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frantisek.pluhacek@upol.cz

Specialty section:

This article was submitted to

Diabetes,

a section of the journal

Frontiers in Endocrinology

Received: 29 May 2018

Accepted: 12 December 2018

Published: 07 January 2019

Citation:

Najmanová E, Pluháček F, Botek M,
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Purpose: The purpose of the study was to determine the intraocular pressure response

to normobaric hypoxia and the consequent recovery under additional well-controlled

ambient conditions. Second, the study attempted to determine if the intraocular pressure

changes were dependent on its baseline, initial heart rate, sex and arterial oxygen

saturation.

Methods: Thirty-eight visually healthy volunteers (23 women and 15 men) of an average

age 25.2 ± 3.8 years from 49 recruited participants met the inclusion criteria and

performed the complete test. Initial intraocular pressure (baseline), heart rate, and arterial

oxygen saturation were measured after 7min of rest under normal ambient conditions

at an altitude 250m above sea level. Each subject then underwent a 10min normobaric

hypoxic exposure and a subsequent 7min recovery under normoxic conditions. Within

hypoxic period, subjects were challenged to breathe hypoxic gas mixture with fraction

of inspired oxygen of 9.6% (∼6.200m above sea level). Intraocular pressure and arterial

oxygen saturation were re-measured at 4 and 10min during the hypoxia and at 7min

after hypoxia termination.

Results: Intraocular pressure increased in 1.2 mmHg ± 1.9 mmHg and 0.9 mmHg

± 2.3 mmHg at 4 and 10min during the hypoxic period and returned approximately to

the baseline at 7min of recovery. The influence of sex was not statistically significant. The

arterial oxygen saturation decreased in 14.9± 4.2% at min 4 and 18.4± 5.8% at min 10

during hypoxia and returned to the resting value at 7min of recovery. The decrease was

slightly higher in the case of women if compared with men. The hypoxia induced changes

in intraocular pressure were significantly correlated with the arterial oxygen saturation

changes, whereas the relationship with intraocular pressure baseline and initial heart rate

were insignificant.

Conclusion: There was a significant increase in intraocular pressure as a response to

short-term normobaric hypoxia, which returned to the baseline in 7min after hypoxia.

The increase was dependent on the induced oxygen desaturation.
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INTRODUCTION

Active vacations at high altitudes such as skiing, heli-skiing,
hiking, and mountain climbing have become increasingly
popular for people all around the world. Due, however, to
rapid modern transportation patterns (lifts, cars, helicopters,
airplanes), it is currently easy to passively reach an altitude over
2,500m high, and people without appropriate acclimatization
to hypobaric hypoxia may start experiencing symptoms related
to acute mountain sickness for instance with headache, fatigue,
nausea, or gastrointestinal issues, and in severe phases also by
pulmonary oedema and/or high-altitude cerebral oedema (1).
Moreover, various altitude or hypoxic activities are included to
the training strategies of elite athletes (2). Such activities should
have consequences in their health status including ocular health.

It was demonstrated that the altitude changes influence
the intraocular pressure (IOP) (3–6), however, the underlying
mechanism is unclear, and therefore needs an explanation. The
IOP is one of the primary observed and important parameters
connected with the second leading cause of blindness in the
world-glaucoma (7). Normal IOP values, which maintain the
integrity of the eye without optic nerve damage, are in a range
between 10 and 20 mmHg (8). Higher IOP or its rapid changes
are considered a risk factor for development of glaucoma changes
(7). The people with glaucoma also show greater short-time
IOP fluctuations (9). The IOP level is related to the dynamic
parameters of the aqueous humor (10) which is influenced by
several physical factors. The goal of the prevention of progression
and the support of treatment in the case of developed high
tension glaucoma is maintain the IOP in lower and steady values.
Also, quick IOP changes should be preceded.

Increased intracerebral pressure seems to be one of the main
causes of all high-altitude problems (11). Several studies have
demonstrated the significant effect of altitude on IOP, whereas
the investigated results are still controversial (3, 4, 6, 12–15). The
effect of terrestrial altitude on IOP may be masked by a number
of factors such as short-time physical activity (16) or changes
in temperature (17, 18) etc., all in dependence on the level of
fitness (16, 19, 20) and diurnal variations (21, 22). Strenuous
exercise and weightlifting are associated with IOP rises (23, 24).
In contrast, moderate aerobic physical activity causes its decrease
(16, 25, 26). Maximal aerobic activity leads to high variability of
inter-individual response of IOP (27).

