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Being born small lays the foundation for short-term and long-term implications for

life. Intrauterine or fetal growth restriction describes the pregnancy complication of

pathological reduced fetal growth, leading to significant perinatal mortality and morbidity,

and subsequent long-term deficits. Placental insufficiency is the principal cause of FGR,

which in turn underlies a chronic undersupply of oxygen and nutrients to the fetus. The

neonatal morbidities associated with FGR depend on the timing of onset of placental

dysfunction and growth restriction, its severity, and the gestation at birth of the infant. In

this review, we explore the pathophysiological mechanisms involved in the development

of major neonatal morbidities in FGR, and their impact on the health of the infant. Fetal

cardiovascular adaptation and altered organ development during gestation are principal

contributors to postnatal consequences of FGR. Clinical presentation, diagnostic tools

and management strategies of neonatal morbidities are presented. We also present

information on the current status of targeted therapies. A better understanding of

neonatal morbidities associated with FGRwill enable early neonatal detection, monitoring

and management of potential adverse outcomes in the newborn period and beyond.

Keywords: IUGR, FGR, bronchopulmonary dysplasia, cardiac, brain injury, necrotizing enterocolitis

OVERVIEW AND DESCRIPTION

Fetal growth restriction (FGR) describes the fetus that does not grow to its expected biological
potential in utero, and is a relatively common complication of pregnancy. True FGR, as compared
to constitutional smallness, is a pathological condition wherein the placental fails to deliver an
adequate supply of oxygen and nutrients to the developing fetus, termed placental insufficiency.
As a consequence, fetal growth becomes stunted. It is only in the last several years that consensus
definitions for pathological FGR have been developed (1), but it remains that many cases of FGR
in utero remain undetected, and therefore the neonatal description of small for gestational age
(SGA) continues to be a useful and necessary proxy for FGR (2). Traditionally, an estimated fetal
weight or abdominal circumference of less than the 10th centile for the population at a given
gestational age was considered highly suggestive of FGR. However this broad description of SGA
includes the many infants (∼20%) that are born small, but are otherwise healthy (2). Accordingly,
consensus definitions for FGR now incorporate Doppler indices of placental function/ dysfunction
during pregnancy (1), to provide a more robust assessment of pathological fetal growth restriction.
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Clear and well-defined guidelines for description of FGR
subsequent to placental insufficiency are important for two
broad reasons, (i) early identification of FGR flags infants who
are at significantly elevated risk for neonatal complications,
and (ii) early identification of infants with FGR who would
benefit from intervention(s) to improve outcomes. The etiology
of many adverse consequences of FGR arise in utero from
fetal hypoxia and nutrient deprivation secondary to placental
dysfunction, with fetal hemodynamic adaptations in utero laying
the foundation for altered organ structure and function in the
neonatal period and beyond.

ETIOLOGY AND UTEROPLACENTAL
FACTORS

The basic determinants of fetal growth are the individual’s
genetic makeup, nutrient availability from the mother, and
environmental factors, coupled with the capacity of the
placenta to adequately transfer nutrients and oxygen to the
fetus, and endocrine modulation of these interactions (3,
4). Reduced fetal growth, and subsequent pathological FGR,
can be caused by maternal factors (e.g., under nutrition,
hypertension, preeclampsia), fetal (chromosomal abnormalities,
multiple fetuses) or placental factors (5), however in the majority
of cases, FGR results from placental dysfunction (6). Here, the
term placental insufficiency is broadly used to describe reduced
transfer of oxygen and nutrients to the fetus, with adverse effects
on fetal development. Antecedents of placental insufficiency can
include maternal malnutrition and hypertension, but in up to
60% of cases the placental insufficiency is idiopathic, wherein
there is a physiological deficiency in the remodeling of uterine
and placental spiral arteries resulting in restricted uteroplacental
perfusion (7).

Abnormalities in placental function provide a primary clinical
indicator that transfer of oxygen and nutrients is suboptimal,
and fetal growth may be adversely affected. In the fetus,
placental insufficiency is characterized by preferential blood
flow redistribution to the vital organs (brain, myocardium, and
adrenal glands), while other organs, including the gastrointestinal
tract, skin, and others may be deprived of sufficient blood flow.
This fetal redistribution of blood flow occurs as a direct result of
hypoxia, and can be detected as altered umbilical, uterine and/or
middle cerebral artery Doppler flows (8). Large population
studies of small but otherwise healthy infants at birth (Apgar ≥
7 at 5min of life) demonstrates that severely growth restricted
infants at the third birth weight centile are indeed chronically
hypoxic; umbilical vein median pO2 13 mmHg (FGR) versus 26
mmHg (normally grown infants), and median SaO2 16 vs. 55%
respectively (9, 10).

In addition to the fundamental roles of oxygen and glucose
for development, fetal growth is dependent on a number of
key anabolic hormones—placental, pancreatic, thyroid, adrenal
and pituitary hormones—any disruption in these can also lead
to FGR (11, 12). The insulin-like growth factors -I and -II
(IGF-I and IGF-II) are both proposed to play central roles
in normal fetal growth, stimulating fetal cell proliferation,

differentiation, protein and glycogen synthesis, where these
actions are mediated via their receptors and the IGF-binding
proteins (IGFBPs). The two IGFs are detected in the fetal
circulation in early gestation, and in particular it is noted that
decreased serum IGF-1 is correlated with reduced fetal growth
(3, 13). IGF-1 also has a central role in brain growth, white
matter development and brain connectivity (14). Pregnancy-
associated plasma protein-A (PAPP-A), secreted by the placental
decidua, cleaves IGFBP-4, which in turn is a potent inhibitor
of IGF bioactivity. Accordingly, low levels of PAPP-A in early
pregnancy are linked with an increased risk for FGR, although
the predictive value of this biomarker still remains poor (15).
A recent study has investigated whether administration of IGF-
1 into the amniotic fluid can improve postnatal growth and
metabolism in a sheep model of FGR, and results from this
study look promising (16) (see Interventions for Improved
Outcomes section). Glucocorticoid hormones play a central role
in the development and maturation of fetal organs, while growth
hormone, which is the major hormonal regulator of postnatal
growth, has no demonstrable effect on fetal growth per se
(17). Exogenous glucocorticoids are administered to pregnant
women at imminent risk of preterm birth to mature the fetal
lungs, and preterm birth is a common complication of FGR.
Preclinical and clinical evidence demonstrates that antenatal
steroids may exacerbate growth restriction (particularly repeat
doses) (18) and that the FGR fetus differentially responds to
antenatal steroids compared to appropriately-grown fetuses,
likely mediated via altered placental response to steroids
(19). Antenatal glucocorticoids may not significantly improve
neonatal outcomes in FGR preterm infants (20), and indeed,
may have adverse effects on brain development (21, 22). Further
research is clearly needed in this area.

