In the Chinese hamster, ovary cell transiently transfected
with ERα cDNA binding studies with labeled 17β-estradiol
revealed that the receptor is detectable in the nucleus as well as in
the cell membrane with almost identical dissociation constants
for estradiol, but the receptor number in the cell membrane was
only 3% of the nuclear receptor density (63). Using a number of
ERα-specific antibodies, it was possible to detect three different
epitopes of ERα on GH3/B6 rat pituitary tumor cells. It remained
unknown how these ERα molecules are fixed at the plasma
membrane. With the help of a computer-assisted hydrophobicity
analysis of the ERα amino acid sequence, the region between AS
381 and AS 397 was identified as putative membrane-spanning
domain of ERα (64).

The real nature of the membrane bound estrogen receptor
is now well established. The results of Lieberherr et al.
already pointed to an involvement of a receptor coupled to a
heterotrimeric G-protein in the non-genomic effects of 17β-
estradiol (61). Using differential cDNA library screening, a
gene called GPR30, was identified, and later proved to be
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responsible for many of the non-genomic, membrane-initiated
effects of estrogens. GPR30 (Figure 1C) is a 7-transmembrane
protein belonging to the large family of G-protein coupled
receptors that are embedded into cellular membranes (65, 66).
In more recent literature, GPR30 has been renamed to G-
protein coupled estrogen receptor 1 (GPER) to better describe
this receptor’s functionality. Meanwhile, a great number of
natural and synthetic GPER-agonists and –antagonists were
identified. Some phytoestrogens, like genistein and coumestrol,
the anticancer agents 4-hydroxytamoxifen and fulvestrant, the
synthetic estrogen, diethylstilbestrol, many pesticides, like DDT
and DDE, herbicides, like atrazine and chemical compounds,
bisphenol A and nonylphenol are known to be GPER-agonists,
apart from 17β-estradiol (67). In addition to the selective
estrogen receptor modulator tamoxifen, the complete ERα

antagonist Fulvestrant (ICI 182,780) binds to GPER and activates
signaling pathways in breast cancer cells, thus leading to the
stimulation of proliferation (68).

The synthetic GPER agonist G1 that has a higher affinity
to GPER than to ERα is frequently used as a GPER-agonist
in experiments analyzing the signaling pathways of GPER. The
discovery that 4-hydroxytamoxifen is a GPER-agonist led to
the conclusion that GPER may contribute to the emergence of
tamoxifen-resistant breast cancer. Ignatov et al. have shown that
expression of GPER is in fact increased in breast tumors with
acquired tamoxifen resistance (69).

The estrogen estriol has been identified as a natural
GPER antagonist (70). A further inhibitor of GPER signaling,
the substituted dihydroquinoline G15, was identified in a
biomolecular screening of a compound library of small molecules
(NIH-MLSMR). It binds to GPER with an affinity of 20 nM.
G15 was tested in the GPER expressing breast cancer cells
SKBr3 and was able to effectively block calcium mobilization
by 17β-estradiol (71). Meanwhile, a compound named G36 was
developed as improved antagonists with a higher affinity to GPER
(72).

The localization of GPER has been controversially debated
in literature for many years. GPER is known to be a G-protein
coupled with the 7-transmembrane receptor this fact implies
that GPER is an integral membrane protein. However, the
expression of a fusion protein of GPER and green fluorescent
protein inmonkey kidney cells (COS7) pointed to an intracellular
localization of GPER as GPER co-localized with the endoplasmic
marker protein KDEL (73). Otto et al. reported that GPR30
localizes to the endoplasmic reticulum in COS7- and HEK293
cells but is not activated by estradiol (74).

