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In the last decade, the concept of animal stress has been stressed thin to accommodate

the effects of short-term changes in cell and tissue physiology, major behavioral

syndromes in individuals and ecological disturbances in populations. Seyle’s definition

of stress as “the nonspecific (common) result of any demand upon the body” now

encompasses homeostasis in a broader sense, including all the hierarchical levels in a

networked biological system. The heterogeneity of stress responses thus varies within

individuals, and stressors become multimodal in terms of typology, source and effects,

as well as the responses that each individual elicits to cope with the disturbance.

In fish, the time course of changes after stress strongly depends on several factors,

including the stressful experiences in early life, the vertical transmission of stressful-

prone phenotypes, the degree of individual phenotypic plasticity, the robustness and

variety of the epigenetic network related to environmentally induced changes, and

the intrinsic behavioral responses (individuality/personality) of each individual. The

hierarchical heterogeneity of stress responses demands a code that may decrypt

and simplify the analysis of both proximate and evolutionary causes of a particular

stress phenotype. We propose an analytical framework, the stressotope, defined as

an adaptive scenario dominated by common environmental selective pressures that

elicit common multilevel acute stress-induced responses and produce a measurable

allostatic load in the organism. The stressotope may constitute a blueprint of embedded

interactions between stress-related variations in cell states, molecular mediators and

systemic networks, a map of circuits that reflect the inherited and acquired stress

responses in an ever-changing, microorganismal-loaded medium. Several features

of the proposed model are discussed as a starting point to pin down the maximum

common stress responses across immune-neuroendocrine relevant physiological levels

and scenarios, including the characterization of behavioral responses, in fish.

Keywords: stress, stressotope, fish, teleost, plasticity, transcriptomics, phenomics

INTRODUCTION

When studying the adaptive ecophysiology of stress in teleosts, the largest group of fishes and
therefore of vertebrates, their extremely diverse life stories appear. This diversity impedes a
unified and common description of stress-related effects of environmental insults in fish, and,
in consequence, is understandably overlooked in comparative interspecies analyses of stress
physiology. Often, the physiological effects of stressors are treated as species-specific features of
the chosen animal, but not always expressly acknowledged as such. Therefore, in the literature,
the uncovered stress-related feature of a single or few species becomes, misleadingly, a prominent
characteristic of all teleosts.
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Reducing the exogenous and endogenous covariates that
elicit stress-related responses undoubtedly helps to reproduce a
more focused physiological process in the laboratory. However,
this approach veils the adaptive and, more importantly, content-
rich interactions between stress-related gene expression and
phenotype turnover across the life stories of each species.
Consequently, the high diversity of teleost lifestyles enriches the
physiological analysis of stress effects in fish, but also flaws a
unified description of common responses to stress. To overcome
this dilemma, the analysis of pan-specific common predictors
of stress-related responses should be entrusted to the accurate
selection of more explanatory variables. For example, when
analyzing the effects of high or low temperatures on physiological
performance in ectothermic species, choosing species-specific
optimal temperature limits (thermopreferundum) as baseline
values allows for comparing the effects of common stressors
(1, 2). This approach assumes that the thermic reference
summarizes the adaptive pathway to temperature tolerance
evolved in a particular biotope (and, implicitly, part of the
adaptive life story of each species), and guarantees a more
realistic description of the “natural” (or eustressed, see below) vs.
maladaptive (distressed) pathways of stress responses. The same
applies for the comparative inter-species analysis of immune
responses to stressors in adult fish, where we should consider
specifically the maturation of primary and secondary immune
organs rather than the relative size of fishes. The microorganism
load may substantially differ between marine and freshwater
realms, but both environments share the deleterious effects
of the communities of resilient low-abundance pathogens (3).
Therefore, diverse stress-related physiological adaptations in
teleost inhabiting aquatic biocenosis are to be expected, as well as
the inter-species commonalities of biological signal transduction
and physiological axes. Given that, the degree of functional
maturation of immune-related organs and tissues becomes a
proxy for adult/mature physiology and allows for the effective
cross-species comparison of immune responses to stress in a
microbial-rich environment. These examples suggest that when
we analyze a particular stress-related phenotype we are not only
describing the physiological outcome of specific gene networks,
but also the recapitulation of the evolutionary life-stories of each
individual (Figure 1).

Considering the complex influences between environmental
stressors and pathogen communities, in this short review
we propose a modified biotope concept (4) for analyzing
stress-induced abnormal responses (i.e., capable of inducing
an allostatic load that compromise the evolutionary conserved
activation of regulatory stress-related physiological axis
responsive to normal/adaptive stress, see below). This approach
would reduce the complexity of species-specific stress analysis
to a set of common descriptors, endogenous and exogenous,
of such responses. Here, we define a teleost “stressotope” as
an adaptive scenario dominated by common environmental
selective pressures that elicit common multilevel severe stress-
induced responses and produce a measurable allostatic load in
the organism.

Defining the components and dynamics of a stressotope may
help to reframe the variability of interspecific stress responses in

teleosts in terms of the cross-linked interactions between niche
characteristics, diverse genomic scaffoldings and phenotypic
specificities that define a set of common, multilevel stress
responses in fish. Several endogenous and exogenous features
that may be relevant to modeling stressotopes are presented
below as a starting point, by no means exhaustive, to discuss
the value of this ecophysiological approach to analyze the
commonalities to stress responses.

