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Autophagy is the major mechanism involved in degradation and recycling of intracellular

components, and its alterations have been proposed to cause beta cell dysfunction.

In this study, we explored the effects of autophagy modulation in human islets under

conditions associated to endoplasmic reticulum (ER) stress. Human pancreatic islets

were isolated by enzymatic digestion and density gradient purification from pancreatic

samples of non-diabetic (ND; n = 17; age 65 ± 21 years; gender: 5 M/12 F; BMI

23.4 ± 3.3 kg/m2) and T2D (n = 9; age 76 ± 6 years; 4 M/5 F; gender: BMI 25.4 ±

3.7 kg/m2) organ donors. Nine ND organ donors were treated for hypertension and 1

for both hypertension and hypercholesterolemia. T2D organ donors were treated with

metformin (1), oral hypoglycemic agents (2), diet + oral hypoglycemic agents (3), insulin

(3) or insulin plus metformin (3) as for antidiabetic therapy and, of these, 3 were treated

also for hypertension and 6 for both hypertension and hypercholesterolemia. Two days

after isolation, they were cultured for 1–5 days with 10 ng/ml rapamycin (autophagy

inducer), 5mM 3-methyladenine or 1.0 nM concanamycin-A (autophagy blockers), either

in the presence or not of metabolic (0.5mM palmitate) or chemical (0.1 ng/ml brefeldin

A) ER stressors. In ND islets palmitate exposure induced a 4 to 5-fold increase of beta

cell apoptosis, which was significantly prevented by rapamycin and exacerbated by 3-

MA. Similar results were observed with brefeldin treatment. Glucose-stimulated insulin

secretion from ND islets was reduced by palmitate (−40 to 50%) and brefeldin (−60

to 70%), and rapamycin counteracted palmitate, but not brefeldin, cytotoxic actions.

Both palmitate and brefeldin induced PERK, CHOP and BiP gene expression, which

was partially, but significantly prevented by rapamycin. With T2D islets, rapamycin alone

reduced the amount of p62, an autophagy receptor that accumulates in cells when

macroautophagy is inhibited. Compared to untreated T2D cells, rapamycin-exposed

diabetic islets showed improved insulin secretion, reduced proportion of beta cells

showing signs of apoptosis and better preserved insulin granules, mitochondria and
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ER ultrastructure; this was associated with significant reduction of PERK, CHOP and

BiP gene expression. This study emphasizes the importance of autophagy modulation

in human beta cell function and survival, particularly in situations of ER stress. Tuning

autophagy could be a tool for beta cell protection.

Keywords: autophagy, human islets, type 2 diabetes, ER stress, insulin secretion, beta cell dysfunction

INTRODUCTION

Autophagy represents a highly conserved intracellular recycling
pathway by which cellular components are degraded through the
lysosomal machinery (3). Classically considered as a mechanism
to promote cell survival during starvation (2), autophagy can also
be induced by several physiological and pathological conditions,
such as growth factors deprivation, hypoxia, oxidative stress,
and physical exercise (4). Furthermore, autophagy seems to
be constitutively activated at low levels to remove misfolded
proteins and damaged and/or senescent organelles (1). Hence,
autophagy can be viewed as a mechanism to protect cells against
several stressors as well as a cellular response to wear-and-tear
processes (5). On the other hand, it has been demonstrated that
dysregulated activation of autophagy can also induce different
types of cell death (6). Thus, it seems that autophagy can either
protect or promote cell death in relation to the cellular and
environmental context (7). Accordingly, altered autophagy could
play a key pathogenic role in several disease processes, especially
where the accumulation of damaged molecules and organelles
might elicit a condition of increased cellular stress (8).

