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Osteopetrosis is a condition characterized by increased bone mass due to defects

in osteoclast function or formation. In the last decades, the molecular dissection of

osteopetrosis has unveiled a plethora of molecular players responsible for different forms

of the disease, some of which present also primary neurodegeneration that severely

limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them

when performed in the first months of life, highlighting the relevance of an early molecular

diagnosis. However, clinical management of these patients is constrained by the severity

of the disease and lack of a bone marrow niche that may delay immune reconstitution.

Based on osteopetrosis genetic heterogeneity and disease severity, personalized

therapies are required for patients that are not candidate to bone marrow transplantation.

This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity,

current therapy and innovative approaches undergoing preclinical evaluation.
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INTRODUCTION

The term osteopetrosis derives from the Greek “osteo,” bone, and “petros,” stone, to define a
genetically heterogenous group of diseases affecting the skeletal tissue, ranging in severity from
benign to fatal in early childhood (1). Osteopetrosis is characterized by increased bone mass due
to defective resorption activity or differentiation of osteoclasts (2), causing a disequilibrium of
bone turnover, deformities, dental abnormalities and impaired mineral homeostasis, and giving
rise to structural fragility that causes frequent fractures. Moreover, osteopetrotic patients are
characterized by reduction of marrow cavity, affecting hematologic function; related phenotypes
are severe anemia, pancytopenia, frequent infections and hepatosplenomegaly (1, 2) and increased
frequency of circulating CD34+ cells in the peripheral blood (3). The overly dense cranial nerve
foramina lead to impairment of neurologic functions with progressive deafness, blindness and
nerve palsies (1, 2). Three different forms of osteopetrosis have been described, based on the pattern
of inheritance: autosomal recessive osteopetrosis (ARO), autosomal dominant osteopetrosis (ADO)
and X-linked osteopetrosis (2, 4). The only cure for osteopetrosis is allogeneic hematopoietic stem
cell transplantation (HSCT), that has greatly improved its outcome overtime (5–7). In this review,
we describe the different forms of the disease and therapeutic options, highlighting advances
in the setting of safer conditioning regimens and alternative therapies to overcome the limited
donor availability.
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AUTOSOMAL RECESSIVE
OSTEOPETROSIS (ARO)

The autosomal recessive form of osteopetrosis (ARO), also
known as infantile malignant osteopetrosis (IMO), has an
incidence of 1:250000 live births, with higher rates in specific
geographic areas because of geographic isolation, high frequency
of parental consanguinity or the presence of a founder effect
(8). Unless treated with HSCT, ARO is usually fatal within
the first 10 years of life (8). Children present with failure
to thrive, skull abnormalities (macrocephaly, frontal bossing,
choanal stenosis), hydrocephalus, hypocalcemia due to defective
calcium mobilization activity of osteoclasts (1) and abnormal
tooth eruption with frequent development of dental caries
(9). ARO is caused by mutations in different genes that are
implicated in osteoclast function (osteoclast-rich osteopetrosis)
or differentiation (osteoclast-poor osteopetrosis) (Figure 1).