The fetusmounts a critical hemodynamic response to hypoxia,
aimed at ensuring the most important fetal organs maximize
their oxygen supply. This adaptive response redistributes blood
flow away from peripheral vascular beds which is preferentially
shunted toward essential organs, termed brain sparing (23). This
results in preferential supply of blood flow to favor the brain,
heart, and adrenals, at the expense of the gut, kidney, hematologic
organs, and peripheral vascular beds. When fetal hypoxia is
chronic in nature, as occurs with placental insufficiency, the
persistent fetal hemodynamic shift has significant consequences
for the fetus and neonate. Characteristically, prolonged fetal
hypoxia reduces fetal weight overall, but also does so in an
asymmetric manner, with relatively spared head size and a thin
and/or shorter body length. While hemodynamic redistribution
may be an attempt to protect vital organs from hypoxic
injury, an adverse impact on fetal organ development and
vascular remodeling is increasingly being recognized (23, 24). For
example, the shunting of blood flow away from the kidneys is
now recognized as contributing to suboptimal renal development
with reduced nephron endowment (25). Further, sustained
vasoconstriction of peripheral vascular beds alters local arterial
wall properties including endothelial vasodilator dysfunction and
sympathetic hyperinnervation, and consequently contributes to
cardiac remodeling (26). The short and long-term consequences
of sustained redistribution of cardiac output are profound, for
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both spared and non-spared organs, and these will be discussed
in more detail below.

The overall incidence of FGR depends on the diagnostic
criteria used, and the population being examined. It is
estimated that between 3 and 9% of pregnancies in the
developed world, and up to 25% of pregnancies in low-
middle income countries are affected by FGR (27, 28). Factors
that influence FGR rates in communities include maternal
nutrition, maternal and paternal smoking rates, alcohol and
drug addiction, socio-economic status, maternal activity, stress
during pregnancy and genetic make-up (29). The incidence
of FGR is significantly higher in low- and middle- income
countries, compared to high-income countries, and this is
notably contributed by a large number of FGR infants born in
the Asian continent, which accounts for approximately 75% of
all affected infants in the world, followed by Africa and South
America (30).

CLASSIFICATION TYPES OF FGR

FGR can be classified as early- or late-onset, reflecting the
gestational age when growth restriction is diagnosed. Early
onset FGR (<32 weeks gestation) is the more severe phenotype,
associated with significant disruption to placental perfusion
leading to chronic fetal hypoxia, and with subsequent fetal
cardiovascular adaptation in utero (31). Fetuses with early-onset
placental insufficiency are more likely to be born preterm, to
deteriorate over weeks, and have a high risk of morbidity or
mortality. Late onset FGR (≥32 weeks gestation) is the more
common presentation of growth restriction (up to 80% of FGR
cases), and is generally linked with a milder placental deficit,
together with a lesser degree of fetal hemodynamic adaptation.
Although placental dysfunction is mild, this group has a high
risk of deteriorating rapidly, such that they have an elevated
risk of stillbirth (31). This broad distinction between early- and
late-onset FGR demonstrates that the timing when placental
function becomes rate limiting for the fetus is a principal factor
affecting outcome.

Advances in obstetric monitoring mean that it is increasingly
likely that placental insufficiency and fetal growth restriction are
detected during pregnancy. However, a significant proportion
(up to 50%) of FGR fetuses remain undiagnosed, and are
first recognized only very late in pregnancy or at birth (32–
34). Furthermore, debate continues around the utility of third
trimester ultrasound for the detection of late-onset FGR (35),
with a recent study reporting that undiagnosed FGR does not
lead to increased incidence of morbidity in neonates (36). These
data likely reflect that it is predominantly the early-onset FGR
infants with severe placental insufficiency, and worse neonatal
outcomes, who are more straightforward to detect during
pregnancy. Currently, no effective antenatal therapy exists for
FGR, hence, delivery of the fetus remains the only viable option
for a severely affected pregnancy; this often occurs preterm,
introducing further risk of morbidity and mortality (37, 38).
Together these data are indicative that the timing of the onset
of placental insufficiency (early vs. late), gestation at birth, and

FIGURE 1 | Factors that affect outcomes in FGR.

severity of compromise/birth weight are the most predictive
factors for neonatal outcomes (39) (Figure 1).

PERINATAL MORBIDITIES

A typical FGR infant at term age and an appropriately grown
infant at term are shown in Figure 2. Key pathophysiological
mechanisms driving fetal growth restriction and the resulting in-
utero and postnatal consequences are highlighted in Figure 3.
Placental pathology and FGR are strongly associated with fetal
demise in utero, and stillbirth (40–42). FGR is the greatest
risk factor for stillbirth; overall it is shown that up to 50% of
infants who are stillborn were small for gestational age or growth
restricted (43). The detection, early diagnosis, surveillance and
delivery of the severely growth restricted fetus are paramount to
decrease stillbirth, but it remains that 40% of severe FGR infants
(<3rd centile for birth weight) remain undetected in utero (44).

After birth, FGR infants aremore likely to spend a significantly
longer time in NICU compared to gestation age-matched infants
(45). Accordingly, financial costs associated with the care of
FGR infants are high, given that many of them will remain in
NICU for prolonged periods (46, 47). FGR infants demonstrate
elevated rates of intolerance to feeds/ milk, feeding difficulties
and necrotizing enterocolitis (NEC). NEC is predominantly seen
in infants who are born preterm, but late preterm infants are
more likely to develop NEC if they were growth restricted (48).
It is likely that in utero chronic fetal hypoxia and subsequent
cardiovascular redistribution of blood flow away from the
gastrointestinal tract contribute to immature gut development
(49). FGR newborns, especially with abnormal flows in the
umbilical artery prior to birth, are shown to have more
feed intolerance when compared to their well-grown preterm
counterparts (50). Superior mesenteric artery blood flows have
been used as a marker for splanchnic perfusion in neonates and
decreased flows correlate with feed intolerance (51). Application
of near infra-red spectroscopy in the neonatal period as an
assessment tool for monitoring gut perfusion can detect changes
in splanchnic oxygen delivery, which may be reduced in FGR
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FIGURE 2 | Example of a FGR (2nd centile weight for age, yellow), and an appropriately grown (50th centile weight for age, blue) infant born at 37 weeks gestation.

infants and may predict feeding intolerance and development
of NEC (52). Studies have shown that preterm FGR infants
do not tolerate enteral feeds in the first few days of life (53)
but conversely there is evidence that delaying enteral feeds in
preterm FGR infants does not confer any protection against feed
intolerance or NEC (54). In fact, it may delay establishment of
feeds and increase length of stay in the neonatal unit (55).