On the other hand, in HeLa-cells transfected with an N-
terminally FLAG-tagged GPER, expression of this protein was
detected in the plasma membrane (66). The localization of
GPER in the plasma membrane was confirmed through the
experiments conducted by Sanden et al. (75). They showed
that in Mardin-Darby canine kidney cells and in the human
breast cancer cell line T47D, 17β-estradiol stimulated cAMP
synthesis in a GPER dependent manner, a process defined as a
plasma membrane event. In addition, they observed a GPER-
dependent recruitment of β-arrestin2 to the plasma membrane
of estradiol-stimulated cells. The staining of living cells showed

that GPER also localized to cytoplasmic intermediate filaments
that contained cytokeratins, CK7 and CK8, but not to the
endoplasmic reticulum (75). This subcellular distribution of
GPER between plasma membrane and cytoplasm was confirmed
in the breast cancer cell line MCF-7 and in sections of a number
of breast tumors (76).

In an excellent experimental series, Broselid et al. (77)
highlighted the mechanisms of how GPER is localized to the
plasma membrane. In HEK293 cells GPER forms a complex with
MAGUK and AKAP5, where both proteins are associated with
the plasma membrane. This binding was shown to depend on
a C-terminal PDZ motive present in GPER. An N-terminally
FLAG-tagged GPER-construct lacking this PDZ motive omitted
the binding of GPER to the plasma membrane and disrupted
17β-estradiol dependent GPER signaling (77).

SIGNAL TRANSDUCTION OF GPER

Many different signal transduction pathways are activated by
GPER after the binding of 17β-estradiol and are described in
detail below (Figure 2).

Calcium-Signaling Induced by GPER
Calcium ions are known as essential intracellular messengers the
regulate many cellular processes, like enzyme activity, muscle
contraction or hormone secretion (78). Even the rapid increase
of intracellular calcium concentration by 17β-estradiol that has
initially been attributed to membrane-resident ERα has been
shown to depend on the presence of GPER. Cos7-cells known
to be negative for ERα were transfected with GPER. In these
transfected cells, a similarly strong calcium mobilization was
evoked 20 s after stimulation with 0.1 nM 17β-estradiol as in Cos7
cells expressing ERα after transfection with ERα-GFP (73). This
observation pointed to the presence of a third estrogen receptor
different from the previously described nuclear receptors, ERα

and ERβ. But GPER does not only affect calcium mobilization
from intracellular stores. In rat myometrium cells the GPER-
specific agonist G1, induced a membrane depolarization by
opening the nifedipine sensitive, L-type calcium channels in the
cell membrane that allowed calcium influx from the extracellular
environment (79).

Activation of MAP-Kinases
The signaling events triggered by the binding of 17β-estradiol
to GPER were analyzed in detail by Filardo et al. (68). They
observed the activation of MAP-kinase Erk after exposure to
17β-estradiol in a number of human breast cancer cell lines
exhibiting different ERα expression profiles. Even in breast
cancer cell line SKBr3 that expresses neither ERα nor ERβ, they
determined a 6-fold increase of Erk phosphorylation after the
stimulation of these cells with 1 nM 17β-estradiol for 5min.
On the other hand, in the cell line MDA-MB-231 that lacks
expression of GPER, an increase of Erk phosphorylation was
not induced by estrogen stimulation. After transfection of
MDA-MB-231 cells with a vector containing the GPER gene,
these cells became estrogen-responsive and Erk phosphorylation
was clearly detectable following stimulation with 17β-estradiol.
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FIGURE 2 | Signaling pathways activated after binding of E2 and G1 to GPER. Six different signaling pathways are distinguished: (1) EGF-receptor-pathway, (2)

calcium-signaling, (3) cAMP-pathway, (4) IχB-pathway, (5) Hippo-pathway, and (6) HOTAIR-pathway. EGF, epidermal growth factor; MMP, matrix-metalloproteases;

GPER, G-protein coupled estrogen receptor 1; Erk1/2, extracellular regulated kinase 1 and 2; PI3K, phosphoinositol-3-kinase; PLC, phospholipase C; IP3,

inositol-triphosphate; cAMP, cyclic adenosine-monophosphate; PKA, protein kinase A; CREB, cAMP-responsive element binding protein; I B, inhibitor of ; IKKβ,

inhibitor of kinase β; MST1/2, mammalian sterile 20-like 1 and 2; LATS, large tumor suppressor; YAP, yes-associated protein; TAZ, transcriptional coactivator with