STRESSING THE STRESS RESPONSES

Although some definitions and general considerations on
the stress concept involve the idea of an altered status and
physiological exceptionality, it is also true that coping with
stressors, the stress course, and the response of the organism
are not only a common mechanism but also a very sound and
conserved response among living species. Hence, the stress
responses should be considered as one of the basic and important
mechanisms that are key to maintain the physiological, cellular
and molecular stability (homeostasis) of the organism. A myriad
of mechanisms available to face the impact of stressors will
be selected or modulated depending on many factors: the
species itself, the environmental conditions, and chiefly, the
intensity, duration and predictability of the stressor. Therefore,
an important part of the machinery behind the stress response
is the same that is engaged after other stimuli that are not
considered stressors, such as reproductive changes, exercise,
immune stimulants, feeding, light-dark transitions or the
presence of conspecifics or enrichment objects. That is why
it is also difficult to make a definition of the stress concept
with precision.

Along the years and among the authors that have dealt with
the concept of stress (5), several definitions have been provided
following the initial definition, “the non-specific response of the
body to any demand placed upon it” that was proposed by Hans
Selye in 1951 (6). Several concepts have been proposed that agree
with the current consensus that stress responses emerge when
the stimulatory demand exceeds the natural regulatory capacity
of an organism (7). For instance, Selye’s eustress and distress (8)
responses differentiate between a “normal” state, in which no
significant alterations are recorded and the homeostasis is not
impaired (although some hormonal, metabolic or molecular
stress-related mechanisms can work), and an “abnormal” state in
which significant alterations are regarded, an overall perception
of alarm occurs and the stress-related mechanisms are highly
engaged. Hormesis has been defined as any process in which a
cell or an organism exhibits a biphasic response to exposure to
increasing amounts of a specific condition (9). It is currently
applied to chemical stimuli but it has been applied to amounts
of sensory stimulus, metabolic alterations and stressors. Thus,
low-dose exposures would elicit a stimulatory, beneficial or
compensatory response (eustress), whereas high doses elicit
inhibition, alteration or suppression (distress). Likewise, the
term allostasis (10), refers to a concept linked to the energetics
or the “economy management” of the body resources. Any
stressor may lead to an allostatic load that first, compromises the
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FIGURE 1 | Several influences that shape distress-related phenotypes in fish. The analysis of common responses to stress relies on (1) the evolutionary life-stories

endured by each species (i.e., genome duplications, changes in stress-related gene pools, changes in oxygen and temperature levels over geologic time and

dynamics of extinction/speciation throughout Earth’s history) that constraint the evolvability of biological systems and (2) the pattern and scale of environmental effects

in a particular biotope. When analyzing a particular stress-related phenotype the physiological outcomes of specific gene networks during the twin processes of

development and growth/metamorphosis have been taken into account, but also the effects of epigenetic transmission of cortisol sensitivity, the differential responses

to stressors between sexes and the behavioral interactions within populations as starting points. In this sense, a stressotope defines the boundaries of common

pan-specific maladaptive stress responses in a particular/local biotope not only from the perspective of abnormal changes in environmental resources, but also, from

the global-scale changes recapitulated in the life story of each individual, i.e., the functional genomics and phenomics of stress intertwined with functional ecology

across spatial scales.

overall balance of the organism, and second, involves a higher
demand of resources that either leads to a higher acquisition of
food/energy or induces a number of physiological and metabolic
internal compensations in order to retain the lost balance. This
results in maladaptation, which indicates that the regulatory
mechanisms have not been able to compensate the effects of
the stressor. Maladaptation is often associated to chronic stress
since heavy acute stressors may result in death, and mild ones
in recovery. These chronic stressors leading to maladaptation
are very relevant in farmed animals, including fish subjected to
artificial conditions.

The perception of stress involves the receptor-mediated
sensing of the stressor, either physiologically at neuro-endocrine
or cellular levels. The perception mechanisms are important,
not only to act as transducers of alarm signals but also to
discriminate the intensity of the stress stimuli and therefore the
threshold required to trigger the response mechanisms. In fish,
neuroendocrine signaling affects and becomes regulated by the
onset of immune responses, due to the peculiar organization of
the head kidney, a hematopoietic tissue made from a mixture
of endocrine, hematopoietic and immune cell populations,
akin to the mammalian adrenal gland and bone marrow. As
in the rest of vertebrates, those responses are mainly mediated
by the activation of two hormonal axes in fish, the sympatho-
chromaffin (SC) axis and the hypothalamic-pituitary-interrenal

(HPI) axis (11). The SC axis activates a fast stress response,
involving the cardio-respiratory system by increasing ventilatory
and heart rates, heart stroke volume, and blood perfusion in
gills and muscle, providing glucose supply to critical tissues,
with adrenaline being one of the major mediator hormones. An
activated HPI axis contribute to the re-organization of resources
by increasing the catabolic pathways, supplying glucidic sources,
processing fatty acids for energy, and suppressing other high-
cost energy and longer-term processes such as those of immune
responses, being plasmatic cortisol levels one of the major
mediators (12).