Malnutrition and low birth weight puts FGR infants
at an increased risk of a number of transient neonatal
morbidities including hypothermia, altered glucose metabolism
(hypoglycemia, hyperglycemia), hypocalcemia, polycythemia,
jaundice and sepsis (5). Increased risk of infection is also
common, potentially related to depressed immunological state
and competence (56). FGR infants born preterm also have an
increased risk of retinopathy of prematurity (57). FGR is linked
to altered nephrogenesis, due to suboptimal tubular development
caused by intrauterine hypoxia (58), and in turn, urinary
Cystatin-C excretion is increased in FGR infants compared to
appropriately-grown infants which is seen to reflect reduced
renal volume (59). It is therefore suggested that increased
secretion of Cystatin-C signifies nephron loss as a result of the
negative impact of FGR on kidney development. Factors involved
in nephron loss may include intrauterine hypoxia, decreased
antioxidant capacity, and altered levels of growth factors.

SPECIFIC NEONATAL MORBIDITIES
(TABLE 1)

Cardiovascular Morbidity
Clinical Features
In addition to chronic hypoxia, placental insufficiency imposes
other important stressors for the developing fetus, such as
oxidative stress, inflammation and increased hemodynamic
stress. This leads to elevated cardiac afterload due to high
placental vascular resistance, which in turn directly and indirectly
impacts on the developing cardiovascular system. It is now
accepted that the fetal adaptations to these combined stressors

sets the fetus, and future offspring, on a path of predetermined
increased risk of cardiovascular disease (60, 61). It is also now
apparent that subclinical or subtle evidence of cardiovascular
dysfunction is present in fetal and/or early neonatal life, well
before the onset of significant cardiovascular or metabolic disease
in adulthood, supporting the notion of perinatal programming
(60).

Advances in Doppler ultrasonography of the placental and
fetal circulations provide a window of opportunity to observe and

quantify fetal cardiovascular function, and early dysfunction. In
early-onset FGR, severe placental insufficiency is characterized

by high vascular resistance within placental vascular beds,

resulting in absent or reversed diastolic umbilical artery flow,

as well as high pulsatility index in the ductus venosus and
increased dilation of cerebral vessels evident of fetal brain sparing
(31). In late-onset FGR, umbilical artery flow may be normal,
representing a milder placental insufficiency. Despite this, brain
sparing is still evident, with increased cerebral to placental blood
flow driven primarily by vasodilation within the middle cerebral
artery in response to hypoxia (62). In both early- and late-onset
FGR, increasing vasodilation within cerebral vascular beds is
indicative of a worsening fetal state (63). Increased myocardial
performance index, an index incorporating both diastolic and
systolic function to assess global cardiac function/dysfunction,
is evident from 24 weeks gestation in early onset-FGR fetuses
(64). An increase in myocardial performance index is not
indicative of improved performance, but rather demonstrates
an increased time of systolic relaxation evident in early-onset
FGR. Increased myocardial dysfunction is also present in late-
onset FGR from >35 weeks gestation. In this population, late-
onset placental insufficiency and FGR results in fetuses with
larger, more globular hearts and early indices of functional
deficits with impaired relaxation (65). This study is the first to
show that late-onset placental insufficiency and FGR induces
cardiac dysfunction that is detectable in the third trimester of
pregnancy (∼35 weeks gestation), indicating the presence of
cardiac programming prior to birth. It has also been shown that
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FIGURE 3 | In-utero and postnatal consequences of FGR and potential targeted therapies.

cardiac dysfunction and markers of cardiac injury such as BNP
and H-FABP become increasingly worse as the severity of fetal
compromise progresses (66).

Pathophysiology
In the presence of very high placental resistance associated
with a sub-optimal pregnancy, the fetal heart contracts
against an increased afterload, thereby increasing the work
required to contract with each beat, resulting in increased
heart wall stress and hypertrophy (65). Over a sustained
period, hypertrophy increases wall thickness altering ventricular
compliance. Increased afterload is evidenced by the presence of

increased serum B-natriuretic peptide in infants born growth
restricted (67).

Where placental insufficiency is present, the fetal heart must
also adapt to a reduced supply of glucose, with the fetal
heart producing ATP from glycolysis and oxidation of lactate.
Despite this, cardiac glucose consumption is not altered in
growth restriction due to increase in insulin receptor GLUT4
in the heart, which increases insulin transport to maintain
glucose consumption (68). Thus, glucose availability is not
considered a primary limiting factor for fetal cardiac function.
More in-depth analysis of the effects of suboptimal oxygen
and glucose supply to the developing heart can be examined
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TABLE 1 | Neonatal morbidities in fetal growth restriction.

Cardiovascular morbidity Respiratory morbidity Neurological morbidity Others

Neonatal period Early hypotension

Persistent fetal

circulation/PPHN

Structural heart changes

Vessel wall rigidity

Cardiac function issues

Late systemic hypertension

Secondary pulmonary

hypertension

Increased need for

respiratory/ventilator

support

Meconium aspiration

syndrome

Pulmonary hemorrhage

Bronchopulmonary

dysplasia

Perinatal asphyxia

Microcephaly

Cranial ultrasound abnormalities

(IVH, PVL)

White matter and gray matter

changes on MRI

Functional and DTI MRI changes

General movement assessment

abnormalities

EEG abnormalities

Poor transition

Hypoglycemia

Hypocalcemia

Hypothermia

Sepsis

Jaundice

Polycythemia

Prolonged NICU stay

Feed intolerance

Delay in establishment of feeds

Necrotizing enterocolitis

Renal tubular injury

Retinopathy of prematurity

Long term impact Hypertension

Ischemic heart disease

Stroke

Atherosclerosis

Chronic respiratory

insufficiency

Reactive airway disease

Neurodevelopmental issues

Behavioral problems

Learning difficulties

Cerebral palsy

Dementia

Mental health issues

Failure to thrive

Obesity

Immune dysfunction

Osteoporosis

Metabolic syndrome

Renal issues

Hormonal issues

Cancer

Shortened life span

PPHN, persistent pulmonary hypertension; IVH, intraventricular hemorrhage; PVL, periventricular leukomalacia; MRI, magnetic resonance imaging; DTI, diffusion tensor imaging; EEG,

electroencephalography; NICU, neonatal intensive care unit.

in animal studies of FGR (69). These studies show that the
fetal heart is remodeled in a manner similar to that seen
in dilated cardiomyopathy. Cardiomyocyte development is
adversely affected and programmed cell death is increased in
growth restricted fetal guinea pigs and sheep, with a persistence
of the mononucleated, primitive cell type (70, 71). Permanent
alterations in heart morphology are detected into adulthood, as
evidenced by persistence in the deficits in cardiomyocyte number
and cardiac hypertrophy (70).