Osteoclast-Rich Osteopetrosis
The most frequent form is caused by mutations in the TCIRG1
(T cell immune regulator 1) gene, accounting for more than
50% of ARO cases. TCIRG1 encodes for the a3 subunit of V0
complex of the V-ATPase proton pump, mainly expressed by
osteoclasts and gastric parietal cells on apical membrane. The
V-ATPase pump acidifies the resorption lacuna in the bone for
the dissolution of the hydroxyapatite crystals, that form the bone
mineral fraction, and the degradation of the matrix (10). The a3
subunit has also been implicated in the interaction between actin
cytoskeleton and microtubules, fundamental for the osteoclast
ruffled border formation (8, 11). Accordingly, TCIRG1-mutated
osteoclasts show defective ruffled border and markedly reduced
resorptive activity (11, 12). Moreover, the V-ATPase maintains
the low pH in the stomach for the dietary Ca2+ absorption
(13), and, since gastric acidification is also relevant for calcium
uptake, this form of osteopetrosis is characterized by rickets or
osteomalacia. The second most frequent form of ARO (17%
of the cases) is caused by loss of function mutations in the
CLCN7 (chloride voltage-gated channel 7) gene (2, 14). This
gene codes a 2Cl−/H+ antiporter regulated by voltage-gating
mechanism, expressed on the osteoclast ruffled border and on the
membrane of late endosomes and lysosomes (15). This channel
cooperates with the V-ATPase in the acid pH maintenance of
the resorption lacuna. CLCN7 is involved in vesicle trafficking
in early and recycling endosomes by regulating the luminal
Cl− concentration (16). Mutations in the CLCN7 gene are
responsible for a wide spectrum of clinical manifestations.
Biallelic mutations cause a very severe form in which bone
defects and hematological failure are associated in some
patients with primary neurodegeneration, resembling lysosomal
storage disease, cerebral atrophy, spasticity, axial hypotonia and
peripheral hypertonia (8, 14, 17). Carrier individuals do not

Abbreviations: ADO, autosomal dominant osteopetrosis; ARO, autosomal

recessive osteopetrosis; DOS, dysosteosclerosis; DSF, disease-free survival; GT,

gene therapy; HLA, human leukocyte antigen; HSCT, hematopoietic stem cell

transplantation; HSPC, hematopoietic stem progenitor cells; MSC, mesenchymal

stem cell; RIC, reduced intensity conditioning; TRAP, tartrate-resistant acid

phosphatase.

show any overt bone phenotype. CLCN7-deficient osteoclasts
have been reported to display impaired endolysosomal trafficking
(8). In rare intermediate forms of TCIRG1- and CLCN7-deficient
ARO, milder presentation or later onset and slower progression
have been recently reported (18–21).

OSTM1 (osteopetrosis-associated transmembrane protein 1)
mutations are reported in 5% of ARO cases (4, 22, 23)
and invariably cause osteopetrosis and severe primary
neurodegeneration, with a life expectancy lower than 2 years
(22, 24–26). OSTM1 has a highly glycosylated N-terminus that
has been reported to stabilize CLCN7 protein and to be required,
together with its transmembrane region, for CLCN7 Cl−/H+

transport activity (15). OSTM1 acts also as an E3 ubiquitin
ligase for the heterotrimeric G-protein Gαi3 and potentiates
WNT canonical signaling by modulating β-catenin/Lef1
interaction (27, 28).

Less than 5% of ARO cases are caused by mutations in the
SNX10 gene, encoding for the sortin nexin 10 protein, one of the
major interactors of the V-ATPase. It is involved in the vesicular
sorting of the V-ATPase complex from the Golgi network and in
its targeting to the ruffled border (8, 29). In the original work,
SNX10-dependent osteopetrosis was reported to show few and
small osteoclasts (30), while in a more recent paper SNX10-
deficient osteoclasts were larger and pale at tartrate-resistant acid
phosphatase (TRAP) staining (31). Overall, the severity of clinical
manifestations is variable (29, 31, 32).

Rare cases of osteoclast-rich osteopetrosis caused by
mutations in other genes have also been reported. For example,
osteopetrosis caused by carbonic anhydrase II (CA-II) deficiency
appears in less than one in a million live births and is associated
with cerebral calcification and renal tubular acidosis (2, 33).
Carbonic anhydrase II enzyme provides protons to the vacuolar
proton pump. Since renal defects are more severe than bone
abnormalities, CA-II deficiency generally is not considered a
classic form of ARO (34).

Loss-of-function mutations in the PLEKHM1 (pleckstrin
homology domain–containing family M member 1) gene cause
mild osteopetrosis in the ia (incisors absent) rat, as well as
an intermediate form of human osteopetrosis (35). PLEKHM1
is a cytosolic protein involved in lysosomal trafficking likely
acting as an effector of Rab7 (36, 37). Patient-derived PLEKHM1-
deficient osteoclasts displayed altered morphology and abnormal
podosome distribution (35).