PDZ binding motif; HOTAIR, HOX-transcript antisense intergenic RNA; FOXO3a, forkhead box 3a; CTGF, connective tissue growth factor; After binding of

17β-estradiol or G1 to GPER various signaling pathways are activated in the cytosol. Ligand binding to GPER leads to the detachment of the βγ-subunit of

heterotrimeric G-proteins. The EGF-receptor pathway starts with the activation of the kinase Src by βγ-G-protein that activates MMPs, liberating EGF from

heparin-bound EGF. EGF binding to EGF-receptor leads to auto-phosphorylation of the EGF-receptor that activates MAP-kinase Erk1/2 and PI3-kinase. Activated Erk

induces transcription of c-fos, Egr-1, ERRα and aromatase in the nucleus followed by the induction of CTGF. PI3-kinase is also activated by the phosphorylated

EGF-receptor and phosphorylates the kinase Akt that phosphorylates transcription factor FOXO3a in the nucleus that is subsequently exported to the cytosol, where

FOXO3a is degraded. The Calcium signaling pathway starts with the released α-subunit of heterotrimeric G-proteins that activates phospholipase C. PLC cleaves

Phosphatidylinositol-4,5-bisphosphat to diacylglycerol and IP3. IP3 releases calcium ions from cytosolic calcium-stores. Ca2+ activates several enzymes in the

cytosol among other things Ca2+ additionally activates Erk1/2. Binding of 17β-estradiol to GPER also opens calcium L-channels in the plasma membrane by a yet

unsolved mechanism. The released α-subunit of the heterotrimeric G-protein also activates the adenolyl-cyclase (AC) in the cytosol. cAMP generated by AC activates

protein kinase A (PKA) that phosphorylates the cAMP response element binding protein (CREB). Phosphorylated CREB binds as a transcription factor to promoters of

genes containing a cAMP response element, for example cyclinD1, that supports the progress of the cell cycle. Less elucidated are the I B-pathway, Hippo-pathway

and HOTAIR-pathway represented in this figure by hatched arrows. In the course of the I B-pathway IKKβ is activated that phosphorylates I B, an inhibitor of

NF- B. Phosphorylated I B is degraded via the ubiquitination pathway allowing NF B action. In the course of the Gα-protein dependent Hippo-pathway MST1/2

are activated that phosphorylates LATS, a kinase phosphorylating the transcription factors YAP and TAZ that are subsequently degraded. In the HOTAIR-pathway

expression of miR148a is inhibited in a Gα-dependent manner, but the intermediate steps leading to transcription of this microRNA are not completely elucidated, in

this figure exemplified by a hatched arrow. Suppression of miR148a expression leads to an increased expression of HOTAIR that finally supports metastasis.

In the same experimental setting, the authors observed that
this estrogen-mediated, GPER-dependent, Erk activation was
sensitive to pertussis toxin pointing to an involvement of the βγ-
subunits of heterotrimeric G-proteins. Additional experiments,
using src family tyrosine kinase inhibitor PP2 revealed that
this pertussis toxin sensitive Erk activation by 17β-estradiol
requires the activity of the cytosolic kinase src. As the missing
link between estrogen-activated src and the E2-activated MAP-
Kinase Erk, the necessity of cleavage of heparin-bound EGF
was recognized (68). From earlier work by Prenzel et al. (80),
it is known that stimulation of G-protein coupled receptors
in Rat-1 fibroblasts with endothelin-1 or thrombin activates

membrane-bound metalloproteinases that release EGF from
heparin-bound EGF (HB-EGF) to stimulate EGF-receptor, finally
leading to Erk activation (68, 81).