The altitude changes result in two important effects–changes
in air pressure and consequently changes in the partial pressure
of the inspired oxygen. Recent studies havemostly evaluated both
factors together in the form of hypobaric hypoxia, i.e., hypoxia
induced by a decrease in the breathed ambient air pressure due
to increase in altitude. These conditions were simulated in a
hypobaric chamber (4, 12, 15) or achieved during climbing at a
terrestrial high altitude (3, 6, 14, 15, 28). The authors of these
studies published various results–an increase in IOP (3, 4, 6, 12)
as well as decreasing (13–15). The observed changes in IOP
were mostly evaluated as clinically insignificant, i.e.,>−2 mmHg
and < 2 mmHg (29). Whether the IOP decrease or increase, a
sufficiently long stay (days) at a high altitude (3, 6, 14, 15) leads to
its stabilization and return to baseline, which can be a symptom of

acclimatization. Generally, body acclimatization to a low oxygen
content air mainly depends on genetics properties (30).

Thus, the effect of hypoxia on the IOP is not clear and the
respective mechanism is not known. As all the above-mentioned
studies evaluated both individual components of altitude change
on IOP (changes in partial oxygen pressure and atmospheric
pressure) together, there is a need to explain separately the
contribution of each component. The main purpose of this study
was to assess the IOP response to normobaric hypoxia (fraction
of inspired oxygen FiO2 = 9.6%, simulated altitude ∼6,200m),
i.e., without the effect of atmospheric pressure decrease, and
the consequent recovery under other well-controlled ambient
conditions. We also hypothesized, that this response will be
independent on resting arterial oxygen saturation SpO2 and
sex. As previous studies shown (16, 21), the IOP is correlated
with individual basal heart rate (HR) as an indicator of fitness
level. This variable was involved as the observed parameter
during the experiment. The blood pressure was not observed
due to insignificant relationship between its acute changes at
altitude (and induced hypoxic changes) and changes in IOP (6).
Moreover, the insignificant correlation of short-time changes of
blood pressure and IOP was also found in some previous studies
focused on moderate exercise (31, 32) except isometric exercise
(23).

MATERIALS AND METHODS

Participants
Forty-nine participants were originally recruited for the study.
Only 38 visually healthy volunteers (23 women and 15 men)
with an average age 25.2 ± 3.8 years met the inclusion criteria
and performed the complete test (see below). The subjects
were not allowed to have any evidence of either glaucomatous
optic neuropathy or ocular hypertension. The subjects were
also required to be free of ocular diseases which could affect
IOP or its measurement such as keratoconus or high corneal
astigmatism (equal or >-2.50 dioptre). All subjects were also
free of cardiovascular, pulmonary and metabolic conditions and
had not been exposed to hypoxia above 1,000m for at least the
previous 2 years.

This study was carried out in accordance with the
recommendations of the ethics committee of the Faculty of
Physical Culture, Palacký University Olomouc, Czech Republic.
The protocol was approved by the ethics committee of the
Faculty of Physical Culture, Palacký University Olomouc,
Czech Republic, reference number 17/2016. All subjects gave
written informed consent in accordance with the Declaration of
Helsinky.

Experimental Procedures
The subjects were in a sitting position during the entire
experiment. The initial resting IOP (IOPr), resting heart rate
HR (HRr), which approximately indicates physical fitness level,
and resting arterial oxygen saturation SpO2 were measured after
7min of rest and were established as the baselines. The subjects
breathed air corresponding to an altitude 250m above sea level
(established as normal conditions) during rest. Each subject
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then underwent the 10min normobaric hypoxic period of the
experiment and a subsequent 7min recovery (see Figure 1). IOP
and SpO2 were simultaneously re-measured at 4 and 10min
during the hypoxic period and at the end of the recovery period
(i.e., at 7min after hypoxia termination). Short-term hypoxia
was chosen to limit the possible corresponding risks. During
the hypoxic period, the subject breathed the gaseous mixture
with the reduced partial oxygen pressure corresponding to the
altitude 6,200m above sea level, but under normal pressure
(i.e., equal to the pressure at 250m above sea level). This
simulated altitude condition was created by using a MAG-
10 system (Higher Peak, Boston, MA, USA), which simulated
the lower O2 pressure found at high altitudes by lowering the
percentage of O2 in the air at a similar atmospheric pressure
(normobaric hypoxia). Subjects breathed air with a reduced O2