Mutations in FERMT3 (fermitin family member 3) gene have
been reported to cause osteopetrosis in association with leukocyte
adhesion deficiency type III (LAD III). FERMT3 gene is expressed
in hematopoietic cells and encodes kindlin-3 protein, necessary
for integrin signaling and platelet aggregation (38). Patients
affected with FERMT3-deficiency are characterized by frequent
bleeding and recurrent infections (39, 40).

LRRK1 (leucine-rich repeat kinase 1) gene mutation was
found in a single patient affected by osteosclerotic metaphyseal
dysplasia, that specifically compromises the methaphyses of
long bones, vertebral endplates, costal ends and margin of flat
bones (41).

Another mutated gene associated with osteopetrosis
is MITF (microphtalmia-associated growth factor) that
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FIGURE 1 | Schematic representation of genes involved in osteoclast-poor and osteoclast-rich osteopetrosis. In red are indicated genes involved in the pathogenesis

of ARO. MCSF and RANKL, cytokines secreted by osteoblasts and osteocytes, are necessary for the differentiation of osteoclast precursors into mature and

resorbing osteoclasts. When these signals are absent (TNFSF11 gene mutations) or the pathway is interrupted by the lack of cytokine receptors (TNFRSF11A and

CSF1R gene mutations), osteoclast precursors are not able to differentiate into mature osteoclast causing osteoclast-poor forms of osteopetrosis. Alternatively, if

osteopetrosis is caused by mutations in genes encoding for protein necessary for bone resorption, the disease is defined as osteoclast-rich osteopetrosis. On the

right of the figure, are indicated genes involved in bone resorption activity with different roles: i.e., acidification of resorption lacunae and pH regulation (TCIRG1,

CLCN7, OSTM1, and CAII), vesicular trafficking and sorting of protein complex to the membrane (SNX10 and PLEKHM1), cytoskeletal rearrangement for ruffle border

formation (FERMT3 and LRRK1). Other molecules involved in different signal transductions, essential for osteoclast functions (MITF, LRP5, and IKBKG) are reported.

encodes for a transcription factor acting downstream
RANK/RANKL pathway (42). MITF deficiency is responsible
for COMMAD (coloboma, osteopetrosis, microphthalmia,
macrocephaly, albinism, and deafness) syndrome in
two unrelated patients, suggesting a role for MITF in
regulating various processes beside bone development
and homeostasis (43).

Finally, a homozygous mutation in C16orf57 has been
described in poikiloderma and neutropenia associated with
osteopetrosis (44). This gene encodes for a phosphodiesterase
responsible for modification and stabilization of the U6
small nuclear RNA, fundamental element of the spliceosome
machinery (45), however, its pathophysiologic function in
osteoclast still has to be elucidated.
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Osteoclast-Poor Osteopetrosis
The complete absence of osteoclasts is the key feature of
the osteoclast-poor form of osteopetrosis (46). Patients are
characterized by absence of TRAP-positive osteoclasts in bone
biopsies. The defective osteoclastogenesis is caused by either
the lack of RANKL (receptor activator of nuclear kappa B
ligand) cytokine (2% of all ARO cases) or of its receptor
RANK (4.5% of ARO forms) (47–50). RANKL is encoded by
the TNFSF11 gene and the binding to its receptor RANK,
encoded by the TNFRSF11A gene, determines the activation of
the downstream pathway that drives osteoclast differentiation
and activation (51). In bone, RANKL is produced mainly by
the stromal compartment in physiological condition, while other
cell sources are more important in pathological context (52).
Recent evidence suggests that RANKL has also an osteogenic
role through an autocrine loop in mesenchymal stem cells
(53) and through reverse signaling from the osteoclasts to the
osteoblasts (54). In addition, in patients RANKL absence leads
to a partial defect in T cell proliferation and cytokine production
(50), while RANK-deficiency perturbs B cell memory subset and
immunoglobulin production (48, 49).