By binding to glucocorticoid (GR) or mineralocorticoid (MR)
receptors, cortisol regulates neuroimmunoendocrine circuitries
elicits stress-induced immunosuppression and contributes to
allostatic imbalances. That is why is particularly suited for
stress-related surveys in natural and artificial environments and
the focus of the search for common global markers of stress
states in fish. However, the levels of cortisol in distressed fish and,
consequently, the individual perception and physiological effects
of the intensity of the stressors, are usually strongly biased for
neuroendocrine and immune systems in a highly species-specific
manner, which makes the prognosis of stress recovery both
apparently simple and dauntingly complex (13). Moreover,
within-species diversity in cortisol levels also differs between
behavioral phenotypes. As discussed below, selecting for “bold”
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(proactive) and “shy” (reactive) individuals in a population also
segregate animals as low- or high-cortisol responders, masking
the common cortisol-related responses to stress. A side effect
of this behavioral phenotyping can be seen in experiments
with paired trout, in which agonistic competition for food
resources leads to cortisol-based hierarchical social labeling,
with animals ranging from dominant (proactive, usually with
low plasmatic cortisol levels) to subordinate (reactive, usually
with high plasmatic cortisol levels). When the social status is
reversed, cortisol levels in former subordinates are recovered
quickly, rendering useless the measure of cortisol levels as a
global long-term commonmarker of social stress (14). The direct
effects of social status on plasmatic cortisol levels should also
be balanced out by analyzing the food control exerted by the
dominant conspecifics that may indirectly elevate cortisol levels
in food deprived stressed subordinates.

Cortisol implants may fail to act as a proxy of behavioral
patterns in teleosts (15, 16), and the repeatability of cortisol
profiles is higher in reared as opposed to free-living fish due to
the artificial control of environmental variables (17). Circadian
and seasonal cycles of cortisol secretion must also be considered
for assessing the sensitivity and adaptability to stressors (18),
considering that cortisol are involved in the synchronization of
circadian systems in fish (19). This clearly indicates that a more
complex multiscale approach (i.e., from cellular activation to
organism and population dynamics in specific stressotopes) will
be desirable to describe the effects of stressors.

Besides cortisol, other mediators of stress responses,
namely major regulatory axis components (ACTH, CRH,
proopiomelanocortin –POMC- peptides, β-endorphin, α-
MSH), opioids and a myriad of immune cytokines have been
extensively used to define commonalities in altered stress
states, but the species bias remain. In the last decade the quest
for commonalities of stress responses in fish has focused in
peripheral structures such as the mucosae, that sense and
distribute alarm signals from pathogens, parasites, bacteria,
injuries, sudden changes of salinity or oxygen or the presence
of chemicals in the water (20, 21). Skin, gills or intestine may
often be the first structures that sense the stressors, but they
do so again in a marked species-specify manner (20, 22, 23).
The reorganization of the overall metabolism to cope with the
stressors also involve an alteration of thyroidal axis (24) related to
the energetics and mobilization of fat resources, especially in fish
undergoing severe metamorphosis regulated by environmental
shortages, such as in smolting salmons (25, 26). Under stress,
growth is arrested, the reproductive processes are suppressed or
depressed and chronic stressors induce immune suppression, in
particular in expensive processes such as white cell production
and antibody production, whereas other responses such as
phagocytosis may be maintained (27, 28). However, as seen in
whole organism physiological responses, at the cellular level
the delicate equilibrium between adaptive and maladaptive
stress seems to be the norm. Reactive oxygen species (ROS), for
example, signal oxidative stress as an evolutionary conserved
phagocyte response to infection or xenobiotics (29). However,
as part of the environmental stress response, the expression of
ROS-related genes vary in hermetic fashion: mild oxidative stress

promote the expression of antioxidant defenses that, if defeated,
lead to enhanced gene expression that may have distressed
outcomes (30). The effects of stress-essential (responsive to
specific stressors) and stress-induced (involved in metabolic and
high order neuroendocrine axis activation) genes (31) reach
from cellular disturbances all the way up to systemic processes,
and demand a multilevel approach to determine stress sensing
and resolution in a stressotope context.

Notwithstanding the intensity of the stressor, in fish as in other
vertebrates, the onset of short-term stress mechanisms usually
correlates with genome-fixed and protective adaptive responses
to seasonal and predictable environmental perturbations and
health insults, whereas long-term responses to stressors tend to
be considered as harmful expressions of allostatic imbalances
in an unpredictable or pathogen-ridden environment (32).
This brings the necessity for a broad multilevel framework that
may define more precisely the effect of stressors in cellular,
physiological, pathological/clinical and (eco)systemic scenarios.

OVERCOMING THE SCENIC FEAR

Ancient and extant biotic and abiotic dynamics of aquatic
environments shaped the adaptive/essential stress responses
of fish in a species-specific fashion and should be considered
when defining a stressotope. Here we discuss the effects of
environmental stressors from a dual perspective, including
the physical heterogeneity (natural and man-made) and the
reeducation of genomic landscapes in populations placed under
explicitly perceived predation risk.