Induction of Transcription Factors by
Estrogens via GPER
In the nucleus, activated Erk increases expression of
proliferation-inducing genes, like c-fos, and cyclinD1. The
induction of c-fos and cyclinD1 expression by 17β-estradiol
has particularly been shown in ERα/ERβ negative cell line
SKBr3 and in triple-negative breast cancer cell lines (82, 83). A
microarray analysis of gene expression in the GPER-expressing
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breast cancer cell line SKBr3, after stimulation with estradiol and
with the GPER agonist tamoxifen, revealed that the connective
tissue growth factor CTGF was induced nearly 10-fold and the
deletion of GPER by siRNA prevented the induction of CTGF. In
addition, several transcription factors, including c-fos and Egr1,
were found to be upregulated by 17β-estradiol and tamoxifen
using gene expression profiling of the RNA of the stimulated
cells. From these experiments, CTGF appears to be a target of
these transcription factors (84). CTGF is more prominently
known as mediator of tissue fibrosis but has also been reported
to be involved in the tumorigenesis of breast cancer (85).

Activation of PI3-Kinase
Besides Erk activation, the transactivation of the EGF-receptor
by estradiol also activates PI3-kinase. The stimulation of an
ERα-negative endometrial carcinoma cell line (Hec50) with 17β-
estradiol or the GPER-specific agonist G1 was able to increase
PI3-Kinase activity (86).

Downstream of PI3-kinase, the activation of the kinase Akt
phosphorylates the transcription factor FOXO3a, a member of
the forkhead-box gene family that is recognized as a tumor
suppressor gene (87). In case of reduced energy supply as it is
common in large solid tumors FOXO3a also acts as important
inhibitor of cell cycle progression and cellular proliferation (88,
89).

Degradation of FOXO3a After Activation of
GPER
The phosphorylated FOXO3a protein is subsequently bound to
the nuclear export protein 14-3-3 and is then ubiquitinated and
degraded by the proteasome complex in the cytosol. Nuclear
exclusion of FOXO3a by activation of Akt increases cellular
survival. Treatment of MCF-7 breast cancer cells with the
selective GPER agonist G1 was shown to lead to an inactivation
of FOXO3a (90).

In addition, the pro-survival effect of 17β-estradiol on breast
cancer cells through GPER involves expression of SIRT1, a
putative tumor suppressor, being a coactivator of FOXO3a,
as described below. In the ERα-negative breast cancer cell
line SKBr3, estradiol and GPER agonist G1 increased SIRT1
expression (91).

In triple-negative breast cancer cellsMDA-MB-453 andMDA-
MB-231, degradation of FOXO3a has been shown to reduce the
expression of Fas-ligand, p27kip and bim, thereby preventing the
induction of apoptosis. In addition, a second signaling pathway
leading to FOXO3a inactivation has been discovered to be
independent of Akt.

Inhibition of NFκB Following
GPER-Activation
In some breast tumors devoid of p-Akt, cytoplasmic localization
of FOXO3a correlates with the expression of IKKβ and
is associated with poor survival rates. Phosphorylation of
IκB by IκB kinase leads to the degradation IκB by the
ubiquitin proteasome and thereby prevents the proliferative and
antiapoptotic activity of NFκB. (92). It has further been shown
that stimulation of GPER by the agonist G1 suppresses EMT

of the TNBC cell line MDA-MB-231 by the down-regulation of
NFκB signaling (93).

Activation of Adenylyl Cyclase
Parallel to the βγ-G-protein dependent signaling pathways
of GPER, it has also been demonstrated that stimulation of
GPER causes activation of the Gαs protein finally leading to
adenylyl cyclase activation and cAMP accumulation in the
estrogen stimulated breast cancer cells (94, 95). An elevation of
intracellular cAMP by 17β-estradiol was observed in the breast
cancer cell line SK-Br3 and in MDA-MB-231 cells transfected
with the GPER gene. Both cell lines lack the expression of classical
ERα. Surprisingly, it was also shown that the generation of
cAMP in these cells attenuated the activation of Erk-1/2, thereby
limiting the effects of 17β-estradiol on the EGF-receptor/Erk
signaling axes (94).