A rare osteoclast-poor form of osteopetrosis, called
dysosteosclerosis (DOS), accompanied by red violet macular
atrophy, platyspondyly and metaphyseal osteosclerosis, is caused
by mutations of the SLC29A3 (solute carrier family 29 member
3) gene encoding for a lysosomal nucleoside transporter highly
expressed in myeloid cells (21, 55). More recently a novel
splice-site mutation in the intron 6 of TNFRSF11A has been
described in one patient indicating TNFRSF11A as additional
gene responsible for DOS (56).

A recent report described two affected siblings
presenting osteopetrosis associated with severe combined
immunodeficiency (SCID) caused by a large deletion on
chromosome 11 encompassing RAG1 and RAG2 genes and

the 5
′

region of TRAF6 (TNF receptor-associated factor 6
gene), the most important adaptor for the RANK/RANKL
signaling pathway (57).

Lastly, a heterozygous truncating mutation in the CSF1R
gene, which encodes for MCSF (macrophage colony-stimulating
factor) receptor, was reported in the consanguineous parents
of two deceased siblings, showing osteopetrosis and brain
malformations (58). This mutation could not be assessed in the
probands, however based on this report, this genetic variant
could be responsible for the disease in this family (59).

AUTOSOMAL DOMINANT
OSTEOPETROSIS

Autosomal Dominant Osteopetrosis (ADO) has an incidence of
1:20,000 live births with clinical onset typically in adolescence or
adulthood (4) and cases diagnosed in pediatric age are reported
too (18, 60). It is characterized by diffuse osteosclerosis, primarily
involving the axial skeleton, and symmetrical defects of the long
bones, with no or little modeling defects. ADO form, also known
as benign form, is caused by heterozygous missense mutations of
the CLCN7 gene with dominant negative characteristic, in which

the mutant subunit is able to dimerize, functionally impairing
the protein (12, 17). Patients affected with ADO present a wide
range of symptoms: radiographic alterations, frequent atraumatic
fractures, osteonecrosis or osteomyelitis, vision and hearing
impairment due to cranial nerve compression and occasional
bone marrow failure (4, 8, 61). Although CLCN7 is widely
expressed in the body and the biallelic loss of function causes
neurodegeneration in some CLCN7-deficient ARO patients, only
sporadic cases of cognitive failure have been reported in ADO
patients (4, 12).

X-LINKED OSTEOPETROSIS

Osteopetrosis caused by mutations of the IKBKG (inhibitor of
nuclear factor kappa B kinase subunit gamma) gene, located
on the X chromosome, occurs as a moderate complication of
the OL-EDA-ID syndrome, lymphedema, anhidrotic ectodermal
dysplasia and immunodeficiency (hence, the acronym) (62–65).
The IKBKG gene encodes NEMO, the regulatory subunit of IKK
complex, fundamental for the activation of NF-kB transcription
factor to induce osteoclastogenesis (62). Consistently, inhibition
of NF-kappaB signaling in mouse models of inflammation
showed amelioration of osteolysis and inflammation (66). Bone
biopsy evaluation in a patient revealed that osteoclasts were
present in normal numbers and showed no morphological
abnormalities (63). Thus, OL-EDA-ID is classified as an
osteoclast-rich osteopetrosis (67).

CURRENT THERAPIES AND
MANAGEMENT OF OSTEOPETROSIS

The majority of osteopetrotic forms are caused by osteoclast
dysfunction, while a lower proportion of cases are caused
by impaired osteoclastogenesis (8). Table 1 summarizes the
main clinical features in various forms of osteopetrosis.
Since osteoclasts derive from the myeloid lineage, HSCT
is the recommended treatment. A successful HSCT allows
the engraftment of donor-derived osteoclast precursors,
which further differentiate and give rise to functional mature
osteoclasts, resulting in bone remodeling and haematopoiesis
(9). However, HSCT is contraindicated in patients with primary
neurodegenerative disease (Table 1).