concentration via a face mask from a non-rebreathing circuit
with a bag acting as a reservoir. The normobaric hypoxia
condition, equal to the altitude of 6,200m (FiO2 = 9.6 %),
has been widely used in literature for intermittent hypoxic
exposure (33). During the recovery period, the subject breathed
ambient air once again. All the measurements were taken in
the morning, this being the optimal time to eliminate the
effect of circadian oscillations of IOP. During all the periods of
experiment, the ambient temperature was maintained between
22 and 24◦C, and the relative humidity was between 40 and
60%. Ten subjects out of the original number 49 were eliminated
from the experiment because they were unable to withstand the
10min hypoxia exposure and withdrawn prematurely; another
one was eliminated due to technical failure of the measuring
equipment.

IOP, HR, and SpO2 Measurement
IOP was always measured in the sitting position using
Icare Pro R© rebound tonometer (Vantaa, Finland;
www.icaretonometer.com). The tonometer averaged six
automatically measured consecutive readings and provides
their mean IOP out, which was used in the analysis. The
coefficient of variation of the output (the automatically
averaged IOP value) declared by the manufacturer
is <8% in accordance with publications (34, 35). Only
the right eye of each participant was measured. All
IOP measurements were administrated by one trained
professional.

The SpO2 was continuously measured using a Nonin Avant
2120 pulse oximeter (Nonin Medical, Minneapolis, MN, USA;
http://www.nonin.com) set on the right index finger. The SpO2

was measured at a sampling frequency of 1.0Hz, and the average
of 10 readings was calculated for the subsequent statistical
analysis. The accuracy of the output expressed as standard
deviation declared by the manufacturer is 2%.

To determine the HR, the ECG was recorded at a sampling
frequency of 1,000Hz using DiANS PF8 diagnostic system
(Dimea Group, Olomouc, Czech Republic). The system includes
a chest strap, unit for recording and transmitting ECG data,
and a receiver connected to a personal computer with special
software. HR was calculated from the ECG record of a duration
of 10 s.

Statistical Analysis
The measured IOP and SpO2 data and influence of sex were
analyzed by two-factor repeated-measures ANOVA (time as a
within-participants factor, sex as a between-participants factor).
The dependence of IOP changes on HRr, IOPr or changes of
SpO2 were studied with the Pearson correlation coefficient (r).
The significance level was set at 0.05. When necessary, the levels
of statistical significance included a Huynh-Feldt correction for
departures from sphericity. The post-hoc pairwise comparisons
were realized using Tukey honest significant difference (HSD)
test; the Cohen’s d as a measure of effect size is reported as well.
Data are presented as mean ± standard deviations. Statistical
analyses were performed using STATISTICA 13.0 (StatSoft,
Tulsa, OK, USA).

RESULTS

The mean values and standard deviations of the IOP during
the experiment are presented in Figure 2. The ANOVA revealed
that the values of IOP altered significantly [F(3,108) = 12.16, p
< 0.001] with time. A statistically significant increase in IOP
compared with the baseline (IOPr = 16.0 mmHg ± 2.2 mmHg)
was observed during the hypoxic period with the mean difference
1.2 mmHg ± 1.9 mmHg at minute 4 and 0.9 mmHg ± 2.3
mmHg at minute 10 (post-hoc Tukey HSD test, p < 0.001, d
= 0.642 and p = 0.027, d = 0.366); both hypoxic IOP values
did not differ significantly from one another (p = 0.68, d =
0.210). The maximal observed individual IOP increases were
5.3 mmHg and 6.2 mmHg in minutes 4 and 10 (for different
subjects), respectively, and 32 and 34% values increased more
than 2mmHg. The IOP returned to the baseline at 7min recovery
(post-hoc Tukey HSD test, p = 0.27, d = 0.333). The main effects
of sex was insignificant [F(1,36) = 0.22, p = 0.64] as well as its
interaction with time [F(3,108) = 2.28, p= 0.084].