The term “fishes” continue to be a phylogenetic trap that
encompass a loosely grouping of more than 28,600 species of
ray-finned fish (Actinopterygii) and elasmobranchs, unequally
distributed in freshwater (12,740 species) and marine (15,886
species) environments (33). The distribution and diversity of life
story patterns in extant fish reflect the differential characteristics
of both realms that helped to shape the organization and
expression of stress-related genome structures. Teleosts comprise
a monophyletic group that accounts for roughly 98% of species
of ray-finned fishes. Both marine and freshwater environments
seem to be dominated by percomorphs and ostariophysians
(34), but marine fishes show an unexplained low diversity in
a realm that covers 70% of the Earth’s surface (35). Several
competing hypothesis have been suggested unsuccessfully to
explain such differences, ranging from ecological constrictions,
homogeneity-heterogeneity of water biotopes or ocean’s net
primary productivity and spatial heterogeneity [see (34–36)
for a comprehensive review]. Freshwater fishes inhabit a
0.01% of available planetary water volume, usually more
fragmented, prone to isolation and barred to dispersal of
organisms than oceanic environments (37). This favors intense
selective pressures that quite frequently lead to niche-specific
diversification, adaptive radiations and increasing speciation,
the many phenotypes of African cichlids being the most cited
example of such processes (38). It has also been described a
greater resilience to extinction in these freshwater low-density,
high-diversity specialized fish populations compared to their
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marine counterparts (39), probably due to the differential
exploitation of resources (detritivores seem to be more
abundant in freshwater environments) and large-scale geological
perturbations. In this sense, freshwater taxa seem to be more
affected and selected for temperature and climatic variations
(33).

Anoxia and osmotic changes affect teleost performance, but,
being fish ectothermic and oxygen levels and saline content
strongly dependent of temperature, thermal conditions largely
define the boundaries of stressotopes. In fish, a sudden drop
in temperature diminishes the production of immune cellular
and molecular resources, impairs T cell-dependent immune
responses and may led to cellular inactivation or anergy (40–42).
High temperatures correlate with enhanced parasite transmission
and resilience within hosts’ bodies (43, 44), even when the onset
of behavioral fever may stimulate phagocytic activation and
modulate innate humoral responses (45). In fish, shifting too
far away from thermopreferendum wakes up distress-induced
genes and alters the responsiveness of HPI and immune axis
(46), but the overall effect may be modulated by acclimation
to temperature changes (42). In this sense, the plasticity of
phenotypic responses to thermic-related stressors dictates the
type and relevance of physiologic variables to be included in a
stressotope.

From those observations it is clear that the number and
distribution of fish species and, consequently, their physiological
strategies to cope with stress result from, and are influenced
by the different rates of speciation and extinction (i.e., net
diversification) in each environment. Several model species,
such as trout, zebrafish or carps inhabit freshwater niches
and may endure unexpected selective pressures due to the
limitations of toxic drainages, xenobiotic clearance or dissolved
oxygen-consuming autotrophic blooms, common to lentic
environments. Under these conditions a high turnover of species
richness, together with accelerated evolution of stress-related
homeostatic mechanisms is to be expected. For example,
in fast-growing short-lived killifish species, the exposome,
defined as an adding-up response to a lifetime expositions to
environmental insults (47) correlates with a fast paced adaptation
to Human Induced Rapid Environmental Changes, HIREC (48).
Complexity, severity and pace of HIREC changes have been
proposed to explain the rapidly acquired tolerance to stress
of different populations of killifish (Fundulus heteroclitus) in
polluted estuaries (49). In this species, a maladaptive stress
scenario forced the emergence of genetic polymorphisms related
to xenobiotic clearance and stress responses such as the aryl
hydrocarbon receptor (ahr) signaling pathways, cytochrome
P450 1A (cyp1a), heat shock proteins (hsp70), multidrug
resistance transport proteins (mrp) and estrogen receptors
(esr2b). In this model of distress modulation, the environmental
trade-offs defined a pattern of gene expression and the emergence
of low-responders stress-tolerant populations, but the fitness
costs depended on specific particularities of newly adapted
phenotypes. This suggests that the physiological costs of evolving
tolerances to specific stressors strongly depend on the population
and individual fitness in a particular niche. In other words,
in diversified population assemblages, well-characterized and

common stress phenotypes expressed from stress-related genetic
markers may quickly reverse in a population-specific manner,
hindering the definition of a set of common stress genes.
Moreover, the expression of gene regulatory networks observed
in different populations of killifish was complex enough to
preclude a one-to-one relationship between clusters of expressed
genes and adaptive features of observed fish phenotypes (50),
probably due to the heterogeneity of xenobiotic stressors. Even
so, under strong selective pressures, convergent evolution may
favor the expression of a handful of stress-induced genes (51, 52),
shared among populations and, possibly, species. This may
be useful for the purposes of establishing a common set of
pan-specific responses to different stressors in fish.