The transition to ex utero represents a particularly critical
period where the heart must rapidly adapt to new pressure
and flow demands. After birth, the external pressures around
the heart are reduced, due to alleviation of the liquid-filled
lungs and amniotic fluid. Concurrently, the low resistance
placental circulation is removed, temporarily decreasing cardiac
output and increasing afterload, and thus heart rate, end-
diastolic pressure and stroke volume must all be increased
to maintain adequate cardiac output. In response to these
altered pressure demands throughout the transition to ex-
utero life, the myocardium undergoes rapid changes in cardiac
muscle protein expression (72). One critical change precipitated
by such pressure changes at birth is a shift in the fibrous
component of sarcomeres toward smaller isoforms, which
increase the passive tension within with postnatal heart (72).
It is postulated that the growth-restricted fetus undergoes
these changes in utero, due to the presence of increased
afterload secondary to high placental resistance, and resulting
in altered cardiac compliance (73). In human infants and in
experimental animal models of FGR, the heart is shown to
have shorter sarcomeres, which likely contributes to decreased
contractile strength (73, 74). Further, changes in the large

sarcomere protein titin are described in the FGR heart,
reflecting a shift from a large compliant isoform toward a
small and stiff isoform (73). As titin is a major determinant
of sarcomere length, this change in isoform is consistent with
overall reduction in sarcomere length in the hearts of growth-
restricted fetuses, and has consequences for cardiac development
and function.

Changes in the hearts of growth-restricted fetuses are directly
coupled with changes in the wider cardiovascular system,
notably the vasculature. It is now well described that vascular
responses to placental insufficiency and chronic hypoxia are
vascular bed-dependent. In peripheral vascular beds, human
and animal data show that sustained vasoconstriction and
peripheral vascular resistance in response to chronic hypoxia
induces arterial stiffness and elevated central pulse pressure (75–
77). Growth restriction induced via chronic hypoxia increases
peripheral vascular tone via numerous methods, including
endothelial dysfunction (76), increased sympathetic nervous
system activation (69) and oxidative stress (78). Oxidative
stress, induced via increased reactive oxygen species generation,
quenches nitric oxide (NO), thereby reducing its bioavailability
and increasing peripheral vascular tone. We have previously
described an increase in plasma urate levels arising from chronic
fetal hypoxia (78) suggesting activation of a potent oxidative
enzyme, xanthine oxidase. Importantly, it is this altered vascular
tone in fetal life that sets up developmental programming for
future hypertension, as evidenced in both FGR animals (79)
and human cohorts (61). Central vessels, such as the aorta and
carotid arteries, have increased wall thickness (80) and increased
stiffness (81) in FGR humans and animals. The vascular changes
described above persist into adulthood, however, they are more
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pronounced in peripheral vascular beds compared to central
vascular bed (82).

Vascular compensation is observed in FGR offspring, wherein
remodeling of the arterial wall, collagen and elastin content
contribute to altered vascular mechanics (83). Rodent and
guinea pig studies show that interruption of fetal growth
in mid gestation coincides with a crucial period of elastin
production within vasculature, attenuating elastin deposition and
subsequently content, such that elastin is reduced and collagen
increased (84, 85). This remodeling greatly impacts on vascular
mechanics, as collagen is 100-times stiffer than elastin and, as
a consequence, vascular stiffness is significantly increased (85).
These changes in vessel biomechanics are most notably in the
lower body arteries of growth-restricted offspring (83). Following
low protein diet restriction, the aorta from adolescent rodents
are not only stiffer, they also have increased fibrotic tendency,
despite being normotensive (67). However, a more profound
effect on vascular extracellular matrix remodeling is seen with
placental dysfunction-induced growth restriction, compared to
other factors such as diet (high fat) or fetal sex. These data are
suggestive that vascular remodeling occurs primarily in response
to changes in pressure and flow caused by chronic hypoxia and
adaptive hemodynamic redistribution, rather than metabolic or
hormone alterations.

Impact
The evidence presented above all indicates that exposure to
placental insufficiency and chronic hypoxia significantly alters
fetal development of the cardiovascular system. Unsurprisingly,
the fetal cardiovascular alterations subsequent to placental
insufficiency persist into clearly detectable structural and
functional changes in the early postnatal period. After birth,
tissue Doppler imaging (TDI) has allowed detection of persistent
sub-clinical changes in movement and timing of the myocardium
throughout the cardiac cycle, in particular during myocardial
relaxation (86). In the first days of life, infants who were
growth restricted show altered cardiac structure detectable on
ultrasound with decreased sphericity index (a more globular
shape), together with increased interventricular septum and left
ventricle wall thickness (77). Further, load-dependent diastolic
function is impaired (77, 87) this often represents impaired
cardiac relaxation resulting in the transition from contraction
to relaxation occurring prior to aortic valve opening, a situation
which is common in hearts exposed to chronically high afterload.
Frequently, FGR does not alter overall cardiac output, however
components of cardiac output are altered with decreased stroke
volume and increased heart rate often presenting in the FGR
newborn (86). With increasing severity of FGR there is increased
biomarkers of myocardiac cell damage, such as heart fatty
acid binding protein (H-FABP), and incremental worsening
of both systolic and diastolic dysfunction and in particular
heart relaxation is altered (66). These alterations are indicative
of hemodynamic compromise and are linked to worsening
outcomes including fetal demise (88). Early signs of alteration in
blood pressure in association with FGR remains contentious—we
have documented increased blood pressure in the early postnatal
period (80), whilst others show no change in blood pressure

(82); these differences may reflect the difference between clinical
and pre-clinical studies or the severity of the growth restriction
induced.

In turn, in utero cardiac and vascular remodeling in FGR
neonates programs for cardiovascular disease into adulthood.
Indeed, the consequences of growth restriction on adult
cardiovascular function are now well studied, and are central to
the Developmental Origins of Health and Disease (DOHAD)
hypothesis. These findings are apparent from both human
epidemiological and experimental paradigms in growth-
restricted offspring (76, 85) and adults (60). Long-term evidence
of the link between low birth weight and developmental
programming is available in the infants born in famine
conditions in Europe in the 1900s wherein SGA is linked with
significantly higher blood pressure in later life (89), and with
increased risk of ischemic heart disease and cerebrovascular
disease (90). Precursors of long-term suboptimal outcomes
such as stroke and hypertension (91) have been proposed to be
evident in growth restriction offspring as pre-atherosclerotic
vascular damage in both newborns (92) and 18 month old FGR
offspring (93).

Despite excellent evidence of the link between FGR and adult
cardiovascular disease, there is some difficulty in dissociating
the potentially separate effects of placental insufficiency/FGR
and preterm birth. Growth restricted fetuses are often born
preterm, particularly early-onset severe FGR infants, and preterm
birth is also associated with adverse effects on the developing
cardiovascular system (94). A recent study by Cohen et al. (87)
followed both preterm and preterm FGR infants to 6 months of
age to determine cardiac morphology. They found that changes
in cardiac structure and function associated with preterm birth
alone were sub-clinical, and normalized in childhood, while only
thickened ventricular walls persisted into 6 months of age in FGR
infants (87). This study goes some way to delineate the separate
effects of prematurity and growth restriction and suggests a
possible persistence of structural changes in FGR over and above
the effects of prematurity.