We also studied the effects of the HRr and the baseline
IOPr on differences 1IOP from the baseline (hypoxic value
minus baseline). The correlation analysis had shown insignificant
correlations between IOPr and 1IOP at minute 4 (r = −0.273,
p = 0.097) and at minute 10 (r = −0.311, p = 0.058) of the
hypoxic exposure. Correlations betweenHRr and1IOPwere also
insignificant (r = −0.106, p = 0.53 and r = −0.014, p = 0.94) at
minutes 4 and 10, respectively.

The SpO2 changed significantly with time [repeated-measures
ANOVA with Huynh-Feldt correction, F(1.8,65.2) = 313.50, p <

0.001]. It decreased during the hypoxic period compared to the
baseline (94.4% ± 1.6%) with the mean difference 14.9 ± 4.2%
at minute 4 and 18.4 ± 5.8% at minute 10 and returned to
the baseline at minute 7 after the hypoxic period end (post-
hoc Tukey HSD test, p < 0.001, d = 3.595, p < 0.001, d =
3.173 and p = 0.79, d = 0.440, respectively). A decline in SpO2

was significantly higher in women compared to men [Figure 3;
significant interaction of sex and time, F(3,108) = 3.34, p= 0.022].
Themain effect of sex was insignificant [F(1,36) = 3.92, p= 0.055].

The comparison of graphs in Figures 2, 3 indicates a
relationship between behavior of SpO2 and IOP during hypoxia.
This is supported by significant correlations between changes
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FIGURE 1 | Course of the hypoxic experimental protocol. Gray colored areas depict the 10 s windows intended for measurement of intraocular pressure (IOP), arterial

oxygen saturation (SpO2), and heart rate (HR).

FIGURE 2 | The time course of IOP during the experiment for all subjects. The

circles represent the mean IOP values of particular measurement before the

hypoxic period (0min), at minute 4 and 10 during 10min normobaric hypoxia

and at the end of the 7min recovery (17min). The half-sizes of the vertical

abscissae correspond to the IOP standard deviations. IOP increases during

both measurements in the hypoxic period and returned approximately to the

resting value at 7min of recovery if averaged across all subjects.

of IOP and SpO2 at minute 4 (r = −0.337, p = 0.038) as
well as minute 10 (r = −0.346, p = 0.033). The corresponding
dependences are presented in Figure 4.

DISCUSSION

This study was focused on determining IOP response to short-
term normobaric hypoxia (FiO2 = 9.6%, simulated altitude ∼
6,200m). The primary finding of this research was a statistically
significant increase in IOP as an immediate response to hypoxia
(see Figure 2). Our findings are in accordance with some
previously published studies, which reported the IOP increase
at various altitudes (9,144m and 5,490–7,625m above sea level)
simulated in a hypobaric chamber (4, 12, 13) as well as in
the case of actual climbing up to 5,200 and 6,265m above sea

FIGURE 3 | The time course of arterial oxygen saturation (SpO2) during the

experiment for women (open symbols) and men (close symbols). The circles

represent the mean SpO2 values of the particular measurement before the

hypoxic period (0min), at minute 4 and 10 during 10min normobaric hypoxia

and at the end of the 7min recovery (17min). The vertical abscissae

correspond to the SpO2 standard deviations. It is evident that SpO2 decreases

during hypoxia and returns to the resting value at 7min of recovery. The values

of SpO2 are lower during hypoxia in the case of women compared to men.

level (3, 6). The reported mean IOP increases were below 2
mmHg expect observation of Ersanli et al. (12), which published
an increase in IOP from the base line 12.31 ± 2.98 mmHg
up to 14.37 ± 3.44 mmHg during hypoxia simulated in the
hypobaric chamber. The average IOP value did not differ from
the baseline in 30min after leaving the chamber. Other studies,
in contrast, showed a decrease in IOP when hiking at a terrestrial
altitude [5,050m above sea level (14) and 4,300m above sea
level (15)] and also in a hypobaric chamber (15). These studies
were performed in different ways to reach a different altitude
level and method of own measurement which can be responsible
for these differences. The studies including our study mostly
used hand-held tonometers-tono-pen (3, 4, 6, 12, 14, 15) or
Icare (13). The disadvantage of the hand-held tonometers is
lower accuracy in comparison with the Goldmann applanation
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FIGURE 4 | Graphic dependence of individual differences 1IOP from its

baseline IOPr on changes of peripheral capillary oxygen saturation (1SpO2) at

minute 4 (open circles) and minute 10 (closed circles). The negative values

represent a decrease. The dependences are approximated by regression lines

(dashed line at minute 4 and solid line at minute 10).