The effects of chronic stressors are context-dependent
and involve a long-term activation of HPI, SC, and
other physiological axis (reproductive, immunological,
thyroidal/metabolic) influenced by stress. In the quest for
rationalize and simplify stress responses across species, an
even more applied definition of stress may help (53): perceived
anticipatory stress, acute or not, resulting from continuous
predation risk. Laundré’s “Landscape of Fear” (LoF) defines this
perceived stress considering the risks of foraging in unsafety
habitats (54). Predation risk, parasite load, metabolic trade-offs
associated to seasonal resource shortages, living in high density
populations, or artificial habitats, HIREC influences and evolved
life story traits have been used to frame the stress related to a
particular biotope, usually measuring behavioral patterns and
glucocorticoid levels as distress indicators (55, 56). However,
despite the content-rich description of these analyses, few
studies have approached the effects of LoF in fish. Behavioral
cascades and patterns of risk aversion have been documented
in coral reef fishes (57–59) and juvenile salmonids (60). In a
highly simplified model of predator-prey relationship between
trout (Oncorhynchus. mykiss) and its prey, (Daphnia pulex)
in a salinized environment coupled with alarm kairomones,
osmotic stress diminished the predatory pressure and favored
prey abundance, whereas alarm cues reduced trout aggression
(61). The effects of combined stressors, however, did not affect
trout growth, probably due to the limitations of the model.

The individual’s perception of stress may also collide with
the maladaptive effects of HIREC-related ecological traps. Albeit
scarcely studied in fish, man-made changes in an otherwise
low-quality habitat may attract fishes unable to properly evaluate
the amount of resources available. As a result, a behavioral glitch
may lead to a struggle to survive in an “evolutionary trap” (62).
For example, drifting fish aggregation devices act as supernormal
stimuli (63) and may lure tuna species to misinterpret habitat
resources (64); coho salmon (O. kisutch) prefer spawning habitats
that greatly reduce their survival (65); and increased water
acidification confounds visual cues in damselfish (Pomacentrus
amboinensis) reducing their antipredator responses (66).

Taken together, those studies confirm not only that the
complexity of the stressotope should be assessed against a
minimum common number of informative variables (Figure 2),
not restricted to binary food webs, but also the relevance of
ecophysiological approaches to describe a unified response
to stress in teleosts. Both net diversification and the effects
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FIGURE 2 | A non-exhaustive list of stressotope components. In fish, the fate

of stress responses to natural (temperature and oxygen variations, changes in

salinity and photoperiod, abundance of pathogens in freshwater and marine

realms...), artificial (cultured) and Human Induced Rapid Environmental

Changes (HIREC) depends mainly, but not only, on environmental insults,

perceived stressful scenarios influenced by continuous predation risk

(Landscape of Fear, LoF) and species-specific intersex differential activation of

stress, immune and metabolic axes. To what extent phenotypic plasticity helps

to cope with maladaptive stressors in turn depends on evolutionary conserved

life stories and behavioral repertoires (see the text for details and

abbreviations).

of perceived risk of depredation and foraging in natural and
artificial habitats provide a coarse-grained description of
environmentally-related impacts on stress physiology in teleosts
and may help to discriminate shared mechanisms common to
stress responses in fish, but the historical genomic remodeling
must also be considered.

ROLLING GENOMES

To delineate a stressotope, a set of pan-specific genes involved
in maladaptive responses to stress must be defined. In the
seascape of fish phenomes, genomes are being continuously
tested and polished against the evolutionary coupling between
environmental and endogenous selective pressures. This
affects specifically the recent omics interpretations of
adaptive physiology of stress in fish. In less than a decade,
stress studies have evolved from moleculocentric analysis to
genocentric approaches, and lately, to genome-wide association
studies, proteomic analysis and high throughput genomic
interpretations of genetic and epigenetic networks’ cross-talking
with environmentally-induced phenotypes that have been

thoroughly reviewed elsewhere (67–70). Dissecting genome-
based responses to severe stressors implies an extensive analysis
of gene regulatory networks and interactions in cellular and
tissue environments. To make the analysis of genome-phenome
interactions more manageable, we can define a “stressome,” or
catalog of genes and its products expressed when the organism
suffers a maladaptive stress, a concept borrowed from studies
of microbial resistance to stressful insults (71) that has been
coined to characterize the roadmap to stress-related changes
in genomic, proteomic, and metabolomic arenas (72, 73).
Stressomes pave the way to a precise definition of stressotopes,
but several methodological and conceptual issues have arisen
in the course of the genocentric turn of fish stress physiology,
mainly the scarcity of model species and the peculiarities of fish
genomes that affect their expression, plasticity and evolvability
under maladaptive scenarios.