Respiratory Morbidity
Clinical Features
There is heterogeneity in descriptions of pulmonary
complications associated with FGR, which probably reflect the
heterogeneity in growth restriction itself. There is however good
evidence that chronic hypoxia associated with FGR interrupts
normal pulmonary development, and increases susceptibility
to both short- and long-term respiratory compromise. Preterm
FGR newborns are 45% more likely to have bronchopulmonary
dysplasia (BPD) or die from respiratory complications after
birth as compared to well-grown infants (45). Further, even
FGR infants born at term have worse respiratory outcomes
than appropriately grown infants (95). FGR infants spend
a significantly increased time in NICU and on mechanical
ventilation compared to age-matched control infants, and rates
of respiratory distress syndrome (70) and BPD are increased with
FGR (45, 96, 97). Indeed, large multicenter trials for early-onset
FGR describe that BPD is the most common morbidity for this
population. The risk of BPD is greater when FGR and preterm
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birth are co-morbidities. Growth restriction is also associated
with pulmonary hypertension of the newborn (96). FGR is
associated with impaired lung function in children (98) that can
persist to adulthood (99).

Pathophysiology
Human FGR cohort studies and preclinical animal studies
describe that FGR can result in altered lung development; in some
cases these are subtle structural and/or biochemical changes,
wherein the timing and severity of compromise modulates
effect. In animal studies, an early onset placental or hypoxic
compromise mediates a more pronounced adverse outcome.
Chronic hypoxia in fetal sheep resulting in FGR induces an
adaptive response within the developing lung, where genes
regulating hypoxic signaling, lung liquid reabsorption and
surfactant maturation are increased (100). A 2-week exposure to
hypoxia alone in rats disrupts alveolarization, reducing alveolar
number via reduced septation (101). In fetal sheep we have
induced late-onset placental insufficiency and FGR to examine
lung morphology in preterm and term-born lambs. Lambs born
naturally at term have simplified lung architecture with decreased
secondary crest abundance and increased elastin deposition
(102). Lambs that are delivered preterm and exposed to 2 h of
mechanical ventilation do not demonstrate a difference in lung
structure between FGR and appropriately-grown lambs, with
no difference in the ratio of lung tissue to airspace or septal
crest density, however the early tissue injury marker cyr61 is
significantly increased in FGR lambs (103). Further, we observed
that both FGR and appropriately grown lambs had similar
ventilation requirements in the first hours of life. These findings
extend previous results in FGR animal experiments from our
group (104) and others (105, 106), which find no overt difference
in pulmonary structure of FGR offspring. When we compare
results between our preterm and term lamb cohorts, it is evident
that the timing and duration of placental insufficiency is a critical
determinant of lung dysfunction. We have recently examined
the effects of early-onset placental insufficiency on lung structure
and function, finding that lung cellular morphological changes
are present (unpublished results). Accordingly, we propose that
altered lung structural development is dependent on the timing
of compromise, rather than the severity of growth restriction.
Further, in early-onset FGR, the severity of fetal hypoxia has
an inverse relationship with pulmonary surfactant production
leading to decreased surfactant, a relationship not maintained in
late-onset FGR (107). It is well accepted that without adequate
surfactant, the newborn is at increased risk of pulmonary
complications after birth, particularly when the infant is born
preterm.

As discussed above, chronic hypoxia results in the fetal
adaptive response of redistribution of cardiac output. MRI
studies have confirmed that in late gestation of human fetuses,
growth restriction is associated with an increased superior vena
cava flow and, consequently, decreased pulmonary artery flow
(108). This hemodynamic response is contributed by increased
pulmonary vascular resistance (97). Increased pulmonary
vascular resistance also reduces venous return to the left
heart (109) and enhances right ventricular afterload. Combined

ventricular output is thus maintained (108). Postnatally, FGR
does not alter pulmonary blood flow during the transition to
ex utero life, but left ventricular output is lower (110). Thus
it is apparent that the hemodynamic adaptation to chronic
hypoxia also has important implications for pulmonary vascular
development, and accordingly, lung structure and function in
FGR offspring.

A handful of studies have also examined fetal breathing
movements in the developing fetus, and undertaken comparison
in FGR versus appropriately grown fetuses. Fetal breathing
movements are an important component of normal lung
development, as they provide a stretch stimulus for growth
throughout gestation (111). In FGR sheep, fetal breathing
movements are significantly reduced in late gestation, although
it is noted that not all experimental models of placental
insufficiency show such changes (69). The cessation of fetal
breathing movements in response to placental insufficiency is
thought to occur by way of physiological response to reduce
metabolic rate and thus conservation of oxygen, and is associated
with disrupted alveolarization (112).

Deficits in pulmonary development subsequent to placental
compromise are not confined to lung alveolar morphology. There
is a growing understanding of the link between poor alveolar
development and poor lung vascular development (113–115),
called the Vascular Hypothesis. Growth restriction, induced via
hyperthermia in pregnant sheep, impairs both lung alveolar
and vascular development in the developing fetus (116). In
complimentary experiments, lung alveolar cells isolated from
the same growth-restricted fetuses demonstrate reduced cell
growth, migration and branching, which are key components of
normal lung development (116). These findings are confirmed
in vivo in which growth-restricted offspring demonstrate
diminished pulmonary vascular function and density, together
with decreased pulmonary alveolarization (116, 117). Abnormal
pulmonary vascular development in growth restricted fetuses
is likely to be a key mechanism increasing the risk of BPD,
pulmonary hypertension and life-long reduction in respiratory
capacity, such as seen in chronic obstructive disease (116).

Impact
BPD is a chronic lung disease characterized by arrested
airway and parenchymal development and resulting in long-
term respiratory complications, with a high susceptibility in
preterm and growth restricted infants. BPD is a multifactorial
condition, however it is primarily thought to result from chronic
ventilation-induced injury in preterm infants, contributed by
lung exposure to excess oxygen and inflammation. FGR is an
independent risk factor for BPD in human infants (118–120).
Being born subsequent to placental insufficiency and growth
restricted is associated with a 3.6-fold higher risk of developing
BPD than age-matched control infants (120), despite FGR infants
having similar RDS rates as appropriately-grown counterparts.
Lio et al. (121) have also recently shown that FGR infants with
placental dysfunction have a 6-fold increased risk of developing
BPD compared to low birth weight/ SGA infants. Further, they
noted that birth weight per se and not ventilation duration, or
other neonatal morbidities, contributed to the presence of BPD.
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Maternal vascular unit deficiency, amarker for pre-eclampsia, is a
common placental pathology associated with FGR, and it has also
been shown that maternal vascular unit dysfunction doubles the
risk of BPD in preterm human infants (118). Thus, human and
animal data strongly support that the foundations of postnatal
lung deficits and BPD are laid down in utero in FGR infants with
placental insufficiency, and that vascular pathology is likely to be
a contributing factor.