Further downstream of GPER signaling the elevated cAMP
activates protein kinase A. PKA phosphorylates the transcription
factor CREB, leading to the transcription of genes possessing
a cAMP responsive element in their promoter (96, 97).
Phosphorylated CREB binds to the promoters of cyclinD1 and
cyclinD2 and induces their transcription. CyclinD1 and cyclinD2
are both involved in the progression of cell cycle (82, 96).

Activation of Hippo-Signaling
For example, estrogen leads to a GPER-dependent activation of
the Hippo-signaling pathway. The Hippo-pathway is involved
in the control of organ size, cell proliferation, and tumor
development. In basal cell carcinoma, YAP clearly increased the
expression of Cyr61 (CCN1) and the connective tissue growth
factor (CCN2) (98), building a bridge between activation of
GPER and induction of CTGF expression, as observed by Pandey
et al. (84) in SKBr3 breast cancer cells.

The Hippo-pathway involves the yes-associated protein 1

(YAP) and TAZ, a transcriptional coactivator with a PDZ-binding
domain and the transcription factors of the TEA domain family
(TEAD). Tumor suppression by theHippo-pathwaywas reported
to depend on the activity of Gαq-11, PLCβ, and Rho/ROCK.
The Hippo/YAP/TAZ pathway was found to be a downstream
branch of GPER signaling playing an important role in breast
tumorigenesis (99).

Activation of Hippo pathway starts withMST1/2 (mammalian
sterile 20-like 1), a kinase that activates LATS1/2 kinases (Large
tumor suppressor). LATS1/2 inactivates the transcription factors
YAP and TAZ by phosphorylation. Phosphorylated YAP and TAZ
interact with the protein 14-3-3 and are retained in the cytoplasm
where they are degraded by the proteasome complex (99).

Induction of Hotair
In ERα-positive as well as in triple-negative, breast cancer cell
lines’ expression of HOTAIR was induced by 17β-estradiol as
another GPER-dependent signaling event (100). HOTAIR (HOX
transcript antisense intergenic RNA) is one of many long non-
coding RNAs. It is upregulated in tumors of many different
cancers, including breast cancer. HOTAIR is involved in the
control of apoptosis, metastasis and DNA-repair. In breast
cancer metastasis HOTAIR is overexpressed more than 100-fold
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(101). ERα-negative tumors with a high expression of HOTAIR
preferentially use the lymphatic vessels to spread to secondary
sites. High levels of HOTAIR expression were associated with
worse prognoses. The influence of HOTAIR expression on overall
survival was analyzed in a cohort of 132 breast cancer patients.
In ERα-negative breast cancer patients with high HOTAIR
expression, the overall survival rate at the 100th month after
diagnosis was only 46.4% compared to 62.8% in patients with
low expression of HOTAIR. In contrast, in ERα-positive breast
tumors no correlation was observed between overall survival
and HOTAIR expression (p=0.41) (102). HOTAIR binds to
promoters of silenced metastasis suppressor genes where it
recruits the lysine-specific demethylase 1 (LSD1), finally leading
to the induction of cancer metastasis (103). GPER-dependent
migration of TNBC cell lines MDA-MB-231 and BT549 was
reversed by deletion of HOTAIR in these cell lines. The
upregulation of HOTAIR was shown to be achieved by the
GPER-dependent suppression of microRNA miR148a (100).