Pancreatic beta cells are specialized to secrete insulin in
response to variations in blood glucose concentration. In order
to maintain glucose homeostasis, beta cells are able to raise
several fold their insulin synthesis and secretion in response to
increased plasma glucose levels. Therefore, they must continually
deal with a high protein burden, as proinsulin biosynthesis has
been calculated to reach 106 molecules/min (9). This represents
a major challenge for their ER, where protein translation
and quality control takes place, and therefore beta cells are
particularly susceptible to ER stress (10–12). When faced with
ER stress, beta cells respond to activating the unfolded protein
response (UPR) (13, 14), whose signaling is mediated via three
main transmembrane sensors: IRE1α (endoribonuclease inositol
requiring protein), PERK (protein kinase RNA-like endoplasmic
reticulum kinase), and ATF6 (activating transcription factor 6)
(10–15). In basal conditions, the chaperone immunoglobulin
heavy chain binding protein (BiP), a key member of the Hsp70
family, is constitutively bound to the luminal domain of these
three sensors and prevents their activation. When misfolded
protein accumulates in the ER, BiP dissociates from the UPR
sensors leading to their consequent activation. While a moderate
ER stress-induced UPR represents a compensatory mechanism,
a chronic or overwhelming ER stress impairs cellular functions
and can induce apoptosis to remove irreversibly damaged
cells (11–15).

Autophagy has been shown to have a protective role against
ER stress (16) and facilitate mitochondrial turnover (17). Indeed,
it has been demonstrated that beta-cell Atg7−/− mice are

characterized by islet degeneration, impaired insulin secretion,
and glucose intolerance (18, 19). In addition, we have previously
shown that a proportion of beta cells of type 2 diabetic (T2D)
subjects presents a major increase of autophagic vacuoles and
autophagosomes, associated with cell damage, which further
suggests that altered autophagy might contribute to the loss of
beta cell functional mass (20).

To shed further light on these issues, we presently
explored the effects of autophagy modulation in isolated
human islets under conditions of metabolically (palmitic
acid) or chemically (brefeldin A) induced ER stress
(21, 22). In addition, activators and inhibitors of
autophagy were tested with pancreatic islets from T2D
organ donors.

MATERIALS AND METHODS

Human Islet Isolation and Culture
Human islet collection and handling were approved by the
local Ethics Committee. Human pancreatic islets were isolated
by enzymatic digestion and density gradient purification from
pancreatic samples of non-diabetic (ND; n = 17; age 65 ±

21 years; gender: 5 M/12 F; BMI 23.4 ± 3.3 kg/m2) and T2D
(n = 9; age 76 ± 6 years; 4 M/5 F; gender: BMI 25.4 ± 3.7
kg/m2) organ donors as detailed elsewhere (23, 24). For the
experiments with palmitate, ND islets were cultured for 1–5 days
in M199 medium containing 1% BSA with 10 ng/ml rapamycin
(autophagy inducer) (25), 5.0 mmol/l 3-methyladenine or 1.0
nmol/l concanamycin-A (autophagy blockers) (25), either in
the presence or absence of 0.5 mmol/l palmitate, prepared as
previously reported (24, 26). For the experiments with brefeldin
A, ND islets were exposed to the autophagy modulators either
in the presence or absence of 0.1 ng/ml of this chemical ER
stress inducer. The islets prepared from T2D donors were studied
after 24 h incubation with M199 medium containing or not
10 ng/ml rapamycin.

Electron Microscopy Evaluation
Electron microscopy studies were performed on isolated islets
as previously described (27). Islets were fixed with 2.5%
glutaraldehyde in 0.1 mol/l cacodylate buffer, pH 7.4 for 1 h at
4◦C. After rinsing in cacodylate buffer, the sample was postfixed
in 1% cacodylate buffered osmium tetroxide for 2 h at room
temperature, then dehydrated in a graded series of ethanol, briefly
transferred to propylene oxide and embedded in Epon-Araldite.
Ultrathin sections (60–80 nm thick) were cut with a diamond
knife, placed on formvar-coated copper grids (200 mesh), and
stained with uranyl acetate and lead citrate. The presence of
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marked chromatin condensation and/or blebs was considered as
signs of apoptosis (28). Morphometric analyses were performed
by stereological techniques (19, 24, 27). In particular, volume
density of insulin granules, mitochondria and rough endoplasmic
reticulum (RER) was estimated. Micrographs, obtained at
10,000× were analyzed by overlay with a graticule (11 ×