Neonatal pulmonary hypertension is highly associated with
decreasing gestational age and low birth weight, and is a
common complication of BPD (96). Pulmonary hypertension
is characterized by hypoxemia of the newborn and right-to left
shunting through the ductus arteriosus, due to maintenance of
high pressures within the pulmonary circulation. Accordingly,
neonatal pulmonary hypertension occurs via a failure of
structural cardiovascular remodeling after birth, and is likely
developmentally programmed in utero (122). In post mortem
tissue analysis it is shown that newborns with pulmonary
hypertension displayed reduced pulmonary vascular surface area
with increased muscularization of distal pulmonary vasculature
(123). These data suggest a strong association with FGR induced
by vascular remodeling in chronically hypoxic fetuses, resulting
in impaired control of vascular tone within the pulmonary
circulation after birth. Altered pulmonary vascular composition
has been more closely examined in growth restricted rats,
demonstrating increased pulmonary vasoconstriction caused by
local endothelial dysfunction and excessive collagen and reduced
elastin in the pulmonary vasculature (124). Animal models
of FGR also provide strong evidence that the hallmarks of
pulmonary hypertension are already present in the growth-
restricted fetus and offspring soon after birth. Our group
and others have shown vascular changes, including decreased
vascular density and dysfunction in fetal sheep (116) and in 2-
h-old lambs (110). Thus, even prior to birth, FGR is associated
with pulmonary hypertension.

The long-term effects of low birth weight have been examined
in adult offspring conceived during the 1940s Dutch famine,
who show an increased risk of obstructive airway disease
(89). Further analysis of this cohort determined that neither
serum immunoglobulin E concentration nor mean lung volumes
were different (125). The authors speculate that bronchial
reactivity must be the cause of the airway disease following
growth restriction.

Neurological Morbidity
Clinical Features
FGR is strongly linked to suboptimal brain development,
and long-term neurological dysfunctions in motor ability,
cognition and learning, and behavior. We have recently reviewed
the consequences of placental insufficiency and FGR on the
developing brain (28), and describe that the age of onset
and severity of FGR, together with gestational age at birth,
play important modulatory roles in altered brain structure and
function. The first indication of structural anomalies of the
FGR brain can be derived from magnetic resonance imaging
(MRI) during fetal development. MRI of the fetal brain during
development demonstrates reduced brain volume, and altered

cortical folding and brain morphology in FGR fetuses (126, 127).
Arthurs et al. (128) showed lower diffusion weighted imaging
values in parts of the brain in severe FGR fetuses as compared
to normal age-matched controls, which were suggestive of an
abnormal maturational profile. Postnatally, at term-equivalent
age, MRI detects reduced intracranial volume, particularly
contributed by decreased cortical gray matter volume in FGR
infants (129), and altered developmental profile of white matter
myelination (130), the hippocampus (131) and the basal ganglia
(132) of growth-restricted infants, compared to appropriately
grown infants. Functional MRI is also an upcoming tool to
study whole brain functional networks in newborn infants for
the assessment of altered organization and prediction of long-
term neurodevelopment (133). Diffusion tensor imaging (DTI)
and connectivity-based analysis of the FGR brain in the neonatal
period is also being increasingly investigated (134).

MRI has the ability to detect even relatively small volume,
structural, and organizational differences within the brain of
FGR and appropriately-grown infants (135) but MRI capability
and expertise in analysis is not readily available at all birth
centers. In contrast, neonatal cranial US is widely used, but
shows less sensitivity for detection of these subtle, but important
neurological changes associated with neuropathology in FGR
infants (136). Cranial ultrasound is frequently used as an
assessment tool in premature infants, and term infants with
severe FGR, to identify significant neuropathology in the
neonatal period. There remains uncertainty as to whether cranial
ultrasound can adequately detect neuropathology associated
with FGR when compared to age-matched appropriately grown
preterm infants (135, 136). Certainly in older preterm and term
FGR infants, the benefit of routine cranial ultrasound screening
in the neonatal period is questionable (137). We did not find
evidence of altered cerebral ventricular volume using ultrasound
imaging in FGR infants <10th centile, however we did observe a
correlation between increasing ventricular volume and a decrease
in functional motor scores (138). Cruz-Martinez et al. (139) have
suggested that FGR infants with signs of middle cerebral artery
and other Doppler abnormalities (indicative of significant brain
sparing) are more likely to have neuropathology that can be
detected on neonatal cranial ultrasound. This is interesting, as it
further supports that the term brain sparing is a misnomer, and
while it represents an appropriate survival response in the fetus, it
is actually associated with worsening fetal condition and greater
brain injury (28).

FGR infants frequently have a reduced head circumference
compared to age-matched appropriately-grown infants, which
is likely due to reduced brain volume (129), and reduced
brain volume persists to 12 months of age (140). Cerebellar
and hippocampal volumes may also be reduced (130). Brain
myelination and connectivity have been shown to be adversely
affected in FGR infants in the first 12 months of life,
representative of white matter injury (141). Diffusion MRI of the
human brain shows that the overall neuronal network complexity
and connectivity of the FGR brain is reduced, with reduced
global and local axonal circuits (142). Long-range cortical-basal
ganglia (thalamocortical) connections are decreased in children
born preterm with FGR, compared to children born preterm
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but appropriately-grown (142), indicating that brain connectivity
is significantly worse in children who were FGR compared
to children who were preterm but well-grown. Deficits in
brain connectivity correlate with neurobehavioral impairments
including hyperactivity and poor cognition at school in children
who were born FGR (143).

Neonatal functional assessment may detect early problems
with neurological processing and behavior in infants who
were born growth restricted. Tolsa et al. (129) showed that
FGR newborns had specific alterations of brain structure as
studied by volumetric MRI at preterm and term age, with
reduced cortical gray matter volume correlating with deficits
in attention and responsivity at term-equivalent age. General
movement assessments (Prechtl movements) provide an early
motor analysis, wherein abnormalities are predictive for cerebral
palsy, and general movements may be adversely affected in some
FGR infants (144). Similarly, electroencephalography performed
early in the neonatal period has been shown to be affected
and may correlate with adverse neurodevelopment in studies
of FGR infants (145, 146). There is however limited data on
early detection of functional deficits in growth-restricted infants,
reflecting challenges in detecting delayed neurodevelopment in
the neonatal period.

Pathophysiology
It is now well established that the traditional brain sparing
physiology does not necessarily mean normal cerebral
development in utero (28). In fact, fetuses with the most severe
brain sparing are at the highest risk of adverse neurodevelopment
in childhood. Prenatal loss of vasoreactivity in FGR has been
suggested as a mechanism for poor outcomes, in which
fetuses who do not adjust their cerebral circulatory control in
response to hypoxic challenge may be more at risk of impaired
cerebrovascular regulation (147). There are also reports of
preferential perfusion and cerebral redistribution of brain blood
flow in FGR fetuses, leading to some brain regions being at higher
risk of injury (148). This is supported by work in fetal sheep to
demonstrate that FGR is associated with regional cerebral blood
flow redistribution, with the most notable differences between
FGR and appropriately grown fetuses seen in the cerebral cortex
and periventricular white matter (21).