Since secondary neurological defects are not rescued by
transplant, genetic diagnosis and HSCT need to be performed
as soon as possible (7, 68, 69). To this end, in utero HSC
transplantationmight represent in the future a therapeutic option
as demonstrated by successful preclinical studies performed in
the oc/oc mouse model (70, 71). Multicentre studies reported
that patients undergoing HLA-haploidentical HSCT before the
age of 10 months, survived with a full donor engraftment.
On the contrary, almost all patients receiving HSCT after the
age of 10 months underwent graft rejection or autologous
reconstitution, even when an haploidentical donor source was
used (7). Taken together, these evidences suggest that the fast
diagnosis and timing of treatment, play a fundamental role
in the long-term efficacy of HSCT (8). The degree of donor
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TABLE 1 | Main clinical features and indications for treatment in osteopetrosis.

Gene Autosomal

recessive

osteopetrosis

Overall

disease

severity

Hematological

defects

Visual

defects

Hypocalcemia Growth

retardation

Primary

neurodegeneration

Indication to HSCT

TCIRG1 Osteoclast-rich

form

Most often

severe

Severe Mild to severe Severe Mild to severe No Yes

ClCN7 Osteoclast-rich

form

Severe to mild Mild to severe Mild to severe Severe Mild to severe Yes To be evaluated

based on the severity

of CNS involvement

OSTM1 Osteoclast-rich

form

Severe Mild to severe Mild to severe Moderate Mild to severe Yes No severe CNS

involvement

SNX10 Osteoclast-rich

form

Variable Severe Severe Mild Mild No Yes

CAII Osteoclast-rich

form

Moderate None Mild Mild Moderate Cerebral

calcification

To be evaluated

based on cerebral

calcification

PLEKHM1 Osteoclast-rich

form

Mild None None None None to

moderate

No No mild presentation

FERMT3 Osteoclast-rich

form

Severe Severe Mild Mild Mild No Yes

NEMO Osteoclast-rich

form

Severe Severe None Mild Moderate No Yes

TNFRSF11A/RANK Osteoclast-poor

form

Most often

severe

Mild Mild Mild Moderate No Yes

TNFSF11/RANKL Osteoclast-poor

form

Intermediate Mild Mild Mild Severe No No

compatibility is another key point to obtain a high rate of
5-years disease-free survival (DFS) after allogenic transplant.
Data collected during the years on transplant outcomes, proved
that the early diagnosis, the constant monitoring and prompt
intervention for the associate comorbidities, the optimization
of the donor source in term of HLA-matching and the choice
of reduced intensity conditioning regimens allowed higher
efficacy and safety of HSCT (9, 69, 72). The most recent
report of transplants performed by Ulm and Paris Transplant
Units highlighted the improved outcomes of HSCT with 93%
of survival using T cell replete matched donor and 80% of
survival using T cell depleted haploidentical donor (7). Unrelated
cord blood is not recommended because its use is associated
to high risk of primary engraftment failure (73). Fludarabine-
based conditioning, performed better than the conventional
cyclophosphamide-based one, in terms of higher engraftment
and reduced toxicity with a higher 5-years DFS. In a selected
cohort of 31 patients transplanted from related or unrelated
fully matched donors, reduced intensity conditioning (RIC),
based on fludarabine, treosulfan and thiotepa with proximal
serotherapy dosing using anti-thymocyte globulin, allowed 100%
overall survival (69).

The most frequent post-transplant complication is the
engraftment failure caused by a delayed hematological
reconstitution, due to limited or nearly absent bone marrow
space (7) and graft vs. host disease (GvHD) (69). T-cell
replete haploidentical graft with the administration of
cyclophosphamide after HSCT has been proposed in patients
older than 10 months (74). Frequently, transplanted ARO
patients showed liver and pulmonary venous-occlusive disease

(VOD) (75). Respiratory problems, such as choanal stenosis
with upper airway obstructions, capillary leak syndrome,
primary pulmonary infections and primary pulmonary
hypertension were also frequent. When feasible, the use of
a RIC regimen may reduces significantly the incidence of
pulmonary hypertension (9, 69).