11 cm) composed of 169 points. Volume density was calculated
according to the formula: VD = Pi/Pt, where Pi is the
number of points within the subcellular component and Pt
is the total number of points, and expressed in ml/100ml of
tissue (ml%) (19, 24, 27).

Insulin Secretion
Insulin secretion studies were performed by the batch incubation
technique as previously described (29–31). Groups of
approximately 15 islets of comparable size were incubated
at 37◦C for 45min in Krebs-Ringer bicarbonate solution (KRB),
0.5% albumin, pH 7.4, containing 3.3 mmol/l glucose. Then,
the medium was removed and replaced with KRB containing
16.7 mmol/l glucose. After additional 45min incubation,
medium was collected. Insulin levels were measured by a
commercially available immunoradiometric assay (Pantec
Forniture Biomediche, Turin, Italy). Insulin secretion was
expressed as stimulation index (SI), i.e., the ratio of stimulated
(16.7 mmol/l glucose) over basal (3.3 mmol/l glucose) insulin
secretion (29–31).

Quantitative RT-PCR Experiments in
Isolated Islets
Gene expression studies were performed as previously detailed
(30). Total RNA was extracted using the PureLinkTM RNA
Mini kit (Life technologies, Carlsbad, CA, USA) according
to manufacturer recommendations and quantified by
absorbance at A260/A280 nm (ratio >1.95) in a Nanodrop
2000c spectrophotometer (Thermo Scientific, Waltham, MA,
USA). After it was reverse-transcribed with SuperScript VILO
Master Mix (Life technologies), the levels of the genes of
interest were normalized for the housekeeping gene beta actin
and quantified by the 2−11Ct method in a VIIA7 instrument
(Life technologies). The primers/ probe for the analyzed genes
were purchased from Taqman R© Assay on-demand library
(Life technologies).

p62 Evaluation in Isolated Human Islets
The levels of p62 were assessed in T2D islets by the p62
Elisa kit (Enzo Life Sciences, Lausen, Switzerland) following the
manufacturer protocol. In brief, after 24 h exposure to rapamycin
or 3-MA, the islets were collected, protein were extracted and
aliquoted on a plate pre-coated with a p62 specific antibody.
After having incubated the samples in presence of a second
anti-p62 antibody (rabbit polyclonal), the amount of p62 was
revealed by adding a secondary donkey anti-rabbit IgG antibody
conjugated to horseradish peroxidase and a mix composed by
TMB and hydrogen peroxide. The plate was read in a FLUOstar
Omega plate reader (BMG Labtech, Ortenberg, Germany) and
the amount of p62 normalized for the total amount of proteins.

Statistical Analysis
Data are presented as mean ± SD. Differences between groups
were assessed by the two-tailed Student’s t-test or one-way
ANOVA followed by the Bonferroni correction, as appropriate.
A P < 0.05 was considered statistically significant.

RESULTS

Beta Cell Apoptosis and Insulin Secretion
Exposure of ND human islets to 0.5 mmol/l palmitate for 5 days
or 0.1 ng/ml brefeldin-A for 24 h induced a significant increase
of beta cell apoptosis compared to control islets (Figures 1A,B),
confirming previously reported results (32, 33). In agreement
with previous reports (20, 24) apoptosis was identified on the
basis of internationally acknowledged criteria based on the
appearance of marked chromatin condensation and blebs (28).
Electron microscopy can be considered one of the best methods
to identify apoptotic cells, because it enables not only the
detection of apoptosis but also enables to identify which type of
cell is undergoing apoptosis (see also Supplementary Figure 1

ESM). The deleterious effects of both ER stressors were prevented
by rapamycin (autophagy activator), whereas 3-MA, but not
concanamycin (both are autophagy inhibitors), enhanced the rate
of beta cell apoptosis in presence of palmitate (Figures 1A,B).
Insulin secretion was significantly decreased by islet exposure to
either palmitate or brefeldin A, and the presence of rapamycin
protected beta cells from palmitate-induced insulin secretion
alterations (Figure 1C).