Several species of teleosts are considered the gold standard
for developmental, evo-devo, stress-related, and toxicogenomic
studies (20, 74–80). However, to date <0.5% of those species
have a detailed, but still far from being systematic, coverage
of genomic data (81). From the vantage point of comparative
studies, teleost genomes differ from those of other vertebrates
in terms of divergence and redundancy. In addition to the
two events of whole genome duplication common to early
vertebrates, teleost endured another round of teleost-specific
genome duplication 320 million years ago (Mya) (82). Some
lineages widely used as model species, such as Salmonidae
and Cypriniformes have experienced yet another process of
tetraploidization, ∼80 and 8 Mya, respectively (83, 84). To what
extent this diversification leads per se to increased phenotypic
plasticity and adaptability to environmental stressors by means
of neofuncionalization of duplicated genes is still controversial
(85, 86), being the subfuncionalization (the functional division
of ancestral genes among the duplicated ones), loss of genes
or slow evolution of duplicate genes three major outcomes of
genome duplication (87, 88). For example, the recent (<10 Mya)
independent evolution of anadromy in salmonid clades has been
correlated to cooler temperatures that opened new estuarine and
freshwater habitats, and also redefined previous stressotopes,
favoring speciation (85). As described for extremely diversified
non-tetraploid cichlids, several ecophysiological factors may
influence a successful radiation to stressful environments
without specific genome duplications. Instead, genome-wide
diversifying selection on key genes, gene duplication and
regulation by microRNAs and transposable elements may have
allowed their adaptive radiation (89). Additionally, the teleost
genomes analyzed to date seem to have suffered accelerated
rates of nucleotide divergence, high rate of intron turnover
and dramatic loss of conserved noncoding sequences and cis-
regulatory elements [see (90) for a comprehensive review] that
may contribute to their great phenotypic diversity in response to
stressful ever-changing environments. However, this may impair
the inclusion of a set of common stress-related genes as required
when defining a stressotope.

This implies that the species-specificity biases the comparative
genomics of teleosts, but a stressome made of a set of common
predictors of distress still can be assembled from genome-wide
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analysis. This is the case for annual killifish genomes that contain
several hsp transcripts and genes associated with mitochondrial
function that confer resistance to severe (and more importantly,
predictable) environmental anoxia stress during development
and diapausa stages (91). Atlantic cod (Gadus morhua) also
has a surprisingly high number of major histocompatibility
complex (MHC) I genes that supply the absence of MHC II
components, thus maintaining functional antigen trapping and
processing pathways during the onset of immune responses
(92, 93) in microbial-rich environments. Despite their disparate
life stories, metabolism, longevity and genome scaffolding, both
species can still act as genomic models and source of candidate
predictors for distress-related markers because the processes
evaluated (the extreme stress tolerance and the alternate antigen
processing) recruit enough identical or very similar categories of
predictors for an effective description of a common stressome.
Gene expression profile outcomes may differ between stressors
and species, and the methodology is certainly not without pitfalls
[see (94, 95) for a detailed discussion], but including the adaptive
life stories and the environmental biotope may normalize the
analysis of physiological responses to distress. For instance,
uncovering the seasonal oscillations of stress-related regulatory
networks may help to define stressotopes in a more realistic way.
Cortisol has been shown to induce the expression of per1a and
per1b and repress bma11a and clock genes that control circadian
rhythms in fish, and it has been proposed to act as a modulator
of molecular oscillators (19, 96). Molecular clocks that respond
to environmental factors such as light and dark cycles, food
availability and thermal conditions vary both in natural and
in HIREC environments and may contribute to the ticking of
stressomes in a set of defined stressotopes involving migration
and breeding scenarios (97).

Epigenetic modification of xenobiotic and temperature
stress-related gene expression should also be considered to
define a teleost stressome. Fish genomes differ from those of
mammals in the number of methylated sites retained early
in development and contain exclusive DNA methyltransferase
genes that may help in the vertical transmission of the epigenome
(98, 99), but the overall modulation of gene expression follows
the vertebrate pattern (100). Epigenetic analyses have been used
to test the effects of captive rearing in salmons, suggesting that
hatchery-induced epigenetic changes impair the osmoregulatory
seawater acclimation and swimming performance during
smoltification (101). In zebrafish (Danio rerio), xenobiotic
exposure modified methylation patterns during embryogenesis
(102). Diversification of cortisol-responder phenotypes in
stickleback (Gasterosteus aculeatus) offspring of stressed mothers
has been ascribed also to epigenetic changes (103) signaled by
glucocorticoid receptors. Little is known about the long-term
effects of vertical transmission of stressed phenotypes in fish, but
higher responses to cortisol may reduce the fitness of hatchlings
and contribute to allostatic load in stressful environments (104).
In addition, adaptive epigenetic modifications of gene expression
strongly depend upon the degree, intensity and predictability
of environmental changes that may propitiate maladaptive
outcomes of epigenetic modifications, such as the epigenetic
traps discussed below.

Teleost inhabit a stress-prone scenario that favors the
evolution of highly reactive immunological surfaces, such
as fish mucosal skin, gills, or gut, infiltrated by mucosa-
associated lymphoid tissues (MALT), exquisitely sensitive
to pathogenic or xenobiotic insults (21), and that’s why the
analysis of interfacial tissues can be so rewarding to define a
stressome. Fish skin scaffolding consists of a highly secretory
non-queratinized living tissue that harbors stress-sensing
cells, skin associated lymphoid tissues (SALT) packed with B
and T cells, resident or errand myeloid phagocytes and cells
that produce microbicidal molecules and protective mucus.
Teleost SALT induce and regulate local adaptive immune
responses that may communicate with other mucosal tissues
(branchial, GIALT, and intestinal, GALT) and influence
the immune reactivity of systemic lymphoid (head kidney,
spleen, thymus) and metabolic (liver) organs. In addition
to immunological sensing and regulation, fish gills and gut
are also involved in osmoexcretory/acid-base balance and
energetic metabolism (105, 106). In fish, such multipurpose
organs serve both as probes to distressful environmental
changes and as effectors of allostatic rearrangements of
stress-related hormonal axis, and may be specially suited
to define minimum common molecular markers of distress
across species. In a recent study (20), the short-term effects
of hypoxia and vaccination against Vibrio anguillarum
elicited a strongly interspecific differential response of pro-
inflammatory and stress-related genes in MALT of gilthead
seabream (Sparus aurata), a marine species, and rainbow trout
(Oncorhynchus mykiss), a freshwater teleost, being the former
more responsive to stressors. The stress- and immune-related
transcripts tested (lysozyme, c3, igm, hsp70, cox2, Il1β , tnfα,
il6, il10, and tgfβ1), together with the analysis of mucosal-
and plasmatic-derived cortisol levels constitute a typical set
of markers of distressed states that may help to define a
minimum common set of gene-driven responses to stressors
in teleosts.