Particular Role of GPER in Triple Negative
Breast Cancer
In TNBC, GPER is frequently expressed very strongly and high
GPER expression in this subgroup of breast cancer was found
to correlate with increased recurrence. After a 36-month follow-
up, 90.5% of the TNBC patients with low GPER expression were
still alive, whereas in the cohort with high GPER expression
only 77.8% of the patients survived after this time period (104).
A knock-down of the GPER expression, using GPER-specific
siRNA, was shown to prevent 17β-estradiol-dependent growth
stimulation of triple negative breast cancer cell lines. In the
TNBC cell lines treated with GPER-siRNA, the activation of c-
src and transactivation of EGFR by 17β-estradiol and tamoxifen
were completely inhibited (82). The results of these experiments
provide further evidence that the non-genomic effects of 17β-
estradiol, including activation of c-Src, phosphorylation of the
EGF-receptor, activation of the MAP-kinase Erk1, and increased
expression of c-fos are dependent on the presence of GPER.

THERAPEUTICAL OPTIONS TARGETING
GPER IN TRIPLE NEGATIVE BREAST
CANCER

Pharmacological Inhibition of GPER
Several pharmacological inhibitors of GPER have been identified.
Using estriol, a natural estrogen, GPER signaling was successfully
prevented in the ERα-negative breast cancer cell line SKBr3
(70). In the triple-negative breast cancer cell lines, HCC1806
and HCC70, activation of Src-kinase and EGF-receptor. The
induction of c-fos by 17β-estradiol was also inhibited after pre-
treatment of the cells with 10−4 M estriol (105).

In TNBC, the synthetic GPER antagonist G15 proved to be less
effective in inhibiting GPER signaling than estriol (unpublished
results).

Suppression of GPER Expression
(a) Inhibition of EGF-receptor

A different approach to inactivate GPER in triple-negative breast
cancer is the suppression of GPER expression. In many triple-
negative breast tumors, an overexpression of the EGF-receptor
(Her-1) has been detected instead of an overexpression of
Her2 (106). EGF is able to induce the expression of GPER in
estrogen receptor negative breast cancer cells, thus facilitating
a growth stimulatory effect of 17β-estradiol even in breast
cancer cells lacking ERα expression (107). The fact that 17β-
estradiol trans-activates the EGF-receptor via GPER and Src
and so increases the expression of GPER leads to a positive
feedback loop that boosts the induction of proliferation by
17β-estradiol in triple-negative breast tumors. The treatment of
TNBC cells with gefitinib, an inhibitor of the tyrosine-kinase
of the EGF-receptor, reduced GPER expression by up to 85%.
This reduction of GPER expression successfully prevented all
signaling events downstream of GPER as the activation of Src-
kinase, the transactivation of the EGF-receptor, and the induction
of c-fos expression by 17β-estradiol (108).

(b) Inhibition of growth hormone receptor

Growth hormone (GH) is another factor involved in the
regulation of GPER expression. Antagonists of growth hormone-
releasing hormone were shown to suppress in vivo growth of
TNBC (109). Somavert (Pegvisomant) is a specific inhibitor of
the GH-receptor that is already clinically applied in the treatment
of acromegaly (110). In triple-negative breast cancer cell lines, the
expression of GPER was reduced by dose-dependent treatment
with Somavert. The treatment of MDA-MB-453- and HCC1806
cells with 1µM Somavert reduced GPER-dependent p-src
and EGF-receptor activation by almost 50% and induction of
cyclinD1 and aromatase by estradiol was completely prevented
by pretreatment of the cells with Somavert (97). The inhibition
of GPER expression is a promising therapeutic intervention for
TNBC.

Additional downstream pathways activated by GPER include
PI3K (73, 86), PKCε (111), and voltage-gated sodium channels
(112).

It has been shown that in many different cellular systems a
multitude of signaling pathways are activated by 17β-estradiol
or other ligands of GPER that are responsible for the induction
of proliferation or increased metastasis as shown in Figure 2.
In brief, signaling pathways dependent on binding of 17β-
estradiol to GPER are classified as (1) EGF-receptor pathway,
(2) calcium-signaling, (3) cAMP-pathway, (4) I B-pathway, (5)
Hippo-pathway, and (6) HOTAIR-pathway.