Electron Microscopy Studies
We then investigated the ultrastructural changes induced by the
exposure of human islets to palmitate or brefeldin by quantitative
morphometry. In particular, we assayed the volume density of
insulin granules, mitochondria, and ER in beta cells exposed
to 0.5 mmol/l palmitate for 5 days and 0.1 ng/ml brefeldin for
24 h. In addition, we evaluated the effects of the stimulation of
autophagy by the concomitant exposure to 10 ng/ml rapamycin.
Five days of palmitate exposure significantly decreased the
volume density of insulin granules, whereas volume density
of both mitochondria and ER was significantly increased
(Figures 2A–C). In all cases, co-incubation with rapamycin
was able to prevent the changes caused by palmitate exposure
(Figures 2A–C). Brefeldin A also induced a significant reduction
of insulin granule volume density, although quantitatively
less compared to palmitate, and both mitochondria and ER
volume density was significantly increased (Figures 2A–C).
Rapamycin had no effects on the changes in insulin granules
and mitochondria induced by brefeldin, whereas it was able
to partially prevent brefeldin A-induced increase of ER volume
density (Figures 2A–C).

Gene Expression in Isolated Human Islets
The expression of selected ER markers was then studied in
isolated ND human islets exposed for 24 h to 0.5 mmol/l
palmitate or to 0.1 ng/ml brefeldin; the modulating effect
of the concomitant exposure to 10 ng/ml rapamycin was
also evaluated. Palmitate exposure significantly increased the
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FIGURE 1 | (A,B) Ultrastructural morphometric analysis of beta-cell apoptosis in human islets after 5 days exposure to palmitate (A) or 1 day exposure to brefeldin

(B). C, control; P = 0.5 mmol/l palmitate; B = 0.1 ng/ml brefeldin; P + 3MA = palmitate + 5 mmol/l 3-methyladenine; P + Co = palmitate+ 1 nmol/l concanamycinA;

P + Rapa = palmitate + 10 ng/ml rapamycin; B + Rapa = brefeldin + 10 ng/ml rapamycin. For palmitate experiments around 200–300 cells were considered,

corresponding to 6 islets and two islet preparations. For brefeldin around 200 cells were analyzed corresponding to 3 islets and 1 islet preparation. Statistical analysis:

*p < 0.05 vs. C and P + Rapa or B + Rapa, #p < 0.05 vs. all groups, after Bonferroni correction. (C) Glucose-stimulated insulin secretion of control (C),

palmitate-treated (P), and brefeldin-treated (B) human islets in the presence (black bars) or absence (white bars) of 10 ng/ml rapamycin (N = 4–7). Statistical analysis:

*p < 0.05 vs. C; §p < 0.05 vs. P, after Bonferroni correction.

expression of PERK, CHOP, and BiP with respect to control
human islets, and this effect was significantly prevented by
the concomitant presence of rapamycin (Figure 3, panels
on the left). Brefeldin-A exposure markedly increased the
expression of all the assayed ER stress markers in human
islets with respect to controls, and the concomitant stimulation
of autophagy by rapamycin in part counteracted this effect
(Figure 3, panels on the right).

Rapamycin and T2D Human Islets
Finally, we explored the effects of rapamycin in human islets
isolated from T2D donors. In T2D islets beta cell apoptosis
was significantly higher than in ND islets, in agreement with
previous results (31, 34), and exposure to rapamycin significantly
decreased the number of apoptotic beta cells (Figure 4A).
Rapamycin also caused a significant increase of glucose-
stimulated insulin secretion T2D human islets (Figure 4B).