Cerebral blood flow frequently continues to be abnormal
for the first few days after birth in FGR human infants, but
whether this puts infants at an increased risk of acute brain
injury is not known. It has been reported the cerebral blood
flow remains elevated after birth in FGR infants (149), even
when the neonate is no longer exposed to a hypoxic environment
and is no longer in need of a compensatory change in cardiac
output. Postnatally, elevated cerebral blood flowmight potentiate
hyperoxia and oxidative stress within the fragile brain, which
could also contribute to further neurological damage.

Animal models of chronic hypoxia and growth restriction
have helped us to understand the development of neuropathology
associated with placental insufficiency and FGR (28, 150–152).
Adverse effects on brain gray matter development, white matter,
and cerebellum have been described both in sheep, rabbit and rat

models of FGR (153–155). In fetal sheep, we showed that early-
onset placental dysfunction is associated with more widespread
and severe white matter brain injury and neuroinflammation
compared with late-onset, however both early- and late-onset
FGR demonstrate complex patterns of gray and white matter
neuropathology (154). Animal studies also show that the severity
of brain injury, and the resultant neurodevelopment deficits,
depends on the extent and severity of brain involvement in
FGR (156). Hypomyelination and delayed myelination due to
oligodendrocyte maturational deficits have been identified as
possible mechanisms causing the white matter injury seen
in FGR infants (157). Deficits in neuronal connectivity have
also been described in animal models (158). Our group, and
others, has observed that deficits in various components of
the neurovascular unit play a significant role in the brain
injury seen in animal models of FGR (159). Prematurity is
a confounder in human FGR, but studies in FGR animals
allow the separation of growth restriction and preterm birth.
The individual contributions of preterm birth and/or neonatal
ventilation of the FGR newborn on the progression of brain
injury are now being examined (160, 161). These studies have
determined that preterm birth and ventilation synergistically
predispose the vulnerable FGR brain to neuropathology.

Impact
FGR infants are at increased risk of adverse neurodevelopmental
outcomes in childhood. Neurological morbidities related to
motor deficits, including cerebral palsy, behavioral issues, and
cognitive impairment is significantly increased in young children
and adolescents who were diagnosed as growth restricted at
birth (28, 162–164). The risk of cerebral palsy is 30-fold
greater in FGR infants, compared to those that are well grown
(165), and increases with worsening growth restriction. Overall,
>40% of children who have cerebral palsy had a low birth
weight; that is, they were growth restricted, born preterm,
or both (166). This is important, as FGR and preterm birth
are frequent co-morbidities. In addition to motor deficits,
preterm FGR infants followed-up at 1, 2, and 3 years of age
showed deficits in cognition and behavioral outcomes compared
to preterm age-matched appropriately-grown infants (167).
Further, a longitudinal study observing FGR offspring with
evidence of brain sparing from birth to middle school age (9–10
years old) found a complex set of neurodevelopmental deficits,
such as a significant reduction in IQ, compared to age-matched
appropriately-grown children (168). Multiple follow-up studies
of FGR infants into school age describe diminished gross and fine
motor skills, cognition, memory, and academic ability, as well as
neuropsychological dysfunctions encompassing poor attention,
hyperactivity and alteredmood (143, 169–171). FGR infants born
preterm and those with fetal circulatory redistribution are at
the greatest risk for the worst outcomes (172). These adverse
outcomes can continue into adolescence and young adulthood
(173). It is apparent that determining the neurodevelopmental
consequences of FGR is complicated by the severity of FGR,
early- or late-onset, and the gestational age at delivery (28).
However, in both early- and late-onset FGR, the presence of
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cardiovascular redistribution and brain-sparing is associated
with abnormal neurodevelopmental outcomes (28).

Interventions for Improved Outcomes
Management of pregnancies complicated by FGR represents a
balance between antenatal compromise, often with worsening
chronic hypoxia that contributes to subpotimal organ
development, and the risks associated with preterm delivery
and postnatal intensive care, which may also contribute to
morbidities. In high-income countries, about half of fetuses with
moderate- to severe-growth restriction are detected antenatally
and are therefore amenable to treatment during pregnancy, but
it remains that nearly 40% of infants born at the 3rd centile
for weight are not detected in utero (44). With this in mind,
both antenatal and postnatal therapies must be considered.
Currently, no specific treatment is available for FGR. Potential
treatments should target maldevelopment of multiple organs,
various injurious pathways, cell types, and structural deficits
that manifest over different developmental stages. Here we will
provide an overview of the current state of understanding for a
handful of treatments for FGR (Figure 3).

Antenatal
Antenatal treatments are principally aimed at improving
placental function and thereby increasing fetal growth in utero.
To date, the best studied of these has been sildenafil citrate.
Sildenafil is a potent phosphodiesterase type 5 (PDE5) inhibitor
that is an effective smooth muscle relaxant where the PDE5
enzyme is present in an organ or tissue, as is the case for
the human placenta (174). The effects of sildenafil on smooth
muscle are mediated via an enhanced and prolonged nitric oxide
release leading to vasodilatation. Both in vitro and in vivo studies
demonstrate that sildenafil vasodilates human myometrium
vessels from normal (175, 176) and growth restricted placenta.
Most experimental studies to date support that sildenafil
increases fetal weight in compromised rat, sheep and human
pregnancies (177). In contrast, we have shown that antenatal
sildenafil administration to pregnant sheep with placental
insufficiency decreases fetal weight and worsens fetal hypoxia
(178). Although initial preclinical evidence for the multinational
STRIDER trial suggested improved outcomes for FGR infants,
this trial has now been aborted due to unexpected baby
deaths (179), leading to a call for increased preclinical studies
underpinning clinical trials (180), and improved understanding
of the effects of sildenafil on the fetus given that it crosses the
placenta (181). The longer acting tadalafil remains an active
clinical experimental treatment of interest as an antenatal therapy
for FGR and, given that tadalafil does not cross placenta (174), it
may be more favorable as a targeted placental treatment.

The EVERREST Project is also investigating a targeted
approach to improve placental function in pregnancies
complicated by FGR using gene therapy to inject vascular
endothelial growth factor (VEGF) into uterine arteries (182).
VEGF is known for its role in inducing angiogenesis and in
the EVERREST Project it is hypothesized that application of
adenovirus VEGF in, or near placental arteries will induce a
local and acute increase in VEGF expression, and subsequent

angiogenesis of the placental vasculature. Preclinical studies have
shown promise with improved blood flow (183) and fetal weight
gain (184) in animal models of growth restriction, resulting from
the improved vascularization of the placenta. The clinical trial
is ongoing.