In addition, central nervous system complications may
occur in terms of hydrocephalus, hypocalcaemic convulsions or
deterioration of preexisting symptoms. Lastly a recurrent post-
transplant risk was the onset of hypercalcemia, that can be treated
by the use of Denosumab (76).

ALTERNATIVE TREATMENTS AND FUTURE
THERAPIES

Despite recent improvement in the HSCT outcome, the
availability of HLA-matched donors remains an open issue. For
individuals lacking compatible donor, a strategy based on gene
therapy (GT) has been proposed. The protocol would exploit the
use of genetically modified CD34+ cells, isolated from peripheral
blood without the need of pharmacological HSC mobilization
(3). The efficacy and the feasibility of GT have been studied in
the oc/oc murine model, to evaluate neonatal transplantation of
genetically corrected HSC in the context of TCIRG1-dependent
osteopetrosis. Retroviral vectors were able to improve bone
resorption and survival of oc/ocmice (77). Unfortunately, clinical
trials in which immunodeficient patients were treated with this
type of vector showed the risk of leukemia (78). In recent years,
lentiviral vector GT has proven to provide clinical benefit in
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patients affected by a number of diseases, avoiding the leukemic
side effects (79, 80). Moreover, transduction of CD34+ cells from
the blood of TCIRG1-deficient patients with a lentiviral vector
achieved the correction of the osteoclast dysfunction in vitro (81).

ARO caused by osteoclast extrinsic deficiency, such as
TNFSF11mutations, requires a different approach. In particular,
a replacement therapy has been evaluated at the preclinical
level: the product of the TNFSF11 gene, RANKL cytokine, has
been administered pharmacologically to Tnfsf11 knockout mice,
rescuing bone defects and hematopoietic organ architecture
(82). Additional strategies could be considered, for example,
mesenchymal stem cell (MSC) transplantation to replace
the osteoblast precursor population (83); however clinical
application still raises doubts and challenges, thus this is
far from a mature therapeutic option. The second method
exploited the use of biotechnological devices, implanted
subcutaneously, to release soluble RANKL and allowing
osteoclastogenesis in Tnfsf11 knockout mice (84). More
recently, a promising biomimetic scaffold, seeded with Tnfsf11
knockout MSC, overexpressing human soluble RANKL after
transduction with lentiviral vector has been developed. When
implanted subcutaneously, the 3D system was well tolerated
and was able to drive the differentiation of TRAP positive
cells (85).

Regarding new approaches for the treatment of ADO2, small
interfering RNA has been demonstrated to silence specifically
the mutated CLCN7 allele, and to be effective and safe in
vitro on human cells and in vivo, in an ADO2 mouse model
(86). Therefore, efforts have been undertaken to move into the
clinic (87). Alternatively, the administration of different doses
of IFN-γ partially reduced whole-body bone mineral density of
ADO2 mice, although further studies for clinical applications are
needed (88).

CONCLUSIONS

Genetic dissection of osteopetrosis has unveiled the complex
scenario of molecules involved in the pathogenesis of this disease.

Early genetic diagnosis is important to establish treatment
and thus prevent worsening of the clinical signs. However,
despite new molecular techniques have defined ARO molecular
complexity, there is the need to further understand their
clinical heterogeneity and design novel and suitable cure to
these patients. To this end, significant progress has been
made in the treatment of ARO thanks to the improvement
of novel conditioning regimens and source of donor HSPC,
however additional work remains to be done to overcome the
limited availability of donors or lack of a therapy for patients
carrying RANKL defects or presenting with neurodegenerative
osteopetrosis. On this basis, efforts are currently ongoing to
further extend the number of molecular players causative
of the disease in parallel with the design of novel clinical
strategies to be offered as curative treatment for different
forms of osteopetrosis.
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