Quantitative morphometry confirmed the ultrastructural
alterations previously observed in human islets isolated from
T2D patients (31, 34): volume density of insulin granules
was significantly decreased whereas volume density of both
mitochondria and ER was significantly increased compared
to ND islets (Figure 4C). Exposure of diabetic islets to
rapamycin was able to significantly counteract these alterations
(Figure 4C). These favorable changes induced by rapamycin

were associated with decreased expression of PERK, CHOP,
and BiP similar to those observed in ND islets exposed to
palmitate (Figure 4D).

p62 in T2D Islets
In order to confirm whether rapamycin and 3-MA could
modulate autophagy flux, we evaluated the amount of
p62, an autophagy receptor that accumulates in cells when
macroautophagy is inhibited (21). In ND islets, we found
1.15 ± 0.36 ng/ml of p62/µg total proteins. In T2D islets,
p62 levels (3.62 ± 0.90 ng/ml of p62/µg total proteins)
were higher with respect to non-diabetic islets (p < 0.05).
Exposure to rapamycin significantly reduced the amount of
p62 (Figure 5), indicating that the drug could increase the
autophagy flux in T2D islets. Conversely, the use of 3-MA, an
autophagy inhibitor, significantly increased the levels of the
receptor (Figure 5).

DISCUSSION

The synthesis, modification and delivery of proteins to their
target sites occur in the ER. Several physiological and
pathological conditions are able to impair these processes leading
to ER stress, and in the last years a large body of evidences has
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FIGURE 2 | Quantitative morphometric analysis of volume density of insulin granules (A), mitochondria (B), and endoplasmic reticulum (C) in beta cells of isolated

human islets after 5 days exposure to palmitate (left panels) or 1 day exposure to brefeldin (right panels). C, control; P = 0.5 mmol/l palmitate; B = 0.1 ng/ml brefeldin;

P + Rapa = palmitate + 10 ng/ml rapamycin; B + Rapa = brefeldin + 10 ng/ml rapamycin. For palmitate experiments around 200–300 cells were considered,

corresponding to 6 islets and two islet preparations. For brefeldin around 200 cells were analyzed corresponding to 3 islets and 1 islet preparation. Statistical analysis:

*p < 0.05 vs. C; §p < 0.05 vs. P, after Bonferroni correction.

been provided indicating that ER stress may be implicated in beta
cell dysfunction and death in diabetes (22, 23, 35–42).

Recently, autophagy has emerged as a crucial protective
mechanism during ER stress (43, 44). An early study reported
that cells undergoing ER stress, as indicated by ER expansion,
showed a concomitant increase in autophagosome abundance
(44). This activation of autophagy was interpreted as a survival
mechanism to prevent ER stress-induced toxicity (43, 44). In

mammals, ER stress inducers generally act as on-off switches
for mTOR-regulated cell growth, survival and energy balance,
through the downregulation of AKT1, which induces the
activation of autophagy by decreasing mTOR activity (45).
Autophagy is a degradation mechanism that can be induced
by starvation or other form of nutrient deprivation to supply
substrates for cellular energy generation (46). Autophagy also
serves as a catabolic pathway to recycle excessive or damaged
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FIGURE 3 | Expression of several ER stress markers in isolated human islets after 5 days exposure to palmitate (left panels) or 1 day exposure to brefeldin (right

panels) in the presence (black bars) or absence (white bars) of 10 ng/ml rapamycin. N = 4–5 for both treatments. C, control; P = 0.5 mmol/l palmitate; B = 0.1 ng/ml

brefeldin; Statistical analysis: *p < 0.05 vs. all the other groups; §p < 0.05 vs. C, after Bonferroni correction.

intracellular organelles such as mitochondria (47). Therefore,
it can act as a housekeeping mechanism in the absence
of stress, while under stress conditions it exerts a crucial
protective role (48).