tonometer. The coefficients of variation of these tonometers are
about 8% (34–37). With regard to the mean IOP, the standard
deviation of measurement can be considered about 1.3 mmHg,
which is close to observed changes and can affect significance
of measured data. In all the presented studies, apart from
our research, each subject was exhibited simultaneously to the
hypoxia and reduced atmospheric pressure. Moreover, in the case
of actual hiking, the climb to the given altitude was connected
with the physical aerobic activity, which results in IOP decrease
(16), and/or to changes of another physical parameter of the
surrounding environment. Thus, the subjects were affected by
many different parameters, whose joint effect may result in
different IOP responses. In our study, the hypoxia was reached
by a sudden change of partial oxygen pressure without the
possibility of adaptation, which affects significantly IOP changes
(3, 6, 14, 15). Other important factors, especially atmospheric
pressure, ambient temperature and humidity were unchanged.

It is known that the corneal thickness increases (due to
edema) at a higher altitude (3, 13, 38) and thicker corneas
reveal an improperly higher IOP reading (39). McNamara
(40) and Wang (41) consequently determined that 1 h and
longer corneal hypoxia causes an increase in the corneal
thickness. These effects together could explain the IOP increase
at higher altitudes or during hypoxia. Karadaq et al. (4) and
Somner at al. (6) considered the corneal thickness correction
of IOP readings. Their results still revealed, however, an
IOP increase at a high altitude. With regard to the short
time of hypoxia in our experiment, we considered that
its effect on the thickness was minimal if any. Moreover,
the discussed short-time corneal changes could not cause
wide changes of anatomy and relevant biomechanical corneal
properties, thus their effect on the IOP reading should
be minimal in our experiment. We therefore suppose that
the observed IOP increase was not linked to the corneal
thickening.

Our results also revealed a correlation between IOP changes
and changes in blood oxygen saturation (see Figure 3). The
higher decrease in oxygen saturation is related to the higher
IOP increase. The SpO2 decrease was consistent with previous
findings (42). Moreover, a higher degree in hypoxia (lower values
of SpO2) was reached with women. We could therefore assume a
stronger effect of hypoxia in the case of women. Nevertheless, the
relationship between sex and IOP was evaluated as statistically
insignificant as well as the interaction of sex and time. Our
data also did not show relationship between IOP changes and
IOP baseline or initial HR. However, presented results can be
negatively influenced by the variability of the IOP measurement,
which canmask true effects and can decrease the statistical power
of used tests, especially in the case of analysis of IOP changes. If
the average standard deviation of the IOP measurement is about
1.3 mmHg, the standard deviation of IOP changes (computed
using common error propagation rule) is about 1.3 ×

√
2

mmHg = 1.8 mmHg. Thus, the effects of sex and IOP and HR
baselines need verification in a future study with a larger sample
size.

The short-term exposition of the normobaric hypoxia causes
a small mean increase of IOP, which seems to be marginal (below
2 mmHg), and from a medical standpoint clinically irrelevant
(29). More than 30 % of individual IOP values measured during
hypoxia exceed this limit, however, and the maximal change
was about 6 mmHg. Such a quick change yields risk for these
people, especially in the case of presence glaucoma (9). Moreover,
glaucoma patients are more sensitive to stress test, e.g., water-
drinking test (43), than healthy subjects. Thus, the IOP changes
induced by hypoxia in glaucoma patients may be greater that
those we found. On the other hand, the change is only short-
term. We also determined that the IOP rising increases with
decreasing SpO2. Thus, we recommended monitoring of IOP
during activities connected with short-term high hypoxia (such
as intermittent hypoxic training (44) or with quick changes in
altitude) in the case of people with glaucoma, glaucoma suspected
or people with a higher risk of glaucoma (such as people with
diabetes etc.).

CONCLUSION

We found an increase in IOP in response to short-term
normobaric hypoxia, which returned to the baseline 7min after
hypoxia. The increase was higher for subjects with a higher
degree of induced oxygen desaturation. Although the average
increase was clinically insignificant, clinicians should be aware
that some patients who perform the activities connected with
short-term hypoxia may run the risk of an unsafe increase in
intraocular pressure.
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