After the binding of 17β-estradiol or G1 to GPER, various
signaling pathways are activated in the cytosol. Ligand binding
to GPER leads to the detachment of the βγ-subunit of
heterotrimeric G-proteins. The EGF-receptor pathway starts
with the activation of the kinase Src by βγ-G-protein that
activates MMPs, liberating EGF from heparin-bound EGF.
EGF binding to EGF-receptor leads to auto-phosphorylation
of the EGF-receptor that activates MAP-kinase Erk1/2 and
PI3-kinase. Activated Erk induces transcription of c-fos, Egr-
1, ERRα and aromatase in the nucleus followed by the
induction of CTGF. PI3-kinase is also activated by the
phosphorylated EGF-receptor and phosphorylates the kinase Akt
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that phosphorylates the transcription factor FOXO3a in the
nucleus, which is subsequently exported to the cytosol, where
FOXO3a is degraded. The Calcium-signaling pathway starts
with the released α-subunit of heterotrimeric G-proteins that
activates phospholipase C. PLC cleaves Phosphatidylinositol-4,5-
bisphosphat to diacylglycerol and IP3. IP3 releases calcium ions
from cytosolic calcium-stores. Ca2+ activates several enzymes
in the cytosol, among other things, and activates Erk1/2. The
binding of 17β-estradiol to GPER also opens calcium L-channels
in the plasma membrane by a yet unsolved mechanism. The
released α-subunit of the heterotrimeric G-protein also activates
the adenolyl-cyclase (AC) in the cytosol. cAMP generated by AC
activates protein kinase A (PKA) that phosphorylates the cAMP
response element binding protein (CREB). Phosphorylated
CREB binds as a transcription factor to promoters of genes
containing a cAMP response element, for example cyclinD1,
which supports the progress of the cell cycle. Less elucidated
are the I B-pathway, Hippo-pathway and HOTAIR-pathway
represented in this figure by hatched arrows. In the course
of the I B-pathway, IKKβ is activated and phosphorylates
I B, an inhibitor of NF- B. Phosphorylated I B is degraded
via the ubiquitination pathway, allowing NF B action. In the
course of the Gα-protein-dependent Hippo-pathway, MST1/2
are activated and phosphorylate LATS, a kinase phosphorylating
the transcription factors YAP and TAZ, which are subsequently
degraded. In the HOTAIR-pathway, the expression of miR148a is
inhibited in a Gα-dependent manner, but the intermediate steps
leading to transcription of this microRNA are not completely
elucidated, in this figure exemplified by a hatched arrow. The
suppression of the miR148a expression leads to an increased
expression of HOTAIR that finally supports metastasis.

CONCLUSION

Apart from estrogen receptor ERα that was discovered first
two further estrogen receptors, ERβ and GPER are known

to be important for the hormonal control of breast cancer.

The complete elucidation of the function of ERβ in breast
cancer is hampered by the diversity of isoforms of ERβ

identified. There are still a lot of efforts to be done to
clarify the impact of the various isoforms of ERβ on
the transcription of target genes of estrogens in particular
how the many possible heterodimers act in breast cancer
cells.

For GPER, the estrogen receptor that is commonly accepted
to be responsible for the extra-nuclear, non-genomic effects
of estrogens a large number of signaling pathways were
identified in recent years. In addition to the well-known
transactivation of the EGF-receptor that leads to the activation
of the MAPK-kinase- and the PI3-kinase pathway a number
of further signaling events have been described to be induced
by the binding of estrogens to GPER. (1) The inactivation
of the transcription factor FOXO3a via the kinase Akt. (2)
The activation of the Hippo-pathway that induces CTGF
expression followed by enhanced metastasis. (3) Induction of
HOTAIR expression that also increases the metastatic potential
of breast cancer cells. The knowledge about these GPER-
dependent signaling pathways will promote the development of
new targeted therapies. In particular for triple negative breast
tumors that strongly express GPER such therapies are urgently
needed.
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