The aim of this study was to explore the effects of
the modulation of autophagy on the ER stress-induced
beta-cell dysfunction in isolated human pancreatic islets.
We induced ER stress in cultured human islets by their
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FIGURE 4 | (A) Ultrastructural morphometric analysis of beta-cell death in T2D human islets in the presence (black bar) or absence (white bar) of 10 ng/ml rapamycin.

N = 9 (300–400 cells, two islet preparations analyzed). Statistical analysis: *p < 0.05 vs. T2D. (B) Glucose-stimulated insulin secretion of type 2 diabetes human islets

in the presence (black bar) or absence (white bar) of 10 ng/ml rapamycin. N = 5. Statistical analysis: *p < 0.05 vs. T2D. (C) Quantitative morphometric analysis of

volume density of insulin granules, mitochondria, and endoplasmic reticulum in beta cells of type 2 diabetes human islets in the presence (black bar) or absence (white

bar) of 10 ng/ml rapamycin. N = 9 (300–400 cells, two islet preparations analyzed). Statistical analysis: *p < 0.05 vs. T2D. (D) Expression of several ER stress markers

in type 2 diabetes human islets in the presence (black bars) or absence (white bar) of 10 ng/ml rapamycin. N = 5. Statistical analysis: *p < 0.05 vs. T2D.

FIGURE 5 | Levels of p62 in T2D human islets in presence of 10 ng/ml of the

autophagy inducer, rapamycin, or 5.0 mmol/l of the autophagy inhibitor, 3-MA.

N = 3–4. Statistical analysis: *p < 0.05 vs. all groups.

exposure to a metabolic (0.5 mmol/l palmitic acid for
5 days) or a chemical (0.1 ng/ml brefeldin for 1 day)
stressor. The increased levels of fatty acids, commonly

associated with obesity, can induce insulin resistance and
beta-cell dysfunction, making them good candidates to
explain the link between obesity and the development
of T2D (49–51). It has been proposed that palmitate-
induced ER stress may arise from the disruption of protein
processing and trafficking (49), or from incorrect Ca++

regulation (52). Brefeldin A is a macrocyclic lactone
antibiotic which is synthetized from palmitate by several
fungi and has been shown to induce ER stress through
the inhibition of ADP ribosylation factor (ARF) and
the consequent disruption of the ER-Golgi vesicular
transport (53, 54).

Here, we confirm that lipotoxic conditions (such as palmitate
exposure) and chemically-induced (brefeldin) ER stress are
associated with alterations of beta cell survival and function,
and show that the modulation of autophagy influences these
effects. In particular, rapamycin, an inducer of autophagy
through inhibition of mTORC1 complex (25), was able to

prevent beta cell apoptosis induced by palmitate or brefeldin,
and restore a proper insulin secretion in response to glucose

which was altered by the presence of the fatty acid. These
data are in line with those previously published on the effect

of rapamycin in Akita mice (55), where the drug attenuated

cellular stress and apoptosis that, conversely, were exacerbated
by autophagy inhibitors in conditions of accumulation of
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misfolded proinsulin. Conversely, 3-MA and concanamycin-
A were used as autophagy inhibitors. The first blocks an
early stage of autophagy by inhibiting the class III PI3K (21),
while concanamycin causes an increase in lysosomal/vacuolar
pH, and, ultimately, blocks fusion of autophagosomes with
the vacuole by inhibiting V-ATPase (25). In our study, the
presence of 3-MA caused a significant increase of beta-
cell apoptosis in human islets exposed to palmitate, whereas
concanamycin A did not show any effect on the cytotoxicity
induced by palmitate or brefeldin. Our data are in agreement
with previously published results in other cell types (56), where
it was observed that inhibition of autophagy at an early stage,
but not at a late stage, potentiated chemosensitivity, increasing
caspase 3/7 activation, especially in conditions of high levels
of autophagy. More in detail, 3-MA could exert this pro-
apoptotic action making available beclin-1 (a master component
of the PI3K-III complex inhibited by the drug, playing a role
also in apoptosis) for caspase 8 cleavage in order to elicit
cell death (57–60). However, other studies exist reporting a
more deleterious effect of late autophagy blockade on cell
survival (61).