JANIAN PHENOMES

Nested in the archaic roman pantheon, a two-headed figure,
Janus, represent, among other things, the transition from one
state to another, or from the past to the future. In both vertebrates
and invertebrates, behavioral phenotypes may change during the
lifetime of an individual, following a reaction norm defined by
environmental changes that enhance or suppress the expression
of key behavioral mediators, and constrained by the adaptability
of the genome (107). A stressotope should consequently be
defined by the ontogenic variations and changing phenotypes
that the organism endure in diverse environments. In teleosts,
the study of relevant stressful-prone “janian” phenotypes has
come to focus in recent years in the grounds of fish welfare, and
include among others the ecological distribution of differentiated
behavioral syndromes or individualities (“personalities”) ruled
by environmental stressors [extensively reviewed in (108) and
not to be discussed here], the pathogen effects on physiological
modifications underlying sequential sex changes and the
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physiological changes linked to transition from freshwater to
marine realms in diadromous species.

The majority of fish follow the usual vertebrate gonochorism,
with both sexes being determined genetically or environmentally
(109). Several teleosts also indulge in a plethora of rare vertebrate
reproductive modes ranging from simultaneous and sequential
hermaphroditism to parthenogenesis (110, 111) that have been
ascribed to differential ecological selective pressures (111),
diversification of reproductive mediators by means of whole
genome duplication events (86) and fish-specific idiosyncrasies
of gonadal axis. Males and females usually inhabit the same
environment, but the selective pressures faced by both sexes
may differ owing to variations in size, competition for resources,
diet, microhabitat use aggressiveness and metabolic trade-offs
between gamete production/fecundity and immune resistance to
parasitic load (112), even in sex-role-reversed species (113).

Several sex-biased effects of parasitism and facultative
infections have been described in natural and artificial
populations of teleosts. Poeciliids have been used as a model to
highlight the relevance of sex-specific evolution of physiological
responses to environmental changes on a macroevolutioanry
basis (114). Polygynous guppies (Poecilia reticulata) parasitized
by Gyrodactylus spp., showed an increased responsiveness
to infection in females that lead to differential evolution of
resistance phenotypes (115). Male guppies also differ from
females in the navigational abilities associated to increased
dispersion and mobility in complex environments (116) and
seems to be more prone to parasite infection than females (117).
Unpredictable chronic stress (social isolation, crowding, tank
changes, thermal variations, and chasing) affect zebrafish males
but not females (118), highlighting the double effect of species-
specificity and sex-biased covariation in stress studies. The
offspring of largemouth bass females (Micropterus salmoides)
treated with cortisol showed lower responsiveness to stress and
exhibit less exploratory behavior and aggression than those of
non-treated females (119), adding to the stressotope equation the
still imprecisely described mechanism of vertical transmission of
stress-related phenotypes.

Parasitic load and unexpected environmental changes may
also contribute to the stressful effects of sex-biased physiologies.
Parasite burden accounts for a large portion of stressors in
aquatic habitats, and in vertebrates immunocompetence depends
largely on male and female sex hormones, being testosterone
generally immunosuppresive and estrogens enhancers of
immune system in a broad sense (120). Vertebrate males also
tend to rely more than females in Th1-mediated immune
responses (linked to defensive responses against intracellular
bacterial and viral parasites) whereas females display generally
higher Th2-mediated extracellular responses against parasites
(121). Both T-cell related immune responses have been described
in fish, albeit with species-specific kinetics that may interfere
or potentiate with the resistance to severe infection (122)
and the intensity of distress responses. However, sex-specific
responses to reproductive hormones may be altered by HIREC
changes in water composition, as demonstrated by the effects of
endocrine disrupting chemicals such as 17β-oestradiol in host-
pathogen interaction between males and females of three-spined

sticklebacks (Gasterosteus aculeatus) and the cestode parasite
Schistocephalus solidus (123). When exposed to high doses of
estradiol, parasitized stickleback males were found to be greatly
affected, more than females by parasite growth.