A recent large animal (sheep) study examined intra-amniotic
administration of the growth-promoting protein insulin-like
growth factor-1 (IGF-1) (16). This work showed that increasing
the bioavailability of IGF-1 in pregnancies complicated by
placental insufficiency and FGR improved birth weight in female
lambs, but not males, and modified postnatal catch-up growth
in both females and males. Intrauterine IGF-1 also mediated
expression of key somatotrophic and metabolic genes, indicative
that antenatal treatment could be utilized to positively affect
postnatal growth and wellbeing.

A number of antenatal treatments have been explored
preclinically that aim to restore fetal oxidative tone via maternal
antioxidant administration, using agents such as allopurinol,
melatonin and vitamin C (75, 79, 185). Antioxidant treatment has
principally targeted improved cardiovascular and neurological
outcomes in growth-restricted offspring. To date, melatonin has
been themost widely studied, givenmelatonin’s established safety
profile, ease of administration, and strong antioxidant benefits.
In sheep, we have shown that maternal melatonin administration
to ewes carrying a growth restricted fetus results in a significant
improvement in vascular function and reduced arterial stiffness,
two vital pathologies evident in FGR offspring, which predispose
to cardiovascular disease (75). Melatonin administration also
resulted in improved cardiac function in the right ventricle.
Further, this study showed that maternal melatonin improved
fetal oxygenation and increased birth weight (75), however other
ovine studies show either no improvement in birth weight (186)
or exacerbation of growth restriction with melatonin (187).
In cultured human umbilical vein endothelial cells (HUVECs),
melatonin improves vascular endothelial integrity, likely via
combined anti-oxidant and anti-inflammatory mechanisms
(188). Exposure to antenatal melatonin does not reverse alveolar
simplification in FGR newborn lambs (102), but does improve
pulmonary vascular structure and function (189), and pulmonary
tone may be maintained long term via alteration to receptor
populations (190). As our understanding of perturbations to lung
growth in FGR offspring continues to be explored, so too does the
opportunity for targeting novel pathways. For example, recent
work has shown that NPY is down regulated in FGR, where NPY
is a sympathetic neurotransmitter that is critical for normal lung
growth (191).

The effects of maternal melatonin administration on brain
development have also been examined. Antenatal melatonin
crosses the placental and the blood brain barrier, and melatonin
is a strong antioxidant and also demonstrates anti-inflammatory
benefits in the developing brain (186, 192–194). In pregnancies
complicated by placental insufficiency and FGR, maternal
melatonin improves white matter brain development via
increased myelination and decreased axonopathy in the fetal
brain, and subsequently, neurobehavior of FGR+MLT lambs
is significantly improved after birth (186). Melatonin has also
been shown to have beneficial effects on cerebral vasculature
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by preventing FGR-related apoptosis and disruption of blood
brain barrier instability via improved vascular interactions with
astrocytes and pericytes (195). Antenatal melatonin has been
examined in pilot studies to treat FGR (186) and preeclampsia
(188) with results supporting that melatonin is an effective anti-
oxidant that is safe for the mother and baby, and may extend
pregnancy (196).

Emerging evidence supports that the glycoprotein lactoferrin
shows potential as an antenatal treatment for pregnancies
complicated by FGR, particularly for the developing brain
(197). Lactoferrin is a glycoprotein that demonstrates strong
antioxidant, anti-inflammatory and anti-microbial effects—
important factors that could mediate neuroprotective benefits.
In rats, lactoferrin supplementation during pregnancy shows
positive benefits for dexamethasone-induced fetal growth
restriction (197). Maternal lactoferrin significantly increased
birth weight of control rat pups, and FGR offspring exposed
to lactoferrin showed a normalized weight at postnatal day 21.
Lactoferrin supplementation also improved brain hippocampal
structure and stimulated brain derived neurotrophic factor
(BDNF) (197), important observations in light of the
neuropathology associated with human FGR. Nutritional
supplementation (glucose, amino acids and electrolytes)
into the amniotic sac of FGR rabbits has also recently
been explored, with some promising results suggesting that
survival rate for FGR offspring was improved with treatment,
although birth weight and cardiac function deficits were not
improved (198).

Postnatal
As mentioned above, nearly 40% of human infants with
severe FGR are not detected antenatally (44), and therefore
not amenable to antenatal treatments. In light of this we
must continue to investigate therapies to improve multi-organ
dysfunctions in growth restricted infants. We have highlighted
in this paper that deficits in cardiovascular, pulmonary and
cerebral development are already present at birth in FGR infants,
principally caused by chronic hypoxia in utero. Therefore any
potential postnatal therapy would aim to be reparative and to
prevent progression of ongoing multi-organ damage.

Lactoferrin shows great potential as a postnatal therapy, in

addition to positive effects antenatally. Lactoferrin is highly

abundant in human colostrum and milk, and it reaches the
brain after oral administration (197, 199). In this regard,

breastfed infants show higher total anti-oxidant capacity and a

lower oxidative stress index compared to non-breastfed infants.
Importantly, randomized controlled trials with nutritional
lactoferrin supplementation in premature neonates demonstrate
a promising reduction in late onset sepsis and necrotizing
enterocolitis (200). Lactoferrin supplementation during lactation
is protective for neonatal rats exposed to either hypoxia-
ischemia or lipopolysaccharide-induced systemic inflammation
(201, 202). Analysis of the neonatal rat brain using a combination
of advanced MRI analysis and histology demonstrates that

gray and white matter microstructure is normalized with
lactoferrin supplementation, myelination is protected and
measures of axonal integrity and brain organization are
restored in rats with lactoferrin supplementation (201). Early
environment enrichment or postnatal stimulation has also
been shown to have some benefits in brain connectivity in
a rabbit model of FGR (203). While there are no current
published studies on stem cell therapy for FGR related brain
injury, our lab and others are working on testing their
applications in FGR and other pregnancy complications (204).
The application of postnatal therapies to improve multi-organ
deficits associated with FGR should remain a foremost preclinical
research area.

CONCLUSIONS

Understanding the pathophysiological mechanisms that underlie
neonatal morbidities that are particularly associated with
FGR provide the fundamental basis for improving short-
and long-term outcomes in growth restricted offspring. It is
clear that placental compromise and chronic fetal hypoxia
program the fetus for suboptimal growth and development,
with fetal cardiovascular dysfunctions and altered organ
development already apparent in the FGR fetus during
pregnancy. The timing of the onset of placental insufficiency,
the severity of growth restriction, the degree of cardiovascular
adaptation, and gestational age at birth are all critical factors
that modify outcome for FGR infants. In the neonatal
period, FGR infants demonstrate early evidence of cardiac,
vascular, pulmonary, neurological and other deficits, which
can lead to long durations in neonatal intensive care, and
long-term health problems. Improved antenatal detection,
and both antenatal and postnatal therapies that target the
key pathophysiological mechanisms underlying altered multi
organ structure and function must be considered critical
research areas.
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