At the ultrastructural level, we found that in both palmitate
and brefeldin-treated human islets a significant decrease in the
volume density of insulin granules, and a significant increase
in volume density of mitochondria and ER was present. Co-
exposure with rapamycin was able to prevent these alterations
mainly in the islets treated with palmitate. These beneficial
effects on ultrastructure were associated with a reduction in the
expression of some ER stress-related genes. The ultrastructural
alterations found in our experiments were similar to those
previously observed in other studies. In particular, they look
like those observed in beta cells isolated from Atg1β−cell mice
with beta cell-specific deletion of Atg7 (autophagy-related 7)
(19) indicating that autophagy could be necessary to maintain
beta-cell homeostasis (62, 63) and in human islets isolated
from T2D patients (20, 23, 27) confirming a pathogenetic role
played by ER stress (50, 64). However, the role of autophagy
in diabetes pathophysiology has not been fully elucidated.
Recently, it was suggested that impaired autophagy could lead to
accumulation of dysfunctional organelles such as mitochondria
(65) and that in type 2 diabetic pancreatic beta cells, a massive
overload of autophagic vacuoles and autophagosomes might
contribute to the loss of beta-cell mass (20). In addition, some
authors reported that rapamycin improved insulin resistance
and hepatic steatosis in T2D rats via activation of autophagy
(66). Our results in T2D islets showed that the promotion of
autophagic process by rapamycin, as evaluated by the clearance
of the p62 protein, is associated with amelioration of function,
survival and ultrastructure possibly due to reduction of ER
stress. Recently, it was hypothesized that mTORC1 (one of the
major signaling complex in beta cells, where it is responsible
for nutrient sensing and beta cell growth) (67), if short term
and transiently activated, regulates beta cell replication, anabolic
growth and insulin secretion under physiological conditions (67).
Conversely, its sustained activation (as in presence of chronic
excess of nutrients) is associated with impaired insulin release,
ER stress and reduced beta cell survival. In this regards, several

authors showed that chronic exposure to high glucose and/or
high free fatty acid concentrations could activate mTORC1 in
beta cells and that its inhibition could prevent gluco- lipotoxic-
induced beta cell derangement (68). In particular, Yuan and
colleagues (69) showed that islets isolated from T2D organ
donors had increased mTORC1 activity in comparison with non-
diabetic islets and that this augmentation was present in beta
but not alpha cells. Moreover, mTORC1 genetic or chemical
inhibition was associated with restoration of insulin release
in T2D islets. Differently from them, in our study, 10 ng/ml
rapamycin (corresponding to around 11 nmol/l) were able to
promote beta cell function, survival and ultrastructure in T2D
islets. Similarly, it has been observed that the defective autophagic
flux associated with a lysosomal dysfunction observed in T2D
islets can be restored also by a GLP-1 receptor agonist (70).
It should be underlined that the beneficial effects observed
with rapamycin in presence of ER stress modulators, especially
those related to insulin release, are exerted in a short-term
setting. Additional experiments should be performed to assess
the role of a chronic exposure to the drug. In this regards,
some authors have observed how some pharmacological agents,
currently used in diabetes treatment, show deleterious effects
in beta cells when chronically administered in presence of
rapamycin (71).

In conclusion, this study provides information on how
conditions of metabolically or chemically induced stress on
human beta cells associate with reduced beta cell survival,
impaired beta cell function, and ultrastructural alterations, which
are also mediated by ER stress. More importantly, our data
suggest that promotion of autophagy at the beta cell level, in some
context, might be helpful to protect beta cell health.
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