A reduction of fitness in one sex has also been suggested
as the trigger of selective vulnerabilities in species with
environmentally-directed sex determination (ESD). Unexpected
temperature changes may influence epigenetic regulation
of breeding strategies in teleosts with ESD as described for
mangrove killifishes (124). Similar to the “ecological traps”
discussed above, severe environmental or HIREC variations
could skew the sex ratio by inducing short term epigenetic
changes that favor accelerated adaptation to novel environments
but can become “epigenetic traps” in the long term, benefiting
one sex and decreasing the fitness of the other (125). The same
holds true for sequential hermaphroditic species (126), such as
the extensively farmed Sparidae. Several species of this family
practice protandrous (changing sex from males to females)
and protogynous (the opposite) hermaphroditism (127). In
protandrous gilthead sea bream (Sparus aurata) populations,
the few large fertile females surrounded by many smaller males
skew the sex ratio and have greater fitness measured by the
number of offspring (128). In this species, reproductive success
may be linked to the high rates of evolution of female-biased
genes compared to male-biased genes (129), probably due to
differential selective pressures for both sexes at each stage. This
suggests that the effect of environmental stressors may affect the
sex-biased expression of genes in hermaphrodites in a different
way from what has been described in gonochoristic teleosts.

In diadromous species, the still poorly understood and
complex influence of glucocorticoids as mediators of stress
responses modulates stressome structure and function. In
teleosts, crossing continental and oceanic aquatic environments
stresses the physiology of osmoregulation and metabolism in a
complex combination of enhancing and suppressive expression
of HPI, growth and thyroidal axes. A recent study embraced the
joint analysis of ontogenetic stages, sexual, and parasitic effects
in hypoxia-stressed European eels (Anguilla anguilla), defining
a limited stressotope to modulate the causes and consequences
of the stepped decline in eel populations (130). Parasitized eels
showed stronger levels of plasmatic cortisol and higher gill
Na+/K+—ATPase activity that added up to physical constraints
(salinity, temperature) to mark female eels in the last stage of
silvering to be more prone to be stressed by the combined effects
of several stressors. The synergistic effects of parasitism, hypoxia
and biotic factors included in the analysis of eel physiology signal
the way by which a comprehensive and realistic study of stress
responses should be performed. In anadromous salmonids, for
instance, long-lasting migrations subdue the cortisol resistance
and chronically stress semelparous species. To date, the crosstalk
between immune and hormonal components remains unsolvable
due to the complexity of the activation/suppression interplay
between cortisol, thyroid, growth and sex hormones, B cell
lymphopoiesis, inflammation, antibody responses and the
development of immunological memory at different stages
of their life cycle (131). In this case, the stressotope demands
a pronounced level of multiscale complexity to integrate the
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adaptive vs. maladaptive effects of stress in such migratory
species.

As discussed above, fish stressotopes harbor several
opportunistic and obligate parasitic, fungal, viral, and bacterial
pathogens that may transmit stress-prone phenotypes vertically,
by parasite colonization of gonadal tissues, and direct cortisol
effects into eggs (119, 132) and affect not only broodstock
and natural populations but both sexes differentially as well.
Therefore, the puzzling diversity of teleost reproductive strategies
may be also partially explained assuming compensatory genetic
changes that overcome maladaptive responses to distressful
environments. This leads to plastic reproductive adaptations
between sexes to predatory and pathogenic pressures by virtue of
sex-specific differences in the reproductive hormonal axis.

Overall, these and other studies imply that to accurately
define a stressotope, the range of abnormal values in distress
physiological adjustments, the scope of stressome components
to be included in the analysis of allostatic load and the intersex
differential responses to severe stressors, should necessarily be
taken into account. Considering that in teleosts, as in the rest
of vertebrates, steroids regulate reproductive outcomes but also
metabolism, stress responses, behavior and immune function,
usually in a seasonal way (133, 134), the differential effect of
estrogens- and testosterone-derived mediators must be included
in the stressome catalog.

CONCLUSION

We have outlined some of the key processes and influences
required to properly define a stressotope, ranging from the
molecular to the ecological ones. Stress is a foreground concept
defined against a background of interactions between network
genome expression and phenome consolidation in a particular
ecological niche. A stressotope approach that could help to
elucidate common responses to diverse stressful scenarios is
not only informative but also necessary to reduce the diversity

of fish lifestyles to a minimum common set of telltales and
indicators of allostatic loads originating from multiple and
recurrent stressors. There is a growing shift in the literature of
stress responses in fish toward a more integrate view of allostatic
description. However, this approach is still hampered by the lack
of analytical tools, peculiarities of fish genomes and the fuzzy
definition of common inter-specific endpoints of distress-related
physiological changes across behavioral phenotypes. Moreover,
fish are considered more labile and diverse in their physiology
than other vertebrates. We can describe teleosts as animals
that indulge in sex changes, inhabit environments hostile
to ectothermic metabolisms, grow indefinitely, modify their
coping styles, or individualities in response to environmental
and parasitic insults (135, 136), have higher rates of cell
proliferation in the adult brain compared to mammals, and that
are strongly dependent on the social interactions and physical
environments (137, 138). Therefore, a roadmap for minimum
common descriptors of stress responses, a stressotope, must
be drawn considering the behavioral plasticity of teleosts, an
integrative concept that harbors the cross-linked effects of
neuroimmunoendocrine cross-talks that integrate in a variable
set of phenotypes from specific activation of pan-specific
stressomes.
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